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A comprehensive account of some real world optimization problems have been presented in 

details. These problems can be used to evaluate the performance of different stochastic 

optimization algorithm. After all, every optimization algorithm has to be applied to some real 

world problems. In light of this fact, some real world optimizations problems have been 

selected and detailed analysis of those problems have given to understand it and the objective 

functions have been evaluated respected to the constraints (if any) to optimize and get its 

solution. 

1. Problem Definitions 

In this section some real world problems to evaluate the performance of algorithms are 
defined. 

1. Parameter Estimation for Frequency-Modulated (FM) Sound Waves (Problem No.1 

in Table 1) 

Frequency-Modulated (FM) sound wave synthesis has an important role in several modern 

music systems and to optimize the parameter of an FM synthesizer is a six dimensional 

optimization problem where the vector to be optimized is { }1 1 2 2 3 3, , , , ,X a a aω ω ω=  of the 

sound wave given in eqn. (1). The problem is to generate a sound (1) similar to target sound 

(2). This problem is a highly complex multimodal one having strong epistasis, with minimum 

value ( ) 0solf X =
r

. This problem has been tackled using Genetic Algorithms (GAs) in [1], 

[2].The expressions for the estimated sound and the target sound waves are given as: 

               ( )( )( )1 1 2 2 3 3( ) .sin . . .sin . . .sin . .y t a t a t a tω θ ω θ ω θ= + +             (1) 

               ( ) ( ) ( ) ( ) ( )( )( )( )0 ( ) (1.0).sin 5.0 . . 1.5 .sin 4.8 . . 2.0 .sin 4.9 . .y t t t tθ θ θ= − +   (2) 

respectively where  2 100θ π=  and the parameters are defined in the range [ ]6.4 6.35−  

The fitness function is the summation of square errors between the estimated wave (1) and 

the target wave (2) as follows: 
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                                  ( )
100 2

0
0( ) ( ) ( )

t
f X y t y t

=
= −∑

r                                       (3) 

2. Lennard-Jones Potential Problem (Problem No. 2 in Table 1) 
 

It is a potential energy minimization problem. Lennard-jones potential problem involves the 

minimization of molecular potential energy associated with pure Lennard-Jones (LJ) cluster 

[3], [4]. This is a multi-modal optimization problem comprised of an exponential number of 

local minima [3]. The lattice structure of LJ cluster has an icosahedral core and a combination 

of surface lattice points. Most of the global minima have structures based upon the Mackay 

icosahedrons an can be seen in the Cambridge Cluster Database (http://www-

wales.ch.cam.ac.uk/CCD.html). An algorithm can be tasted over this function for its 

capability to conform molecular structure, where the atoms are organized in such a way that 

the molecule has minimum energy. Lennard-Jones pair potential for N atoms, given by the 

Cartesian coordinates 

                                       { }, , ,   1,...,i i i ip x y z i N= =
r r r r

 (4) 

 is given as follows: 

                                       ( ) ( )
1

12 6

1 1
V 2. ,

N N

N ij ij
i j i

p r r
−

− −

= = +

= −∑ ∑  (5) 

where   
2ij j ir p p= −

r r
with gradient  

                     
( ) ( )( )14 8

1,
12 ,    1,...,

N

j N ij ij j i
i i j

V p r r p p j N− −

= ≠

∇ =− − − =∑ r r
 (6) 

Lennard-Jones potential has minimum value at a particular distance between the two points 

[5]. The structures of LJ clusters after optimization take following shapes as reported by 

Cambridge Cluster Database. 
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                           (c)                                                                              (d) 

Fig. 1: (a), (b), (c), and (d) are the shapes for 38, 75, 102 and 104 atom LJ clusters and the 

optimum potential reported up to now are -173.928427, -402.894866, -569.363652 and -

582.086642 respectively pair well depth. 

The variation of Lennard-Jones pair potential V(r) = r-12-2.r-6 with pair distance r have 

been plotted in Figure 2. It can be clearly seen that it has a unique minimum value of -1 for a 

particular value of r (=1). Its value increases very fast when r is decreased from the 

optimum value and tends to infinity near r=0.  This tendency of pair potential curve makes it 

a hard optimization problem. 
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Fig. 2: Variation of pair potential with r 

Following [4], we can reduce the dimension of the problem in the following way. We first fix 

an atom at the origin and choose our second atom to lie on the positive X-axis. The third atom 

can then be selected to lie in the upper half of the X-axis. Since the position of the first atom 

is always fixed and the second atom is restricted to the positive X-axis, this gives a 

minimization problem involving three variables for three atoms. For four atoms, additionally 

three variables (the Cartesian co-ordinates of the 4-th atom) are required to give a 

minimization problem in six independent variables. For each further atom, three variables 

(coordinates of the position of the atom) are added to determine the potential energy of 

clusters. Let xr be the variable of the problem which has three components for three atoms, six 

components for 4 atoms and so on. The first variable due to the second atom i.e. 1 [0, 4]x ∈ , 

then the second and third variables are such that 2 [0, 4]x ∈ and 3 [0, ]x π∈ . The coordinates  

ix for any other atom is taken to be bound in the range: 

                                       1 4 1 44 ,4
4 3 4 3

i i⎡ ⎤− −⎢ ⎥ ⎢ ⎥− − +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 

where r⎢ ⎥⎣ ⎦ is the nearest least integer w.r.t. r∈� . 



7 

 

 

3. The Bifunctional Catalyst Blend Optimal Control Problem (Problem No. 3 in 

Table 1) 

Luus [6, 7] studied a hard multimodal optimal control problem which has many local optima. 

As many as 300 local optima have been reported by Esposito and Floudas [8]. The proposed 

problem is a chemical process which converts methylcyclopentane to benzene in a tubular 

reactor and described by a set of following seven differential equations:  

                 1 1 1,x k x= −&  (4) 

                 ( )2 1 1 2 3 2 4 5 ,x k x k k x k x= − + +&  (8) 

                 3 2 2 ,x k x=&  (9) 

                 4 6 4 5 5 ,x k x k x= − +&  (10) 

                 ( )5 3 2 6 4 4 5 8 9 5 7 6 10 7 ,x k x k x k k k k x k x k x= − + − + + + + +&  (11) 

                 6 8 5 7 6 ,x k x k x= −&  (12) 

                 7 9 5 10 7x k x k x= −&  (13) 

where , 1,2,...,7ix i = are the mole fractions of the chemical species, and the rate constants 

( )ik are cubic functions of the catalyst blend ( )u t : 

                 
2 3

1 2 3 4 ,     1, 2,...,10i i i i ik c c u c u c u i= + + + =    (14) 

Where the values of the coefficients cij are experimentally evaluated are given in Table 1[7]. 

The mass fraction of the hydrogenation catalyst is bounded as:  0.6 ( ) 0.9u t≤ ≤  and 

initially [ ][0] 1 0 0 0 0 0 0 Tx = . This chemical process is operated in steady state 

and hence 1x   appears at the beginning of the process and 7x at the end, so  1x  through 

7x  can be considered to be placed along the length of the tubular reactor. The objective is to 
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determine the catalyst blend u  along the length of the reactor at time interval 0 ft t≤ ≤  

where  2000 gm/molft =   such that the performance index 

                                ( ) 3
7 10

f
tJ x= ×  (15) 

representing the benzene concentration at the exit of the reactor, is maximized. 

Table: 1: value of c  

2.918487e-003 -8.045787e-003 6.749947e-003 -1.416647e-003 
9.509977e+000 -3.500994e+001 4.283329e+001 -1.733333e+001 
2.682093e+001 -9.556079e+001 1.130398e+002 -4.429997e+001 
2.087241e+002 -7.198052e+002 8.277466e+002 -3.166655e+002 
1.350005e+000 -6.850027e+000 1.216671e+001 -6.666689e+000 
1.921995e-002 -7.945320e-002 1.105660e-001 -5.033333e-002 
1.323596e-001 -4.692550e-001 5.539323e-001 -2.166664e-001 
7.339981e+000 -2.527328e+001 2.993329e+001 -1.199999e+001 
-3.950534e-001 1.679353e+000 -1.777829e+000 4.974987e-001 
-2.504665e-005 1.005854e-002 -1.986696e-002 9.833470e-003 

 

4. Optimal Control of a Non-Linear Stirred Tank Reactor (Problem No. 4 in Table 1) 

A first-order irreversible chemical reaction carried out in a continuous stirred tank reactor 

(CSTR) is a multimodal optimal control problem. It has been tried to solve by stochastic 

global optimization algorithm by Ali et al. [10]. Luus et al. [7] tried to solve it by Iterative 

Dynamic Programming algorithm. This problem is a benchmark optimization problem in 

Handbook of Test Problems in Local and Global Optimization [9]. This chemical process is 

modeled by two non-linear differential equations: 

1
1 1 2

1

25(2 )( 0.25) ( 0.5)exp ,
2

xx u x x
x

⎛ ⎞
= − + + + + ⎜ ⎟+⎝ ⎠

&  (16) 

1
2 2 2

1

250.5 ( 0.5)exp
2

xx x x
x

⎛ ⎞
= − − + ⎜ ⎟+⎝ ⎠

& , (17) 
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( )u t =  Flow rate of the cooling fluid, 1x =  Dimensionless steady state temperature and 

2x = Deviation from dimensionless steady state concentration. The optimization objective is 

to determine suitable value of  u   so that the performance index  

                           

0.72 2 2 2
1 20

( 0.1. ) ,ft
J x x u dt

=
= + +∫  (18) 

is minimizes where the initial conditions are ( ) [ ]0 0.0.9 0.09 Tx = . Though the problem is 

unconstrained the initial guess for ( )u t  lies in [ ]0.0 5.0 . The integration involved in 

evaluation is performed using sub-function ode45 available in MATLAB with relative 

tolerance set to 11 10−× . 

5. Tersoff Potential Function Minimization Problem (Problem No. 5 & 6 in Table 1) 

Evaluation of inter atomic potentials for covalent systems, particularly for Silicon has been 

receiving great interest from the researchers. One such potential is Tersoff potential, which 

governs the interaction of silicon atoms with a strong covalent bonding. Tersoff has given 

two parameterization of silicon and these are called Sc(B) and Sc(C). If we define the 

positions of the molecular clusters of N atoms by: 

                                         1 2{ , , ..., },NX X X X=
r r r r

  (19)
 

where iX
r

s { }1, 2,...,i N∈  is a three-dimensional vector denoting the coordinates of the  ith  

atom in Cartesian coordinate system then the total Tersoff potential energy function of the 

system is a function of atomic co-ordinates and defined as  

                      1 3 1 1 3 1 3( ,..., ) ( ,..., ) ... ( ,..., )Nf X X E X X E X X= + +
r r r r r r

 (20) 

Total potential is sum of individual potentials of atoms given by eqn. (21), which further 

needs calculation of eqn. (22) through (27). The potential of any atom depends on the 

physical position of their neighbor atoms. Different atoms have different distances and angles 
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subtended with respect to the other atoms so every atom has deferent energies. Now the 

Tersoff potential [11] of individual atoms can be formally defined as 

                    
( ) ( ) ( )( )1 ,       

2i c ij R ij ij R ijj i
E f r V r B V r i

≠
= − ∀∑  (21) 

where ijr  is the distance between atoms i and j, VR is a repulsive term, VA is an attractive 

term, ( )c ijf r   is a switching function and Bij is a many-body term that depends on the 

positions of atoms i and j and the neighbors of atom  i. These quantities are detailed in [11].  

                      
1

11

1 2
1

nnnBij ijγ ξ⎛ ⎞
⎜ ⎟
⎝ ⎠

−
= +   (22) 

where  ni and γ  are known fitted parameters [11] . The term ξij for atoms  i  and  j  (i.e., for 

bond ij ) is given by: 

                 ( ) ( ) ( )( )33
3expij c ij ijk ij ik

k i
f r g r rξ θ λ

≠

= −∑  (23) 

Here ξij  describes the contribution of the neighbors of the atom ,   ξij increases as the number 

of k atoms increases but the term Bij decreases as ξij increases. The exponential term in (23) is 

designed to reduce the contribution of bonds with length greater than ijr , so that the distant 

neighbors of  have a reduced contribution to the bond order term. The term ijkθ  is the bond 

angle between bonds ij and ik, and the function g is given by: 

                  ( ) ( )( )( )22 2 2 21 cosijk ijkg c d c d hθ θ= + − + −  (24)  

The parameter h  is the cosine of the optimum bond angle and  c   and d   control the 

influence of bond angles on the many-body term. The quantities 3, ,  and c d hλ  which appear 
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in (23) and (24) are also known fitted parameters. The terms ( )R ijV r  and ( )A ijV r  are given 

by: 

                               

( ) 1 ijr
R ijV r Ae λ−=

                                                                         

(25)

                  

                                

( ) 2 ijr
A ijV r Be λ−=

                                                                        

(26) 

where A,B, 1λ  and 2λ  are given fitted parameters. The switching function ( )c ijf r  restricts 

the potential calculations to nearest neighbors only and ensures that atomic interactions decay 

smoothly to zero as the separation distance increases.  It is given by 

    

( ) ( )
1,                                                if               
1 1 sin / ,         if       
2 2
0,                                               if               

ij

c ij ij ij

ij

r R D

f r r R D R D r R D

r R D

π

≤ −

⎡ ⎤= − − − 〈 〈 +⎣ ⎦

≥ +

     

⎧
⎪⎪
⎨
⎪
⎪⎩

 (27) 

The two sets of parameter values respectively for Si(B) and Si(C) is tabulated in Table 2 [12]. 

Though Tersoff potential problem is a 3N ×   dimensional in 3-dimentional space, the no. of 

dimensions to be evaluated can be decreased in light of the fact that it depends on relative 

position of atom instead of actual Cartesian coordinates. One atom can be permanently put on 

the origin and second atom on the positive x-axis. Thus for a 3-atom system the actual no. of 

variables is four instead of nine. Now, for each additional atom added to the system, the no. 

of variables increases by three (three Cartesian coordinates of an additional atom). Thus, in 

general, for the system of N atoms, the no. of unknown variables is 3 6n N= × − . Now the 

cluster X of N atoms can be redefined as 

                           { } ( )3 6
1 2, ,..., , N

nx x x x x IR −= ∈  (28) 

The search region for both Si (B) and Si(C) model of Tersoff potential is  

 
{ }{ }1 2 1 2 3, ,..., | 4.25 , 4.25, 4,..., 0 4,0n ix x x x x i n x x πΩ = − ≤ ≤ = ≤ ≤ ≤ ≤

 
 (29) 
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The potential (29) is a complex and differentiable function whose partial derivatives can be 

found in [11]. The cost function now can be redefined as: 

        ( ) ( ) ( ) ( )1 2 ... ,   Nf x E x E x E x x= + + + ∈Ω  (30) 

Note that in this case also the variables are initialized in the same way as was done for the 

Lennard-Jones potential minimization problem. 

6. Spread Spectrum Radar Polly phase Code Design (Problem No. 7 in Table 1) 

When designing a radar-system that uses pulse compression, great attention must be given to 

the choice of the appropriate waveform. Many methods of radar pulse modulation that make 

pulse compression possible are known. Polyphase codes are attractive as they other lower 

side-lobes in the compressed signal and easier implementation of digital processing 

techniques. Later Dukic and Do-brosavljevic [13] proposed a new method for polyphase 

pulse compression code synthesis, which is based on the properties of the aperiodic 

autocorrelation function and the assumption of coherent radar pulse processing in the 

receiver. The problem under consideration is modeled as a min–max nonlinear non-convex 

optimization problem in continuous variables and with numerous local optima. It can be 

expressed as follows: 

                            global  1 2min ( ) max{ ( ),..., ( )},mx X
f x x xφ φ

∈
=                            (31) 

1{( ,..., ) | 0 2 , 1,..., },n
n jX x x R x j nπ= ∈ ≤ ≤ =   

where 2 1m n= −  and 

2 1
|2 1| 1

( ) cos
jn

i k
j i k i j

x xφ −
= = − − +

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ ,  1,...,i n=  (32) 

2
1 |2 | 1

( ) 0.5 cos
jn

i k
j i k i j

x xφ
= + = − +

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
∑ ∑ ,  1,..., 1i n= −  (33) 
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( ) ( ),    1,...,m i ix x i mφ φ+ = − =  (34) 

Here the objective is to minimize the module of the biggest among the samples of the so-

called auto-correlation function which is related to the complex envelope of the compressed 

radar pulse at the optimal receiver output, while the variables represent symmetrized phase 

differences. The problem is NP-hard and previously a few approaches to solve it by using 

GAs and some variants of DE (Differential Evolution) can be found in [14, 15]. This problem 

belongs to the class of continuous min–max global optimization problems. They are 

characterized by the fact that the objective function is piecewise smooth.  

7. Transmission Network Expansion Planning (TNEP) Problem: (Problem No. 8 

in Table 1) 
 

TNEP without security constraints: 

 

The simple TNEP [16, 17] without security constraints determines the set of new lines to be 

constructed such that the cost of expansion plan is minimum and no overloads are produced 

during the planning horizon. A DC power flow based model is used for TNEP. The TNEP 

without security constraints, can be stated as follows, 

min                                                                                            (35)

s.t.
                                                                                

l l
l

v c n

S f g d

∈Ω

=

+ =

∑

( )
( )

0

___
0

            (36)

( ) 0, for 1,2..........,                                              (37)

 ,for 1,2..........,                                                       

l l l l l

l l l l

f n n l

f n n f l nl

γ θ− + Δ = ∈

≤ + ∈
___

   (38)

0                                                                                                    (39)
 and are unbounded,

0,  and integer, for 1,2.........., ,
.

l

l l

l

l

n n
f

n l nl
l

θ
≤ ≤

≥ ∈

∈Ω

 

lc : cost of line added in lth right-of-way, 
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S : branch-node incidence transposed matrix of the power system, 

f :vector with elements 
l

f , 

lγ : susceptance of the circuit that can be added to lth right-of-way, 

ln : the number of circuits added in lth right-of-way, 

0
ln : no. of circuits in the base case, 

l
θΔ : phase angle difference in lth right-of way, 

lf : total real power flow by the circuit in lth right-of-way , 

___

lf : maximum allowed real power flow in the circuit in lth right-of-way, 

___

ln :maximum number of circuits that can be added in lth right-of-way, 

Ω :set of all right-of-ways, 

nl: total number of lines in the circuit. 

 

The objective is to minimize the total investment cost of the new transmission lines to be 

constructed, satisfying the constraint on real power flow in the lines of the network. 

Constraint (38) represents the power balance at each node. Constraint (37) is the real power 

flow equations in DC network. Constraint (38) represents the line real power flow constraint. 

Constraint (39) represents the restriction on the construction of lines per corridor (R.O.W). 

The transmission lines added in any right-of–way are the decision variables. 

The cost of each solution to the TNEP without security constraints can be obtained using the 

eqn.(40) as shown below: 

Minimize: 

                      

___

1 2W (abs ( ) )  +W ( - )      ll l l l l
l ol

f c n f f n n
∈Ω

= + −∑ ∑
             (40) 

ol: represents the set of overloaded lines. 

 

The objective of the TNEP is to find the set of transmission lines to be constructed such that 

the cost of expansion plan is minimum and no overloads are produced during the planning 
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horizon. Hence, first term in the equation (40) indicates the total investment cost of a 

transmission expansion plan. The second term is added to the objective function for the real 

power flow constraint violations. The third term is added to the objective function if 

maximum number of circuits that can be added in lth right-of-way exceeds the maximum 

limit. W1, W2 are constants. The second and third terms are added to the fitness function only 

in case of violations.   

 

8. Large Scale Transmission Pricing Problem (Problem No. 9 in Table 1) 
 

In the modern era of deregulated power systems, transmission pricing is one of the 

extensively debated issues in literature [18-20]. The unbundling of vertically integrated 

utilities creates transmission owner as a separate identity. The transmission pricing, as per 

generic perception, tackles the issue of allocating the fixed costs of transmission to various 

stake-holders. Many factors influence the decision about the scheme of transmission pricing 

to be adopted. Some of the factors could be: ex-ante / ex-post pricing, market based / non-

market methods, methods for centralized or decentralized markets, whether loss is part of 

transmission pricing or not, etc. The list is quite exhaustive and hence is the number of 

proposed methods of transmission pricing. 

Equivalent Bilateral Exchange (EBE) is one such method introduced in [19] that works on the 

linearized model of the system. The original scheme is developed for a pool market (non-

transaction based), in order to calculate the final transmission charges for each node. The 

method imposes a rule on the established power flow snap-shot. The rule is based on the 

assumption that every generator contributes to every load. The amount of contribution is 

decided in proportionate manner. The method provides fair price signals and proves to be 

useful in pool system, where, bilateral transactions are non-existent. 

The original EBE method [19] creates a load-generation interaction matrix (equivalent 

bilateral exchange) based on the following proportionality principle: 
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                              sys
D

DjGi
ij P

PP
GD = ,                                                     (41) 

where, GDij is the amount of equivalent bilateral exchange that takes place between 

generator i and load j and sys
DP  is the total load in the system. Now the fraction of power flow 

in line k due to bilateral exchange between generation at bus i and demand at bus j is 

evaluated for all equivalent bilateral power exchanges using DC load flow or by using PTDF 

[18]. The net flow in the line k is the absolute sum of all the flows due to all the transactions. 

The net flow in the line can be expressed in terms of equivalent bilateral power exchanges as 

                             ∑∑=
i j

ij
k
ijk GDpf γ                                            (42) 

Equation (43) shows that creating an equivalent bilateral transaction matrix using 

proportionality principle is not the only way to do the pricing. There are multiple solutions 

possible. Though proportionate principle is logical or intuitive way of decomposing, it needs 

to be seen how the multiplicity of solutions can be used for proper applications. 

 
Problem Statement 

 

If there are pre-existing bilateral transactions, it creates a division amongst the existing 

customers: Bilateral customers and pool customers. Hence, we suggest a different 

transmission pricing schemes for these two sets of customers. Since the bilateral transactions 

are a-priori known, the usage rate for the BT are calculated using PTDF and evaluating usage 

of lines by BTs. Thus, in step 1, some of the total charges to be recovered are attributed to 

BTs. The rest of the charges are now recovered through pool customers. However, the 

allocation of these remaining charges and calculation of rates thereby, is done using 

optimization. As mentioned earlier, the optimization helps in exploring the multiple solutions 

in deciding the equivalent bilateral exchanges such that the charges of pool customers are 

close to those had BTs been absent. The formulation is discussed next.  
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Problem Formulation 
 

An input file, containing the bus specifications, line specifications, fixed cost to be recovered 

and bilateral transactions data, is considered as the problem definition. The sensitivity of a 

line connecting bus m and n for a transaction between buses i and j are given by [18] as 

                             , ,mi ni mj nj
ij mn

mn

X X X X
x

γ
− − −

=                                       (43) 

where mnx is the reactance of line connecting buses m and n;  miX , niX , mjX  and njX    entries 

of the X  matrix[18]. 

Usage rates with pool only market: 

 

The EBE method [19] is applied on the given data and the transmission charges in 

Rs/Mwhr are evaluated at each bus. Let i
geR  is the obtained transmission usage rate for a 

generation at bus i and j
deR  be the obtained transmission usage rate for a demand at bus j. 

 

Usage rates with pool and bilateral transactions: 

i) The equivalent bilateral transactions between pool generations and pool demands are 

obtained by minimizing usage rate deviations due to bilateral transactions i.e.  

min
ijGD    ( )ijF GD = 

2

'

. .

k
k

ij ij
j k k k

ij ij ij ij
i j i j

i
ge

gi gii

FCGD

GD BT

R
P P

γ

γ γ
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⎢ ⎥
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∑ ∑
∑∑ ∑∑

∑
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑
∑∑ ∑∑

∑                           (44) 

Subject to constraints: 
 
      i

ij gi gi
j

GD P P= −∑     i∀    ,                                                                 (45) 

      '
ij dj dj

i

GD P P= −∑     j∀    ,                                                                  (46)  

where, ijGD  is the equivalent bilateral transaction that need to be evaluated ; kFC is the 
fixed cost of a line k that needs to be recovered in Rs/hr ; ijBT  stands for bilateral transaction 

between generator at bus  i  and demand at bus  j; giP  is total generation at bus  i ; '
giP  sum of 

generations due to all bilateral transactions ; djP  total demand at bus j; '
djP   sum of demands 

due to all bilateral transactions at bus j. 
 
ii) Charges  
 
The line usage charge in Rs/MW hr for a line k is given by  

                          
  .

. .

k

k k
ij ij ij ij

i j i j

k FC

GD BT

r
γ γ

=
⎡ ⎤
⎢ ⎥+
⎢ ⎥⎣ ⎦
∑∑ ∑∑

                             (47) 

The usage rate for pool generation at bus i  is given by  

                   
( )
'

.

 .

k k
ij ij

j ki

gi gi

GD r

URPG
P P

γ
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦=

−

∑ ∑
                                         (48) 

The usage rate for bilateral transacted generation at bus i is given by  

                    
( )

'

.

 .

k k
ij ij

j ki

gi

BT r

URBG
P

γ
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦=
∑ ∑

                                         (49) 

The usage rate for pool demand at bus j is given by  
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k k
ij ij

i kj

dj dj

GD r
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P P

γ
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦=

−

∑ ∑
                                          (50) 

The usage rate for bilateral transacted demand at bus j is given by, 

                   
dj

j k

kk
ijij

j

P

rBT
URBD

∑ ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

γ
                                                  (51) 

 

The present instantiation of the problem is on IEEE 30 bus system. We have assumed that the 

fixed cost to be recovered is US$ 100/hr and the cost of each element is proportional to the 

line reactance as the element costs are unavailable for this network system. First, a base case 

DC load flow is run and the charges for each bus using original EBE scheme are calculated. 

Then, we superimpose additional bilateral transactions over the base case data to realize a 

combined pool and bilateral market. The charges for BTs and Pool customers can be 

calculated using equations (48 - 51). The charges for generators and loads in Pool scheme are 

calculated using equation (48) and (50) respectively, such that the objective function of 

equation (44) is minimized. 

9. Circular Antenna Array Design Problem (Problem No. 10 in Table 1) 
 
Circular shaped antenna arrays find various applications in sonar, radar, mobile and 

commercial satellite communication systems [21 – 23]. Let us consider N antenna elements 

spaced on a circle of radius r in the x-y plane. This is shown in figure 1 and the antenna 

elements are said to constitute a circular antenna array. The array factor for the circular array 

is written as follows, 

         ( ) ( ) ( )( )[ ]∑
=

+−−−=
N

n
n

n
ang

n
angn jkrIAF

1
0coscosexp βφφφφφ         (52) 

where,                                                                                                              

 

( ) Nnn
ang 12 −= πφ is the angular position of the thn element on the x-y plane,  
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88 β∠I  

77 β∠I  
55 β∠I  

33 β∠I  

22 β∠I  

11 β∠I  

44 β∠I  

66 β∠I  

1
angφ  

Kr = Nd where k is the wave-number, d is the angular spacing between elements and r is the 

radius of the circle defined by the antenna array, 

0φ is the direction of maximum radiation, 

φ is the angle of incidence of the plane wave,  nI is the current excitation and nβ  is the 

phase excitation of the thn element. 

Here we shall vary the current and phase excitations of the antenna elements and try to 

suppress side-lobes, minimize beamwidth and achieve null control at desired directions. We 

consider a symmetrical excitation of the circular antenna array i. e. the relations given below 

will hold, 

( )1112/12/ ββ ∠=∠ ++ IconjI nn , 

( )1122/22/ ββ ∠=∠ ++ IconjI nn ,..... 

( )2/2/ nnnn IconjI ββ ∠=∠  

 

The objective function is taken as, 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: Geometry of Circular antenna array 

( ) ( ) ( ) ( )0 max 0 0 0 0
1

, , , , , , 1 , , , , ,
num

sll des k
k

OF AR I AR I DIR I AR Iϕ β ϕ ϕ β ϕ ϕ β ϕ ϕ ϕ β ϕ
=

= + + − +∑
r r r rr r r r
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                                                                                                                   (53) 

The first component attempts to suppress the sidelobes. sllφ is the angle at which maximum 

sidelobe level is attained. The second component attempts to maximize directivity of the 

array pattern. Nowadays directivity has become a very useful figure of merit for comparing 

array patterns. The third component strives to drive the maxima of the array pattern close to 

the desired maxima desφ . The fourth component penalizes the objective function if sufficient 

null control is not achieved. num is the number of null control directions and  kφ specifies the 

thk null control direction.  

 

Below we provide the instantiation of the design problem for this competition: 

 

Number of elements in circular array = 12 

x1= Any string within bounds 

null= [50,120] in radians (no null control) 

phi_desired= 180ο  

distance= 0.5 

 

Here x1 denotes the input string and the readers may look at the read_me.txt file in the folder 

Prob_9_Circ_Antenna for more details. 

 

10. Dynamic Economic Dispatch (DED) Problem (Problem No. 11.1 and 11.2 in Table 1) 

The Dynamic Economic Dispatch (DED) problem follows the charecteristics of the hourly 

dispatch problem, but here the power demand varies with each hour and the power generation 

schedule for 24 hours is to be determined. We can say that the dimension of the DED 

problem is 24 times that of the static ELD problem. 
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 Objective Function 
 
The objective function corresponding to the production cost can be approximated to be a 

quadratic function of the active power outputs from the generating units. Symbolically, it is 

represented as: 

Minimize :    
1 1

( )
GNT

c i h i h
k i

F F P
= =

= ∑ ∑                                          (54) 

where  2( ) ,      1, 2, 3, ...,it it i it i it i GF P a P b P c i N= + + =  

is the expression for cost function corresponding to ith  generating unit and ai, bi and ci are its 

cost coefficients, Pit is the real power output (in MW) of ith generator corresponding to time 

period t, NG is the number of online generating units to be dispatched, T is the total time 

period of dispatch. The cost function for unit with valve point loading effect is calculated by 

using: 

( )( )2 m in( ) sinit it i it i it i i it it itF P a P b P c e f P P= + + + −      (55) 

where ei and fi are the cost coefficients corresponding to valve point loading effect. Due to the 

valve point loading the solution may be trapped in the local minima and it also increases the 

nonlinearity in the system. This constrained DEDP problem is subjected to a variety of 

constraints depending upon assumptions and practical implications. These include power 

balance constraints to take into account the energy balance; ramp rate limits to incorporate 

dynamic nature of DEDP problem and prohibited operating zones. These constraints are 

discussed as under. 

Power Balance Constraints:  

This constraint is based on the principle of equilibrium between total system generation   and 

total system loads (PD) and losses (PL). That is, 
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                         LtDt

N

i
it PPP

G

+=∑
=1

                                                (56) 

where PLt is obtained using B- coefficients, given by 

                         ∑ ∑
= =

=
G GN

i

N

j
jtijitLt PBPP

1 1
                                          (57) 

Generator Constraints:  

The output power of each generating unit has a lower and upper bound so that it lies in 

between these bounds. This constraint is represented by a pair of inequality constraints as 

follows: 

                                
maxmin

iiti PPP ≤≤                                      (58) 

where, Pi
min and Pi

max are lower and upper bounds for power outputs of the ith generating unit 

in MW. 

 

Ramp Rate Limits:  

One of unpractical assumption that prevailed for simplifying the problem in many of the 

earlier research is that the adjustments of the power output are instantaneous. However, under 

practical circumstances ramp rate limit restricts the operating range of all the online units for 

adjusting the generator operation between two operating periods. The generation may 

increase or decrease with corresponding upper and downward ramp rate limits. So, units are 

constrained due to these ramp rate limits as mentioned below. 

If power generation increases, i
t

iit URPP ≤− −1  

If power generation decreases,  iit
t

i DRPP ≤−−1  

where Pi
t-1 is the power generation of unit i at previous hour and URi  and DRi  are the upper 

and lower ramp rate limits respectively. The inclusion of ramp rate limits modifies the 

generator operation constraints as follows 

)DRP,Pmin(P)PUR,Pmax( i
1t

i
max
iiii

min
i −≤≤− −

                        (59) 
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Constraints Handling:  
 

To evaluate the fitness of each individual in the population in order to minimize the fuel costs 

while satisfying unit and system constraints, the following fitness-function model is adopted 

for simulation in this work: 
2 2

1 lim
1 1 1 1 1 1

( )
n N n N n N

k i it it Dt r it r
t i t i t i

f F P P P P Pλ λ
= = = = = =

⎛ ⎞ ⎛ ⎞
= + − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑∑ ∑∑ ∑∑     (60) 

where λ1 and λr are penalty parameters, n is the number of hours, N is the number of units. 

The penalty factors regulate the objective function such that the algorithm gives higher cost 

value rather than directly judging the solutions as infeasible. The penalty term reflects the 

violation of the equality constraint and assigns a high cost of penalty function. The Prlim is 

defined by 

i(t 1) i it i( t 1) i

r lim i(t 1) i it i( t 1) i

it

P DR , P P DR

P P UR , P P UR

P , otherwise

− −

− −

− < −⎡
⎢

= + > +⎢
⎢
⎣

                                              (61) 

 

11. Static Economic Load Dispatch (ELD) Problem (Problem No. 11.3 – 11.7 in 

Table 1) 

 

The static ELD problem is about minimizing the fuel cost of generating units for a specific 

period of operation, usually one hour of operation, so as to accomplish optimal generation 

dispatch among operating units and in return satisfying the system load demand, generator 

operation constraints with ramp rate limits and prohibited operating zones. Hereby, two 

alternative models for ELD are considered viz. one with smooth cost functions and the other 

with non-smooth cost function as detailed below. 
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Objective Function 
 

The objective function corresponding to the production cost can be approximated to be a 

quadratic function of the active power outputs from the generating units. Symbolically, it is 

represented as: 

Minimize:    
1

( )
GN

i i
i

F f P
=

= ∑                                                                                  (62) 

where
2( ) ,       1,2,3,  ...,i i i i i i i Gf P a P b P c i N= + + =   is the expression for cost 

function corresponding to ith  generating unit and ai, bi and ci are its cost coefficients. Pi is the 

real power output (in MW) of ith generator corresponding to time period t. NG is the number of 

online generating units to be dispatched. The cost function for unit with valve point loading 

effect is calculated by using: 

( )( )iiiiiiiiiii PPfecPbPaPf −+++= min2 sin)(
                                           (63) 

where ei and fi are the cost coefficients corresponding to valve point loading effect. This 

constrained ELD problem is subjected to a variety of constraints depending upon assumptions 

and practical implications. These include power balance constraints to take into account the 

energy balance; ramp rate limits to incorporate dynamic nature of ELD problem and 

prohibited operating zones. These constraints are discussed as under. 
 

Power Balance Constraints or Demand Constraints 
 

This constraint is based on the principle of equilibrium between total system generation   and 

total system loads (PD) and losses (PL). That is, 

                              
1

GN

i D L
i

P P P
=

= +∑                                                                                    (64)                            

where PL is obtained using B- coefficients, given by 

             
∑∑ ∑
== =

++=
GG G N

i
ii

N

i

N

j
jijiL BPBPBPP

1
000

1 1                                      
(65)                            
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Generator Constraints  
 

The output power of each generating unit has a lower and upper bound so that it lies in 

between these bounds. This constraint is represented by a pair of inequality constraints as 

follows: 

                            
max
ii

min
i PPP ≤≤

                                                                        (66) 

where, Pi
min and Pi

max are lower and upper bounds for power outputs of the ith generating unit. 

  

Ramp Rate Limits  

  

One of unpractical assumption that prevailed for simplifying the problem in many of the 

earlier research is that the adjustments of the power outputs are unbounded. However, under 

practical circumstances ramp rate limit restricts the operating range of all the online units for 

adjusting the generator operation between two operating periods. The generation may 

increase or decrease with corresponding upper and downward ramp rate limits. So, units are 

constrained due to these ramp rate limits as mentioned below: 

If power generation increases, i
1t

ii URPP ≤− −
 

If power generation decreases, ii
1t

i DRPP ≤−−
 

where Pi
t-1 is the power generation of unit i at previous hour and URi  and DRi  are the upper 

and lower ramp rate limits respectively. The inclusion of ramp rate limits modifies the 

generator operation constraints as follows: 

           )DRP,Pmin(P)PUR,Pmax( i
1t

i
max
iiii

min
i −≤≤− −

 
 

Prohibited Operating Zones  
  

The generating units may have certain zones where operation is restricted on the grounds of 

physical limitations of machine components or instability e.g. due to steam valve or vibration 

in shaft bearings. Consequently, discontinuities are produced in cost curves corresponding to 
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the prohibited operating zones. So, there is a quest to avoid operation in these zones in order 

to economize the production. Symbolically, for a generating unit i, 

                                 PP  and PP pz
i

pz
i

)(
≥≤  

where pzpz P and  P
)(

 are the lower and upper limits of a given prohibited zone for 

generating  unit i. 
 

Conflicts in Constraints Handling  
 

If ever, the maximum or minimum limits of generation of a unit as given lie in the prohibited 

zone for that generator, then some modifications are to be made in the upper and lower limits 

for the generator constraints in order to avoid the conflicts. In case, maximum limit for a 

generator lies in the prohibited zone, the lower limit of the prohibited zone is taken as the 

maximum limit of power generation for that particular generator. Similarly, care is taken in 

case the minimum limit of power generation of a generator lies in the prohibited zone by 

taking upper limit of the prohibited zone as the lower limit of power generation for that 

generator. 

 

12. Hydrothermal Scheduling Problem (Problem No. 11.8 – 11.10 in Table 1) 

 

Hydrothermal scheduling can be either a short term or a long term problem. Short term refers 

to duration of typically 24 hours, while long term refers to duration of weeks or months. The 

primary intent of short-term scheduling of a hydrothermal power system is to schedule the 

power generations of the thermal and hydro units in the system to satiate the load demands, in 

the scheduling duration of one day or a few days, in accordance with the various constraints 

put on the hydraulic systems and the power system networks. Generally, the objective 

function to be minimized in a hydrothermal scheduling problem is the overall fuel cost of 

thermal units for the given short term. The hydrothermal system considered here is extremely 

complex and involves nonlinear relationships of the decision variables, cascaded nature of 

hydraulic network, water carry delays and time link between the consecutive schedules, that 
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make the problem of discovering global optimum cost difficult using regular optimization 

methods.  

 

The system considered comprises of a multi-chain cascaded network of four hydro plants and 

an equivalent thermal power plant. If there are multiple thermal units, they can be taken 

together and considered as an equivalent thermal network. The distribution of power among 

those thermal units can be solved as a different and independent problem. Our objective here 

would be to maximize the output of the hydro units such that thermal unit takes up only 

minimum load. Considering the fact that we have to schedule the water discharges of four 

hydro units for 24 hours, the dimension of the problem is 96. Such huge dimension can take 

conventional methods years to solve using even a computer. 

 

Objective Function 
 

The total fuel cost for operation of the thermal system so as to meet the load demands in the 

scheduling period is given by F . The objective function is formulated as 

Minimize ( )Ti

M

1i
i PfF ∑

=

=                                                                         (67) 

where fi is the cost function corresponding to the equivalent thermal unit’s power generation 

PTi at ith interval . M is the total number of intervals considered for the short term schedule. 

The cost function fi can be written as: 

( )( )TiTiiiiTiiTiiTii PPfecPbPaPf −+++= min2 sin)(     (68) 

The minimization problem is subject to various system constraints. 
 

Demand constraints  
 

This constraint comes from the principle of energy conservation. The total power produced 

by thermal unit and hydro units put together should be satiating both the power demand and 

the power loss occurring. 
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Loss(i)D(i)

N

k
H(k,i)T(i) PPPP +=+ ∑

=1                             (69)                                                       

where PHki represents the power generated by the kth hydro unit at the ith interval; PDi and PLossi 

represents the power demand and power loss at the ith interval respectively. N is the total 

number of hydro units. 
 

Thermal generator constraints  

 

The equivalent thermal generator can generate power only between a certain lower and upper 

limits at any ith interval. 

                                     
max

TT(i)
min

T PPP ≤≤
                                                                                        

 

Hydro generator constraint 
  
Each of the hydro plant’s power generation must belong to its upper and lower bounds of 

operation. 

max
H(k)i)H(k,

min
H(k) PPP ≤≤

                                                                                     
 

Reservoir capacity constraint 
 

The volume of each reservoir’s storages at any ith interval must lie in between the lowest and 

highest capacity limits of the reservoir. 

max
(k)i)(k,

min
(k) VVV ≤≤

                                                                                       
Also, the reservoirs have restrictions on the initial and final storage volume they can possess. 

              
initial
(k)(k,0) VV =

     and     
final
(k)M)(k, VV =
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Water discharge constraint  
 

The water discharge rate of each reservoir must belong to its minimum and maximum 

operating limits at all intervals. 
max
(k)i)(k,

min
(k) QQQ ≤≤

                                                                              
 

Hydraulic continuity constraint  
 

The volume stored in the kth reservoir for the (i+1)th interval is found from the following 

continuity equation. 

( ) i)(k,i)(k,i)(k,
Ωj

τ)-i(j,τ)-i(j,i)(k,1)i(k, RSQSQVV
(k)

+−−++= ∑
=

+

    (70)          

where Ω(k) is the index set of the upstream reservoirs contributing to the kth reservoir, τ is the 

time delay occurring for the water in jth upstream reservoir to reach the kth reservoir. S and R 

represent the spillage and inflow rate respectively. 

 

Hydro power generation equation  
 

The hydro power generated by the kth unit at ith interval is taken as a function of discharge rate 

and storage volume of that unit in that interval. 

( )
k)(6,i)(k,k)(5,i)(k,k)(4,

i)(k,i)(k,k)(3,
2

i)(k,k)(2,
2

i)(k,k)(1,i)H(k,

cQcVc

QVcQcVcP

+++

++=

          (71)      

where c(1,k) , c(2,k) , c(3,k) , c(4,k) , c(5,k) and c(6,k)  are the constant coefficients of the system for the 

kth reservoir. 
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13. Messenger: Spacecraft Trajectory Optimization Problem (Problem No. 12 in 

Table 1) 
 

A good benchmark to test global optimization algorithms in Space Mission Design related 

problems is the Multiple Gravity Assist (MGA) problem. In mathematical terms this is a 

finite dimension global optimisation problem with non linear constraints. It can be used to 

locate the best possible trajectory that an interplanetary probe equipped with a chemical 

propulsion engine may take to go from the Earth to another planet or asteroid. The spacecraft 

is constrained to thrust only at planetary encounters. A detailed description of the problem 

may be found in [24].  The constraint on the spacecraft thrusting only only at planetary 

encounters is often unacceptable as it may results in trajectories that are not realistic or that 

use more propellant than necessary. The MGA-1DSM problem removes most of these 

limitations. It represents an interplanetary trajectory of a spacecraft equipped with chemical 

propulsion, able to thrust its engine once at any time during each trajectory leg. Thus the 

solutions to this problem are suitable to perform preliminary quantitative calculation for real 

space missions. This comes to the price of having to solve an optimization problem of larger 

dimensions. The implementation details of this problem are the sum of a number of 

previously published works [25 - 28]. 

 

The “Messenger” trajectory optimization problem represents a rendezvous mission to 

Mercury modeled as an MGA-1DSM problem. The selected fly-by sequence and other 

parameters are compatible with the currently flying Messenger mission. With respect to the 

problem "Messenger" the fly-by sequence is more complex and allows for resonant fly-bys at 

Mercury to lower the arrival DV. For the twenty-six dimensional global optimization 

problem, the detailed ranges of each variable, MATLAB codes etc. can be found from the 

URL:  

http://www.esa.int/gsp/ACT/inf/op/globopt/MessengerFull.html 
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14. Cassini 2: Spacecraft Trajectory Optimization Problem (Problem No. 13 in 

Table 1) 
 

In this problem the objective function (unconstrained) evaluates the DV required to reach 

Saturn using an Earth – Venus, Venus – Earth, Jupiter - Saturn fly-by sequence with deep 

space maneuvers. Consider a different model for the Cassini trajectory: deep space maneuvers 

are allowed between each one of the planets. This leads to a higher dimensional problem with 

a much higher complexity. We also consider, in the objective function evaluation, a 

rendezvous problem rather than an orbital insertion as in the MGA model of the Cassini 

mission. This is the main cause for the higher objective function values reached. For the 12-

dimensional state-vector the bounds, the MATLAB code for evaluating the objective 

functions etc. can be found in the following URL:  

http://www.esa.int/gsp/ACT/inf/op/globopt/edvdvdedjds.htm 
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Table 1: Summary of the problems presented 

Problem No. (as they 
should appear in the 
participant papers) 

No. of 
Dimensions 

Constraints Bounds 

1. Parameter 
Estimation for 

Frequency-
Modulated (FM) 

Sound Waves 

Matlab Folder: 

Probs_1_to_8 

6 Bound 
constrained 

All dimensions bound between  

[-6.4, 6.35] 

2. Lennard-Jones 
Potential Problem 

Matlab Folder: 

Probs_1_to_8 

3×10 = 30 

(10 atom 
problem) 

Bound 
constrained 

Let xr be the variable of the problem, which has three 
components for three atoms, six components for 4 atoms 
and so on. The first variable due to the second atom i.e. 

1 [0, 4]x ∈ , then the second and third variables are such 

that 2 [0, 4]x ∈ and 3 [0, ]x π∈ . The coordinates 

ix for any other atom is taken to be bound in the range: 

1 4 1 44 ,4
4 3 4 3

i i⎡ ⎤− −⎢ ⎥ ⎢ ⎥− − +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 

where r⎢ ⎥⎣ ⎦ is the nearest least integer w.r.t. r∈� . 

3. The Bifunctional 
Catalyst Blend 

Optimal Control 
Problem 

Matlab Folder: 

Probs_1_to_8 

1 Bound 
constrained 

[0.6, 0.9] 

4. Optimal Control 
of a Non-Linear 

Stirred Tank Reactor 

Matlab Folder: 

Probs_1_to_8 

1 Unconstrained No bound, initialization in the range [0, 5] 
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5. Tersoff Potential 
for model Si (B) 

Matlab Folder: 

Probs_1_to_8 

and  

6. Tersoff Potential 
for model Si (C) 

Matlab Folder: 

Probs_1_to_8 

3×10 = 30 

(10 atom 
problem) 

Bound 
constrained 

Let xr be the variable of the problem which has three 
components for three atoms, six components for 4 atoms 
and so on. The first variable due to the second atom i.e. 

1 [0, 4]x ∈ , then the second and third variables are such 

that 2 [0, 4]x ∈ and 3 [0, ]x π∈ . The coordinates 

ix for any other atom is taken to be bound in the range: 

1 4 1 44 ,4
4 3 4 3

i i⎡ ⎤− −⎢ ⎥ ⎢ ⎥− − +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 

where r⎢ ⎥⎣ ⎦ is the nearest least integer w.r.t. r∈� . 

7. Spread Spectrum 
Radar Polly phase 

Code Design 

Matlab Folder: 

Probs_1_to_8 

20 Bound 
constrained 

All dimensions bound between  

[0, 2 ]π  

8. Transmission 
Network Expansion 
Planning (TNEP) 

Problem: 
 

Matlab Folder: 

Probs_1_to_8 
 

7 Equality and 
inequality 
constraints 

All variables are bounded in the interval [0, 15]. 

9. Large Scale 
Transmission Pricing 

Problem 

Matlab Folder: 

Prob_9_Transmissio
n_Pricing 

g*d (g: no. 
of 

generator 
buses, d: 

no. of load 
buses) 

For, IEEE 
30 bus 
system: 

g=6, d=21 

Linear 
Equality 

Constraints 

max{ } min{ , }

min{ } 0
ij gi ij dj ij

ij

GD P BT P BT

GD

= − −

=
 

(plz see the bounds.m file in \Prob_8_Transmission_Pricing 
folder) 

10. Circular Antenna 
Array Design 

Problem 

12 Bound 
constrained 

First six dimensions in [0.2, 1] and next six dimensions [-
180, 180] 
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Matlab Folder: 

Prob_10_Circ_Ante
nna 

11. The ELD 
Problems 

Matlab Folder: 

Probs_11_ELD_Pac
kage 

 

11.1 DED instance 1 

 

 

 

 

11.2 DED instance 2 

 

 

 

 

 

 

 

 

11. 3 ELD Instance 1 

 

 

 

 

 

 

 

120 

 

 

 

216 

(The 
objective 
function 
takes 240 

parameters, 
but 24 of 
them are 

fixed at 55 
and need 

not be 
optimized) 

   

 

      6 

 

 

 

 

 

 

 

Inequality 
constraints 

 

 

 

Inequality 
constraints 

 

 

 

 

 

 

 

Inequality 
constraints 

 

 

 

 
 
 
 
 
 
 

Pmin = [10,20,30,40,50;]; 
Pmax = [75,125,175,250,300;]; 

Lower_Limit = repmat(Pmin,1,24);       Upper_Limit= 
repmat(Pmax,1,24); 

(in MATLAB) 
 

 

Pmin = [150,135,73,60,73,57,20,47,20]; 

Pmax = [470,460,340,300,243,160,130,120,80]; 

Lower_Limit = repmat(Pmin,1,24);        Upper_Limit= 
repmat(Pmax,1,24); 

(in MATLAB) 

 

 

 

 

 

6 unit limits (in format [LB1, UB1; LB2, UB2; ….]): 

[100, 500;50, 200;80, 300;50, 150; 50, 200;50, 120;]; 
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11.4 ELD Instance 2 

 

 

 

 

 

11.5 ELD Instance 3 

 

 

 

 

11.6 ELD Instance 4 

 

 

 

 

 

11.7 ELD Instance 5 

 

 

 

 

 

 

13 

 

 

 

 

 

15 

 

 

 

 

40 

 

 

 

 

 

140 

 

 

 

 

 

 

Inequality 
constraints 

 

 

 

 

Inequality 
constraints 

 

 

 

Inequality 
constraints 

 

 

 

 

 

Inequality 
constraints 

 

 

 

 

 

 

13 unit limits (in format [LB1, UB1; LB2, UB2; ….]): 

[0,680;0,360;0,360;60,180;60,180;60,180;60,180; 
60,180;60,180;40,120;40,120;55,120;55,120;]; 

 

 

 

15 unit limits (in format [LB1, UB1; LB2, UB2; ….]) 

 
[150,455;150,455;20,130;20,130;150,470; 
135,460;135,465;60,300;25,162;25,160; 

20,80;20,80;25,85;15,55;15,55;] 
 

 

40 unit limits (in format [LB1, UB1; LB2, UB2; ….]): 

[36,114;36,114;60,120;80,190;47,97;68,140;110,300;135,3
00;135,300;130,300;94,375;94,375;125,500;125,500; 

125,500;125,500;220,500;220,500;242,550;242,550;254,55
0;254,550;254,550;254,550;254,550;254,550;10,150;10,150
;10,150;47,97;60,190;60,190;60,190;90,200;90,200;90,200;

25,110; 25,110;25,110;242,550;]; 
 

 

140 unit limits (in format [LB1, UB1; LB2, UB2; ….]): 

[71,119;120,189;125,190;125,190;90,190;90,190;280,490; 
280,490;260,496;260,496;260,496;260,496;260,506;260,50

9;260,506;260,505;260,506;260,506;260,505;260,505; 
260,505;60,505;260,505;260,505;280,537;280,537;280,549; 

280,549;260,501;260,501;260,506;260,506;260,506; 
260,506;260,500;260,500;120,241;120,241;423,774; 

423,769;3,19;3,28;160,250;160,250;160,250;160,250; 
160,250;160,250;160,250;160,250;165,504;165,504; 
165,504;165,504;180,471;180,561;103,341;198,617; 
100,312;153,471;163,500;95,302;160,511;160,511; 
196,490;196,490;196,490;196,490;130,432;130,432; 
137,455;137,455;195,541;175,536;175,540;175,538; 
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11.8 Hydrothermal 
Scheduling Instance 

1 

 

11.9 Hydrothermal 
Scheduling Instance 

2 

 

11.10 Hydrothermal 
Scheduling Instance 

3 

 

 

 

 

 

 

96 

 

 

96 

 

 

96 

 

 

 

 

 

 

 

Inequality 
constraints 

 

Inequality 
constraints 

 

 

Inequality 
constraints 

 

175,540;330,574;160,531;160,531;200,542;56,132; 
115,245;115,245;115,245;207,307;207,307;175,345; 
175,345;175,345;175,345;360,580;415,645;795,984; 
795,978;578,682;615,720;612,718;612,720;758,964; 

755,958;750,1007;750,1006;713,1013;718,1020;791,954; 
786,952;795,1006;795,1013;795,1021;795,1015;94,203; 
94,203;94,203;244,379;244,379;244,379;95,190;95,189; 

116,194;175,321;2,19;4,59;15,83;9,53;12,37;10,34; 
112,373;4,20;5,38;5,19;50,98;5,10;42,74;42,74; 

41,105;17,51;7,19;7,19;26,40;]; 
 
 
 

Qmin = [5 6 10 13]; Qmax = [15 15 30 25]; 
Lower_Limit = repmat(Qmin,1,24); 

Upper_Limit = repmat(Qmax, 1, 24); 
 
 

Same as 11.8 

 

 

Same as 11.8 

 

12.  Messenger: 
Spacecraft 
Trajectory 

Optimization 
Problem 

Matlab Folder: 

Probs_12_to_13_Pac
kage 

26 Bound 
constraints 

Please see Table 2 

13. Cassini 2: 
Spacecraft 
Trajectory 

Optimization 
Problem 

22 Bound 
constraints 

Please see Table 3 



38 

 

Matlab Folder: 

Probs_12_to_13_Pac
kage 

 

Table 2: Variable ranges for “Messenger” space trajectory optimization problem 

State Variable LB UB Units

x(1) t0 1900 2300 MJD2000 

x(2) Vinf 2.5 4.05 km/sec 

x(3) u 0 1 n/a 

x(4) v 0 1 n/a 

x(5) T1 100 500 days 

x(6) T2 100 500 days 

x(7) T3 100 500 days 

x(8) T4 100 500 days 

x(9) T5 100 500 days 

x(10) T6 100 600 days 

x(11) eta1 0.01 0.99 days 

x(12) eta2 0.01 0.99 n/a 

x(13) eta3 0.01 0.99 n/a 

x(14) eta4 0.01 0.99 n/a 

x(15) eta5 0.01 0.99 n/a 

x(16) eta6 0.01 0.99 n/a 

x(17) r_p1 1.1 6 n/a 

x(18) r_p2 1.1 6 n/a 

x(19) r_p3 1.05 6 n/a 

x(20) r_p4 1.05 6 n/a 

x(21) r_p5 1.05 6 n/a 

x(22) b_incl1 -pi pi n/a 

x(23) b_incl2 -pi pi n/a 
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x(24) b_incl3 -pi pi n/a 

x(25) b_incl4 -pi pi n/a 

x(26) b_incl5 -pi pi n/a 

Table 3: Variable ranges for “Cassini 2” space trajectory optimization problem 
 

State Variable LB UB Units 
x(1) t0 -1000 0 MJD2000 
x(2) Vinf 3 5 km/sec 
x(3) u 0 1 n/a 
x(4) v 0 1 n/a 
x(5) T1 100 400 days 
x(6) T2 100 500 days 
x(7) T3 30 300 days 
x(8) T4 400 1600 days 
x(9) T5 800 2200 days 
x(10) eta1 0.01 0.9 n/a 
x(11) eta2 0.01 0.9 n/a 
x(12) eta3 0.01 0.9 n/a 
x(13) eta4 0.01 0.9 n/a 
x(14) eta5 0.01 0.9 n/a 
x(15) r_p1  1.05 6 n/a 
x(16) r_p2  1.05 6 n/a 
x(17) r_p3  1.15 6.5 n/a 
x(18) r_p4  1.7 291 n/a 
x(19) b_incl1  -pi pi rad 
x(20) b_incl2 -pi pi rad 
x(21) b_incl3 -pi pi rad 
x(22) b_incl4 -pi pi rad 

 

 

2. Evaluation Criteria 
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The authors should report the mean, best, and worst objective function values 

obtained over 25 independent runs. The authors are asked to report these values after 

executing their algorithms for 50000, 100000, and 150000 FEs (Function 

Evaluations). The participants should use uniform random initialization within the 

prescribed search space for each problem. We discourage participants searching for a 

distinct set of parameters for each problem/dimension/etc. Please provide details on 

the following whenever applicable: 
 

a) All parameters to be adjusted 

b) Corresponding dynamic ranges 

c) Guidelines on how to adjust the parameters 

d) Estimated cost of parameter tuning in terms of number of FEs 

e) Actual parameter values used. 
 

If the algorithm requires encoding, then the encoding scheme should be independent 

of the specific problems and governed by generic factors such as the search ranges. 
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