
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Panayiotou et al. Applied Network Science (2024) 9:75
https://doi.org/10.1007/s41109-024-00686-4

Applied Network Science

Current challenges in multilayer network
engineering
Georgios Panayiotou1*, Matteo Magnani1 and Bruno Pinaud2 

Abstract 

Multilayer networks (MLNs) have become a popular choice to model complex systems.
However, current MLN engineering solutions, that is, systems and methods to store,
manipulate, and support the analysis of MLNs, are challenged by the size and complex-
ity of contemporary sources of network data. We assess the maturity level of the MLN
engineering ecosystem through an analysis of software libraries for MLNs, focusing
on supported functionality, operators and their scalability. Based on this analysis, we
provide an overview of the current status of the MLN engineering landscape, compile
a list of current limitations to be addressed and propose future developments for more
effective and broadly applicable MLN engineering solutions.

Keywords:  Multilayer networks, Challenges, Engineering, Software, Taxonomy,
Multiplex networks

Introduction
Multilayer networks (MLNs) have become increasingly popular across disciplines for
representing, manipulating, and analyzing complex systems (Kivela et al. 2014; Bocca-
letti et al. 2014; Dickison et al. 2016; Bianconi 2022). While special types of MLNs have
been used for a long time in social network analysis (Bott 1928; Moreno and Jennings
1934), the range of application areas has recently expanded, including brain (Timme
et al. 2014; De Domenico 2017; Vaiana and Muldoon 2020), transportation (Cardillo
et al. 2013; Gallotti and Barthelemy 2014; Aleta et al. 2017), ecological (Pilosof et al.
2017; Timóteo et al. 2018; Finn et al. 2019), biomedical (Hammoud and Kramer 2020;
Kinsley et al. 2020; Mondal et al. 2020), and online communication networks (Magnani
and Rossi 2011; Hristova et al. 2016; Hanteer et al. 2018). This breadth of application
highlights the value of research focusing on the design, building, and use of systems for
MLNs — what we here call MLN engineering.

Despite this extensive range of applications, recent work has questioned whether the
current landscape of MLN engineering is mature enough to address the challenges asso-
ciated to contemporary sources of data (Finn et al. 2019; Kinsley et al. 2020; Finn 2021).
One challenge is that, for complex secondary data,1 there are multiple possible MLN

*Correspondence:
georgios.panayiotou@it.uu.se

1 InfoLab, Department
of Information Technology,
Uppsala University, Uppsala,
Sweden
2 University of Bordeaux,
Bordeaux INP, LaBRI, UMR 5800,
Bordeaux, France

1  Data originally collected for purposes other than the analysis to be performed.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-024-00686-4&domain=pdf

Page 2 of 23Panayiotou et al. Applied Network Science (2024) 9:75

modelling choices. For example, layers can be used to model different parts of social
media data depending on the analysis task (Magnani and Rossi 2011; Hanteer et al. 2018;
Ustek-Spilda et al. 2021; Santra et al. 2022). This indicates a need for an expressive set
of data manipulation operators (i.e. a query language) to interactively explore possible
alternative MLNs. Manipulation operators for MLNs are also needed to support interac-
tive visual analysis systems (McGee et al. 2021), and can reduce the amount of ad-hoc
scripting, thus decreasing data preprocessing costs (Interdonato et al. 2020). As another
example of a challenge, to fully exploit contemporary sources of digital data we must be
able to handle increasingly larger networks, such as MLNs representing the population
of entire countries (Bokányi et al. 2023; Kazmina et al. 2023), which further increases
computational demands.

In this paper we investigate the status of MLN engineering through an analysis of soft-
ware programs natively supporting MLNs. We first provide a taxonomy of operators to
store, manipulate and analyze MLNs, to identify which functionality can be expected in
MLN systems and what is currently missing compared with more established data engi-
neering solutions. We then focus on scalability through an experimental study. These
analyses combined allow us to draw a picture of current limitations and challenges in
MLN engineering, establishing it as a distinct research area in need of further research,
providing an overview of the area, and proposing future developments. In addition, on
a more practical level, our findings can also help researchers and data scientists choose
the MLN software that best fits their needs. For example, we look at which data features,
types of networks and operators are supported by different software, making them more
or less appropriate for different types of MLN engineering tasks.

Other comparative studies

Despite the broad literature on MLNs, works summarizing available operators for MLNs
and comparisons of them are scarce. General overviews on MLNs (Kivela et al. 2014;
Boccaletti et al. 2014; Dickison et al. 2016; Bianconi 2022) cover topics such as model,
structure, and analytics, but do not look at which operators are practically available and
usable in software. Similarly, relevant studies on specific sub-tasks for MLNs, such as
preprocessing (Interdonato et al. 2020), conceptual design (Santra et al. 2022) and vis-
ualization (McGee et al. 2019, 2021) neither look at available operators, nor perform
experimental comparisons. Here, we note that visualization-oriented task taxonomies
for MLNs have been introduced in McGee et al. (2019, 2021). Other studies include layer
similarity (Brodka et al. 2018; Ghawi and Pfeffer 2022), structural analysis (Giordano
et al. 2019) and community detection (Magnani et al. 2021), the latter also looking at
algorithm scalability. However, these studies only focus on specific operators.

While a variety of software for MLN analysis are available online, there are few stud-
ies comparing them. Only a subset of the libraries and operators covered in this article
are considered in Škrlj et al. (2019), and the experimental comparison is limited to the
processing time for visualisation tasks. An experimental comparison of database man-
agement systems for a multilayer doctor-patient network can be found in Mondal et al.
(2020). Software implementations of multilayer networks in the context of biomedi-
cine are discussed in Hammoud and Kramer (2020), although there is no comparison
between the implementations. Finally, a matching of libraries with different tasks in

Page 3 of 23Panayiotou et al. Applied Network Science (2024) 9:75 	

animal behaviour research is done in Finn et al. (2019). This comparison is specific to
those tasks, and does not contain an experimental part.

Research design

The current landscape of MLN engineering is rich and rapidly evolving, with new soft-
ware and algorithms introduced frequently, so it is important to clearly define the scope
of this work and provide a way to evaluate which new software should be included in
future versions of this study. A consequence of performing a study based on software
(compared, for example, with a literature review, which would not highlight what func-
tionality is actually available in MLN systems) is that our taxonomy only includes opera-
tors found in the selected libraries.

Furthermore, our study is not designed to draw conclusions about the effect of specific
design choices, because our list of selected MLN software consists of a variety of pro-
gramming languages, data structures and related but not identical operators. For exam-
ple, we cannot assess the suitability of specific data structures for specific tasks without
re-implementing the data structures under comparable conditions, since execution time
is the result of a combination of this and all other design choices (Kriegel et al. 2017).

The rest of the paper is organized as follows: In Sect. "Multilayer network analysis
software", we discuss our selection of representative MLN software. We provide a tax-
onomy of common operators in Sect. "Models and operators", and in Sect. "Scalabil-
ity", we experimentally compare the software on selected tasks. We discuss the current
limitations in MLN engineering through the findings of the present study in Sect. "Dis-
cussion", along with areas for future explorations in the field. Finally, we conclude in
Sect. "Conclusion".

Multilayer network analysis software
Given the popularity of MLNs across disciplines, the question of which software should
be included in our study is complex. First, different definitions of MLN exist, and there
are also network meta-models not called MLNs but still providing similar data represen-
tation constructs and operators. Therefore, in Sect. "Multilayer networks", we provide a
definition of the meta-model and terminology used in this paper, which is largely based
on the work by Kivela et al. (2014). We also acknowledge some alternatives, which is
useful because part of our comparison can be applied or extended to related network
meta-models. Then, in Sect. "Criteria for inclusion", we provide the criteria we have used
to select the software included in this study. In Sect. "Software included", we list the soft-
ware we used along with a short overview of them. Finally, in Sect. "Other relevant soft-
ware" we list other software relevant to MLN analysis and why we decided not to include
them. Overall, we give enough details for any practitioner or researcher on MLNs inter-
ested in reproducing or extending our experiment with, for instance, new software or
criteria we have not considered.

Multilayer networks

The following is a summarised version of the definition of an MLN by Kivelä et al. (2014),
that we use as a reference throughout the paper:

Page 4 of 23Panayiotou et al. Applied Network Science (2024) 9:75

Definition 1  (Multilayer network) Let L1, . . . , Ld be sets of elementary layers called
aspects. A multilayer network (MLN) is a quadruplet M = (VM ,EM ,V ,L) , where V is a
set of vertices, L = L1 × · · · × Ld , VM ⊆ V × L and EM ⊆ VM × VM.

Remaining consistent with the original model, a layer is simply an element of L . We
refer to elements of VM as nodes – not to be confused with vertices, the elements of V.
See Fig. 1 for an example of such a network.

Special types of MLNs have been used for a long time in social network analysis,
including networks with multiple edges between a common set of actors (multi-rela-
tional), with multi-valued edges (multiplex), with different types of nodes (two-mode,
multi-mode), and with nodes representing both individuals and groups or organisa-
tions (multi-level) (Borgatti et al. 2009).

In addition, meta-models resembling the above definition have been previously
studied by the data engineering community. A popular example is the heterogeneous
information network (Sun et al. 2022; Shi et al. 2017), which is a special case of attrib-
uted MLN. Other similar models include the multidimensional graph online analyti-
cal processing (OLAP) cubes (Chen et al. 2009) and the recently proposed multilayer
graphs, an extension for property graphs that can be used to model complex layered
relationships (Angles et al. 2022). While we do not expand on the aforementioned
models in this study, all of the previous are based on complex graph types covered by
the MLN definition found in Kivela et al. (2014).

Fig. 1  Example of an MLN representing a public transportation network in two regions. The nodes represent
stations, and an edge between two nodes represents a route between them. Following Def. 1, this network
has two dimensions L1 = {RegionA, RegionB} and L2 = {Train, Bus} , representing the regions and transport
methods respectively, and four layers: L = {(RegionA, Train), (RegionA, Bus), (RegionB, Train), (RegionB, Bus)} .
The six vertices in this network, V = {S1, S2, S3, S4, S5, S6} , do not all participate in all layers. Notice the
coupling edges (in dotted lines) which can be used to signify that the same vertex (station) is present in both
layers (transportation media)

Page 5 of 23Panayiotou et al. Applied Network Science (2024) 9:75 	

Criteria for inclusion

Software included in this study fulfill the following criteria about their support of MLNs:

C1 Explicit support:	� the documentation has to explicitly mention the support for
MLN and the concept of layer.

C2 Native support:	� an MLN-native object should be supported, that is, the soft-
ware should expose an MLN data-structure through its API.

C3 General-purpose:	� a broad set of functions allowing different types of process-
ing, not designed for a specific application or domain has to
be provided.

C4 API-based:	� a documented API allowing execution from external code/
scripts has to be provided.

C5 Publicly available:	� the source code is available and downloadable under an open
source license from a website or a public repository.

C6 Actively maintained:	� the last release or update has to be within the last year at the
time of our experiment (Autumn 2023).

Our criteria reflect desired software component functionality characteristics: suitabil-
ity (providing an appropriate set of functions for MLN tasks, C1–C3), interoperability
(able to interact with other systems, C4–C5), and accuracy (providing correct results,
C6) (Carvallo Vega et al. 2007). Other studies have also considered criteria for software
popularity, for example by means of the number of downloads (Hoe-Lian et al. 2006).
However, we decided not to use it, as the relevant statistics are often not available.

Software included

Below, we provide information about the libraries featured in this study. A summary can
be found in Table 1.

MultilayerGraphs.jl (Moroni and Monticone 2023) (hereinafter MLG.jl) is a package
for the Julia programming language, extending Julia’s graph analysis package with MLN
capabilities. It offers functions for manipulation and analysis of multiple types of MLNs.
The MLN representation is based on graph objects from the Graphs.jl library.

Multinet (Magnani et al. 2021) is a C++ library, also available in Python and R.2 It pro-
vides features for manipulating, visualizing and mining MLNs, along with methods for
community detection and evaluation, plus layer transformation and comparison. It uses

Table 1  Summary of included MLN software

Library Version Prog. language MLN implementation Licence Ref.

MLG.jl 1.1.4 Julia Graph objects (Graphs.jl) MIT (Moroni and Monticone 2023)

Multinet 4.1.2 R ML-cube objects Apache 2.0 (Magnani et al. 2021)

MuxViz 3.1 R Supra-adjacency matrix GPL 3.0 (De Domenico et al. 2015)

Pymnet 0.1 Python Supra-adjacency lists GPL 3.0 (Nurmi et al. 2024)

Py3plex 0.95a Python Graph objects (NetworkX) BSD 3-clause (Škrlj et al. 2019)

2  We use the R version of the library in our experiments.

Page 6 of 23Panayiotou et al. Applied Network Science (2024) 9:75

a cube-based MLN representation inspired by the data warehouse multi-dimensional
model.

MuxViz (De Domenico et al. 2015) is an R library for MLN analysis. It represents
MLNs using supra-adjacency matrices. MuxViz supports manipulation and visualiza-
tion of MLNs, centrality and structural reducibility analysis, discovery of meso-struc-
tures such as communities, components and motifs, as well as analytics for dynamical
processes.

Pymnet (Nurmi et al. 2024) is a Python MLN analysis library. It uses a supra-adjacency
list representation for MLNs to address scaling needs for larger graphs. It provides func-
tions for manipulating and visualizing MLNs, computing multiple variants of MLN-spe-
cific clustering coefficient metrics, as well as testing for auto- and iso-morphisms.

Py3plex (Škrlj et al. 2019) is a Python library offering algorithms for manipulating,
analysing and visualizing MLNs, as well as node classification and network embedding
methods. It uses lists of NetworkX graph objects to represent MLNs.

Other relevant software

We do not consider software without explicit support for MLNs (i.e. no support for lay-
ers), such as the graph analysis libraries graph-tool (Peixoto 2014) and Gephi (Bastian
et al. 2009) and libraries where transformation of an MLN to another data structure is
required, such as Tulip (Auber et al. 2017), netmem (Espinosa-Rada 2023), DeepGraph
(Traxl et al. 2016) and MultiAspectGraphs (Wehmuth et al. 2016).

We also exclude software only providing limited support for general MLNs, e.g.
mully (Hammoud and Kramer 2018), EMLN (Frydman et al. 2023), Raphtory (Steer
et al. 2023), HuMMuS (Trimbour et al. 2023), POPNET (Bokanyi et al. 2022). This also
includes implementations of single algorithms for MLN analysis provided as comple-
mentary material for papers, and software programs without a documented and call-
able interface-API, such as (Coscia 2022; Ostoic 2020; Xia et al. 2015; Vijayaraghavan
et al. 2015; Robitaille et al. 2021; Jeub et al. 2019; Galimberti et al. 2020; Gibson and
Mucha 2022; Berlingerio et al. 2011; Szárnyas et al. 2016; Interdonato et al. 2017; Perna
et al. 2018; Zitnik and Leskovec 2017). While such software can be used in applied stud-
ies, they are typically not designed to provide the additional functionality that can be
expected in a full-fledged MLN analysis library; namely, an API exposing functions for
input and output, manipulation and analysis of the network. Without an API, it is also
difficult to experimentally test the software.

Finally, we exclude software for MLNs where the source code is not publicly available
or not actively maintained. Examples include multinetX (Kouvaris et al. 2015), Detangler
(Renoust et al. 2015), Orion (Heer and Perer 2014) and VERTIGo (Cuenca et al. 2022).

Models and operators
While the literature often refers to the mathematical definition of MLN by Kivela et al.
(2014), when we look at MLNs from an engineering perspective we have to ask whether
(1) a system uses the same variation of the mathematical definition, and (2) how the defi-
nition adopted by the system is implemented. This is a common way of looking at data
management systems: for example, while relations (as mathematical objects) in the rela-
tional model are often defined as sets, relational database systems are typically based on

Page 7 of 23Panayiotou et al. Applied Network Science (2024) 9:75 	

bags, and depending on the system a relation can be implemented by row or by column,
with this choice impacting the efficiency of different operations.

In this section we first focus on variations of the MLN meta-model used in the
included software, both with respect to the supported features (Sect. MLN models),
and their implementations (Sect. MLN implementations). Then we look at the operators
defined on these MLN models, providing a taxonomy in Sect. MLN operators.

MLN models

In Table 2, we indicate which features of the MLN meta-model are supported by the
selected software, as exposed by their API and documentation. In general, we can see
that the selected software supports the most distinguishing features of the MLN meta-
model: the concept of layer and the existence of edges connecting nodes between differ-
ent layers (interlayer edges).

However, some features are only supported by some of the libraries. First, most librar-
ies only support one aspect. Indeed, this is sufficient to represent the most common
types of MLNs, in particular multiplex networks, where each layer corresponds to a
specific type of edge, and multipartite and multilevel networks, where each layer cor-
responds to a type of vertex. At the same time, a feature of MLNs is that they do not only
generalise common network models, but can also combine them into more complex
ones, for example allowing the definition of longitudinal multiplex networks (Santana
et al. 2017; Matter et al. 2023). Without multiple aspects, the representation capabilities
of MLNs are limited.

Second, attributes on nodes, edges and layers are not always supported. It should be
noted that attributes are not part of the most commonly cited definition of MLNs (Kivela
et al. 2014). This is not surprising, considering attributes can be handled outside the
library if vertex, node, and edge identifiers are accessible and stable. At the same time,
attributes are not only important to represent complex contemporary data (e.g. text in
social media networks, or income in population-scale networks extracted from statisti-
cal registers). Once attributes are part of the model, it also becomes possible to define
manipulation operators that transform attribute values (Brehmer and Munzner 2013),
for example transforming a temporal attribute into layers representing time intervals.

It should also be noted that the ability to represent features of the MLN meta-model
does not imply that these features are supported by the operators. For example, weights
can be represented by all libraries, but are typically meaningful only if weighted versions

Table 2  Supported MLN features in included software

Feature MLG.jl multinet MuxViz Pymnet Py3plex

Layers � � � � �

Interlayer edges � � � � �

Aspects �

Directed edges � � � � �

Weights � � � � �

Generic attributes � �

Page 8 of 23Panayiotou et al. Applied Network Science (2024) 9:75

of the analysis algorithms are also provided, e.g. weighted clustering and shortest path
algorithms. Similarly, the fact that interlayer edges can be specified in a library is not
particularly useful if there are no (or few) operators that can process them. Finally, direc-
tionality is in general supported for simple operators (such as finding out-neighbors, or
computing out-degree), but only partially supported by more sophisticated algorithms,
e.g. for community detection where only one of the considered algorithms supports this
feature.

MLN implementations

We observe three main approaches to implement the MLN meta-model, as summarised
in Table 1. One approach extends two common representations used for simple graphs:
adjacency matrices and adjacency lists. Supra-adjacency matrices, used by MuxViz,
extend the concept of an adjacency matrix for MLNs. In a supra-adjacency matrix, each
row and column represents a node (an element of VM ), and each value in the matrix rep-
resents the weight of an edge between two nodes. We note that it is not trivial to add and
remove nodes from a supra-adjacency matrix, so this implementation is better suited to
support analysis than data manipulation. Supra-adjacency lists, used in Pymnet, extend
the adjacency list format for MLNs. This is implemented as a dictionary, where each
node of M is a key, and its value is a dictionary containing information about its adjacent
edges in EM , while for multiplex networks a list of dictionaries is used. It is designed
with large networks in mind.

A second type of MLN implementation re-uses graph objects provided by popular
network analysis libraries. This is the case for Py3plex, representing the various layers as
NetworkX objects. Similarly, MLG.jl uses the native graph object of the Graphs.jl library
to represent layers. Systems adopting this strategy have to then represent the mapping
between nodes in different layers, and inter-layer edges.

As a third option, Multinet implements a custom data structure inspired by the multi-
dimensional model used in data warehouses (data cube). A multilayer vertex cube organ-
ises its vertices into a number of dimensions (or aspects, using the terminology of Kivela
et al. (2014)), and each cell of the cube corresponds to a layer. Similarly, a multilayer edge
cube connects two vertex cubes, and its edges can themselves be organised into multiple
dimensions. However, currently this library only allows to use one dimension in its R
and Python APIs.

MLN operators

The MLN operators provided by the selected libraries are summarized in Table 3, where
we have organised them into categories and sub-categories. Defining a taxonomy of
MLN operators has several potential benefits: from practical guides for developers to
identify missing areas in specific software, to standardisation. In particular, having com-
mon operators allows code re-use and enables the definition of benchmarks.

For brevity and clarity, a single row in the table may indicate multiple variants of
operators with a similar function, e.g. different operators computing different global

Page 9 of 23Panayiotou et al. Applied Network Science (2024) 9:75 	

clustering coefficient metrics. We only list MLN variants of operators explicitly imple-
mented in the library and found in the library’s API documentation.

The focus of this paper is on MLNs, so Table 3 only lists operators taking a whole
MLN as input, or producing MLNs as output. Some of the selected libraries also include

Table 3  Summary of available operators in MLN software

We note ( � ) if a feature is available in the corresponding library. A (+) indicates availability of multiple variants of the same
feature in the software, and (‡) signifies the availability of a feature by directly manipulating the library’s representation for
MLNs

Operator MLG.jl Multinet MuxViz Pymnet Py3plex

Data I/O Read network from file � � � �

Write network to file � � �

Gen Layer-by-layer genera-
tors

� � � � �

Multilayer model gen-
erators

+ + � �

Def Add/remove layer � � �

Add/remove attribute � �

Manipulation Basic Add/remove node � � � �

Add/remove edge � � ‡ � �

Set/get attribute values � �

Layer Layer aggregation + � � �

Layer projection �

Layer selection/sub-
graph

� � �

Retrieval (Excl.) neighbours � � �

Path/distance � �

Components � �

Triangles/motifs + � �

Isomorphisms � �

Analysis Structural measures Node degree � � � � �

Node centrality � � + �

Layer similarity/entan-
glement

+ ✓ �

Network density � �

Network reducibility �

Network entropy � �

Network modularity � � �

Local clustering coef-
ficient

� +

Global clust. coeff./
transitivity

� � +

Learning Clustering/community
detection

+ � +

Community evaluation
metrics

+ �

Node classification �

Network embedding �

Dyn Get supratransition
matrix

�

Get coverage evolution �

Vis Layer-by-layer layout � � � �

Circular/disc layout � � � �

Force-directed layout � � � �

Page 10 of 23Panayiotou et al. Applied Network Science (2024) 9:75

operators to independently analyse single layers, or provide functions to access the indi-
vidual layers (or combinations of layers) using general graph libraries such as igraph or
NetworkX. These operators are not reviewed here.

Obtaining and storing MLN data The Input/Output (I/O) category includes functions
to read and save an MLN from and to a file. It is interesting to see that not all libraries
provide output functions, indicating that their typical usage does not involve the gen-
eration of new MLNs from existing ones: even if new networks are temporarily created,
their creation is intended as a step of the analysis process, and not as a self-contained
task generating new data.

We also note that for the libraries providing read or write functions, there is no unique
file format. This is a limitation that also affected early graph processing systems, which
was partly addressed through the definition of GraphML (Brandes et al. 2002). Gener-
ally, the libraries support the multilayer edgelist input format, which however offers lim-
ited support for node, edge, and layer metadata. It should be also noted that the libraries
use slightly different variants of the edgelist. Namely, Py3plex and MuxViz expect text
files with layer and node labels to complement the edgelist, while Multinet’s format can
also include header and attribute data. Also, while GraphML is used by Pymnet and
Multinet as possible formats for input and output respectively, GraphML only allows to
save attributed graphs where the attributes are implicitly used to represent the layers.

MLN data can also be obtained using synthetic network generators (see category
Network generation (Gen)), which is common practice for monoplex networks (i.e. sin-
gle-layer graphs) using a variety of models such as Erdős-Rényi’s random graphs, Bara-
bási-Albert’s preferential attachment, Watts-Strogatz’s small world etc. The availability
of generators suffers from the additional complexity of MLNs, where one has to con-
trol both structural features of individual layers (e.g. the degree distribution on each
layer) and across layers (e.g. the proportion of common edges or the correlation of node
degrees) (Feyer et al. 2023; Magnani and Rossi 2013). While almost all libraries allow to
generate a MLN by randomly generating layers one-by-one, there is limited support and
no common way to generate a MLN with structurally dependent layers.

The Data definition (Def) category includes operators to define data structures, such
as creating aspects and layers. The capability to create the supported data structures is,
of course, internally available, as it is used for example when an MLN is read from a file.
Table 3 only shows which of these data definition capabilities are also exposed through
the API, i.e. which ones can be interactively executed by the users of the library.

Comparing this category with the functionality available for other types of data, for
example in the relational data meta-model, we note the absence of operators to define
efficient data access structures (e.g. indexes) and to impose constraints. The lack of con-
trol over constraints is particularly notable. Each special type of MLN is characterised by
some data objects that are not allowed; for example, a multiplex network does not allow
interlayer edges, and a bipartite network represented as a two-layer MLN does not allow
node overlapping. However, there is no direct way to enforce these or other constraints
in the examined libraries, and one has to trust that the data satisfies them.

Data manipulation The next three sub-categories in Table 3 refer to basic capa-
bilities typically required by a data manipulation language. Basic Manipulation
includes operators to update individual elements, e.g. to add a node or an edge to

Page 11 of 23Panayiotou et al. Applied Network Science (2024) 9:75 	

a layer. Layer Manipulation includes operators transforming a layer based on its
topology. Examples include layer aggregation, projection, and filtering (for example
through selecting a subset of nodes from one or more layers). Retrieval lists opera-
tors where the objective is to find subgraphs over multiple layers. Examples include
finding a node’s neighbourhood, whose result depends on the considered layers,
paths between nodes which can cross multiple layers, etc.

It is interesting to see how the support for the operators that would provide the
building blocks for a data manipulation language is sparse, in some cases even miss-
ing explicit API functions for basic operations such as adding a node. Notice that the
table indicates operators provided by the API: the absence of an operator does not
mean that the operation cannot be performed. For example, a node can be added to
a network without an API function to add a node, either by adding it to the input file
or by directly modifying the underlying data structure storing the MLN, e.g. by add-
ing columns and rows to the supra-adjacency matrix. However, this suggests that the
library is not designed to perform these manipulations.

It is also worth noticing how layer manipulation is only defined based on the lay-
ers’ structure. There is currently no function to manipulate layers based on edge or
node attributes, which points once again at a general limited support for attributes
(McGee et al. 2019, 2021). Even when we only focus on structure, we notice how the
layer projection operator, providing a basic and common way to process interlayer
edges, is only offered by one of the examined libraries.

The Retrieval category also suffers from the additional complexity of MLNs if
compared with simple networks. Even simple patterns, such as triangles, may cor-
respond to multiple different structures in MLNs where nodes and edges can appear
in the same or different layers, leading to a larger number of possible patterns to
look for and questions about what different versions of the same pattern mean when
found in an MLN.

Data analysis From the previous discussion, it is clear how the selected libraries
are more focused on analysis than data storage and manipulation, although such
capabilities are also provided. In fact, a variety of operators to study the structure
and dynamics of MLNs are available. Under the category Structural measures we list
operators quantifying different properties of MLNs, such as the number of neigh-
bours of a vertex across a set of layers, or the proportion of common edges inside
two or more layers. As for other categories, there is limited overlapping of operators,
with MLN versions of functions that are very common for simple networks, such as
modularity or clustering coefficients, only supported by some of the libraries.

We can also see some support for machine learning operators, in particular unsu-
pervised and supervised learning (clustering and classification) and representation
learning (embedding). Clustering is the only learning task currently supported by
multiple libraries, but only two provide more than one method from the many that
exist (Magnani et al. 2021).

Capabilities for visual analysis are limited in all cases: while almost all libraries
provide ways to visualise the MLN, there is no operator to interact with the vis-
ual representation, so that most visual analysis tasks are not currently supported
(McGee et al. 2019, 2021).

Page 12 of 23Panayiotou et al. Applied Network Science (2024) 9:75

Scalability
From a data engineering perspective, benchmarks are fundamental tools to improve sys-
tem performance, for example to compare alternative solutions for the same problem
and identify bottlenecks to optimize. However, we are not aware of existing systematic
and comparative evaluations of MLN systems. In fact, Sect. Models and operators sug-
gests that it is currently challenging to perform a fair experimental comparison of the
selected software. First, there is limited overlap of operators. Second, even when two
libraries are marked as providing the same type of operator in Table 3, specific defini-
tions can vary between software. For example, while all libraries can generate MLNs, the
way in which relations between different layers are enforced (e.g. controlling the amount
of edge overlap, or the correlation of degree centrality) can be very different, if present at
all (Brodka et al. 2018).

As a first step towards a benchmark for MLNs, we set up three basic manipulation
tasks that we can test on most of the systems considered in this study: loading an MLN,
interactively updating it, and aggregating layers. While these tasks are relevant for many
MLN studies, execution times are seldomly reported, leaving an open question about the
size of MLNs that we are currently able to handle using specialised software.

How long does it take to load an MLN from file, and how large are the networks that
can be loaded? A direct comparison of loading times cannot be used alone to draw con-
clusions about the ability to process large networks, because different data structures are
used inside different libraries, and a longer reading time may be caused by the creation
of indexing functions that would later speed up other operators. However, this analysis
may identify different time complexities (e.g. linear vs super-linear), very large differ-
ences in loading time (which can then be matched to execution times for other operators
to assess whether loading time is correlated to other execution times), and upper bounds
in the size of MLNs that can be currently processed using a personal computer.

How fast can a network be updated? While the literature on MLNs is mostly focused
on analysis, the ability to efficiently update a network is useful in many contexts. For
example, we update network data while generating it, we may update network data when
simulating dynamic processes, and we update networks (or network views) while inter-
actively exploring them (e.g. filtering layers and nodes to zoom into a subset of the data).

How scalable is the aggregation of layers? Aggregating (also known as flattening or
merging) layers, that is, creating a single layer by combining edges from multiple layers,
is a fundamental manipulation function for MLNs where the initial set of layers does not
correspond to the one needed for exploration or analysis.

In Sect. Datasets we present the datasets used in the experiments. Section Settings
lists the experiment settings and assumptions. In Sect. Results we provide the results of
the experiments.

Datasets

We evaluate the performance of the aforementioned operators for previously studied
MLN datasets. Table 4 presents a summary of all datasets used. Specifically, we select
five real networks representing: (a) employees at a computer science department at a
university in Denmark (Rossi and Magnani 2015) (cs-aarhus), (b) the transportation

Page 13 of 23Panayiotou et al. Applied Network Science (2024) 9:75 	

system in London (De Domenico et al. 2014) (london-transport), (c) European airline
flight routes (Cardillo et al. 2013) (euair-transport), (d) interactions between users on
both the FriendFeed and Twitter platforms (Magnani et al. 2013) (friendfeed-twitter)
and, (e) interactions between FriendFeed-only users (Celli et al. 2010) (friendfeed).
These are selected in order to evaluate performance and scalability for a variety of net-
work sizes.

We also construct synthetic networks of various sizes to assess the operators in more
detail. We generate random node-aligned, single aspect Erdős-Rényi MLNs. We convert
the generated networks to all libraries’ native input file formats where necessary. To test
for various parameters that might affect scalability (that is, the computation time of the
operators for increasing network size), we construct sets of synthetic data with increas-
ing number of vertices and layers. To also assess performance with respect to the net-
work density increasing, we generate two sets of synthetic networks, where the average
node degree increases with the number of nodes in the network. Specifically, we gener-
ate networks for the following settings, where 〈k〉 denotes the average node degree:

(a)	 |V | ∈ [1000,10 M], |L| = 2 , �k� ≈ 4
(b)	 |V | ∈ [1000,100K], |L| = 2 , �k� ≈

√
|VM |

(c)	 |V | = 1000 , |L| ∈ [5,10000], �k� ≈ 4
(d)	 |V | = 1000 , |L| ∈ [5,10000], �k� ≈

√
|VM |

Settings

To assess the performance of tasks such as layer aggregation, a network needs to already
be present into memory. Therefore, we have to first load a network in memory before
evaluating the manipulation operator. Since the featured software supports various
MLN input formats, we need to convert all datasets to the file format accepted by the
software. In order to maintain consistency, we always assume that the network is undi-
rected and contains no other attributes or metadata. If the software does not include a
network loading operator, as is the case for MLG.jl, we do not consider the rest of its
operator runtimes in the comparison. We measure the execution time of each operator
individually to ensure that the performance is not affected by any additional calculations
or caching by the library.

Table 4  Summary of MLN data used

Data #Layers #Vertices #Edges Ref.

Synthetic 2-10000 1000-10M ≈ 32000-316M -

cs-aarhus 5 61 620 (Rossi and Magnani 2015)

London-transport 3 369 503 (De Domenico et al. 2014)

Euair-transport 37 450 3588 (Cardillo et al. 2013)

Friendfeed-twitter 2 155804 13.65M (Magnani et al. 2013)

Friendfeed 3 510896 20.33M (Celli et al. 2010)

Page 14 of 23Panayiotou et al. Applied Network Science (2024) 9:75

Finally, we conduct the experiments on a desktop-like environment, which we con-
sider to be the most typical processing environment for MLNs. Specifically, we use a
virtual machine running Ubuntu 22.04, with 8 cores @2.1 GHz and 32GB RAM. We
halt the execution with a timeout of 30 min. If a network cannot be loaded within the
time allotted to each experiment, the following task is also considered to have timed out.
These cases indicate that the scalability of the software is an issue, and more computa-
tional resources would be needed.

All experiments are repeated four times, and we provide average execution times and
standard deviations.

Results

In this section we report the execution times for our three experiments. Note that where
runtime information is not provided for a library, the task has not terminated success-
fully. This signifies that either the timeout per task (30 min) had been reached, or that
the process was killed due to a memory overflow.

Network loading from file
As we can observe from Table 5, both large social network datasets friendfeed-twitter

and friendfeed become increasingly difficult for the libraries to process within a rea-
sonable time; Multinet is not able to process the friendfeed network before the time-
out, probably due to the additional indexing needed for its data structure. We also note

Fig. 2  Network loading time for synthetic data: a increasing number of vertices, |L| = 2 , �k� ≈ 4 (top left), b
increasing number of vertices, |L| = 2 , �k� ≈

√
|VM| (bottom left), c increasing number of layers, |V | = 1000 ,

�k� ≈ 4 (top right), and d increasing number of layers, |V | = 1000 , �k� ≈
√
|VM| (bottom right). The error bars

in black indicate standard deviation over four runs

Page 15 of 23Panayiotou et al. Applied Network Science (2024) 9:75 	

the stark performance differences between smaller and larger networks in Table 5;
this is directly related to the size of the network. This trend is confirmed when loading
large synthetic data. In Fig. 2, we can see most software time out for networks where
|V | > 2 M; the exception is MuxViz, which is able to process a two-layer network with a
size up to |V | = 5 M, but faces memory issues for the largest synthetic dataset.

While adjacency matrix representations perform better for this task, they do not scale
well in memory as the network size increases in nodes. However, none of the other
parameters examined (i.e. increasing network density, number of layers) directly affects
scalability; the only notable exception is the performance of Py3plex for a large number
of layers, as we can observe both in Fig. 2 and Table 5 for the euair-transport network.
This can be related to the design choice of representing individual layers as separate
networks.

Network interactive update

Table 5  Network loading operator performance

Rounded values in seconds. We report the average performance and standard deviation (in parentheses) over four runs. A dash
indicates that the task did not complete within the timeout

Dataset Multinet MuxViz Pymnet Py3plex

cs-aarhus 0.0 (0.0) 1.1 (0.3) 0.0 (0.0) 0.0 (0.0)

London-transport 0.0 (0.0) 0.7 (0.1) 0.0 (0.0) 0.0 (0.0)

Euair-transport 0.0 (0.0) 0.7 (0.1) 0.0 (0.0) 2.2 (0.1)

Friendfeed-twitter 418.7 (5.1) 30.7 (1.0) 390.1 (21.6) 106.8 (4.0)

Friendfeed – 52.1 (1.3) 1044.2 (48.5) 175.6 (2.3)

Fig. 3  Total time elapsed in seconds after interactively adding and removing edges from a randomly
generated multilayer network with |V | = 1000, |EM| = 10000, |L| = 10 . The error bars in black indicate
standard deviation over four runs

Page 16 of 23Panayiotou et al. Applied Network Science (2024) 9:75

In Fig. 3 we note performance differences between the software when interactively
updating the network, sometimes in orders of magnitude. This difference is particu-
larly apparent in software for different programming languages: we note the sharp
differences in performance between Python (Pymnet, Py3plex) and R (Multinet, Mux-
Viz) software. However, we note that all software follows a similar exponential curve
when adding and removing edges to the network. This suggests that the observed per-
formance differences can be attributed to software design choices other than the data
structure.

Layer aggregation

Fig. 4  Layer aggregation time in seconds for synthetic data: a increasing number of vertices, |L| = 2 , �k� ≈
4 (top left), b increasing number of vertices, |L| = 2 , �k� ≈

√
|VM| (bottom left), c increasing number of layers,

|V | = 1000 , �k� ≈ 4 (top right), and d increasing number of layers, |V | = 1000 , �k� ≈
√
|VM| (bottom right). The

error bars in black indicate standard deviation over four runs

Table 6  Layer aggregation operator performance

Rounded values in seconds. We report the average performance and standard deviation (in parentheses) over four runs. A dash
indicates that the task did not complete within the timeout

Dataset multinet MuxViz Pymnet Py3plex

cs-aarhus 0.0 (0.0) 0.2 (0.2) 0.0 (0.0) 0.0 (0.0)

London-transport 0.0 (0.0) 0.1 (0.0) 0.0 (0.0) 0.0 (0.0)

Euair-transport 0.0 (0.0) 0.1 (0.0) 0.0 (0.0) 0.2 (0.0)

Friendfeed-twitter – 31.5 (1.6) 309.8 (15.4) 96.0 (1.2)

Friendfeed – 47.6 (0.8) 559.2 (14.4) 168.4 (1.1)

Page 17 of 23Panayiotou et al. Applied Network Science (2024) 9:75 	

Similarly to the network loading operator, in Fig. 4 we can observe that the num-
ber of edges increasing heavily affects the performance of the different implementa-
tions for the layer aggregation task. This trend is also particularly visible in Table 6, as
Multinet is not able to load and aggregate the large social networks within the time-
out, despite being able to process synthetic networks with a greater amount of nodes.
We can also observe that adjacency matrix-based MLN representations (MuxViz)
appear to perform better, sometimes faster by an order of magnitude, except when
aggregating a large number of layers. Finally, for networks of smaller sizes, we note
that the difference in execution times between the tested libraries is minimal.

Discussion
Based on the previous two sections, we can now summarize the status of MLN engineer-
ing as seen through current MLN software. We do this by first providing an overview
of the area, organised along four main points, in Sect. MLN engineering: an overview.
Building on this overview and on the limitations we identify in the area, in Sect. Future
explorations we discuss possible future directions.

MLN engineering: an overview

Interoperability As previously discussed, not all features of the MLN model are univer-
sally supported within the software covered. The algorithmic support for features such
as interlayer edges and multiple aspects varies, and the same applies to vertex, node and
edge attributes. This effectively limits the development and implementation of meta-
data-enriched methods, e.g. for layer manipulation or community detection. In conjunc-
tion with a low coverage for layer manipulation operators, all of the previous restrict our
ability to visually explore alternative MLNs interactively (McGee et al. 2021).

We also note the lack of a common file input/output format for MLNs. While there is
general support for the multilayer edgelist as input, the format offers limited support for
node metadata.

There is also a limited overlap of operators between the selected software. Looking
at our taxonomy in Sect. Models and operators, we observe that most of the software
implement a few common operators (e.g. reading, generating, aggregating and visualiz-
ing networks) along with structural measures like node degree and centrality. However,
each library typically specializes in different types of operators. For example, MuxViz
contains operators for dynamics and various network metrics, Pymnet implements
operators for isomorphisms and multiple MLN variants for clustering coefficients, while
Multinet provides more options for layer comparison and clustering.

Overall, there is little interoperability between MLN software programs, which can
cause practical problems for researchers using MLNs, as they need to become famil-
iar with the specific software representation to reach their expected research objective
(Kinsley et al. 2020; Finn 2021). This can be compared both with relational database sys-
tems, where anyone familiar with the relational model can easily switch from one system
to the other when it comes to using their core functionality, and also with graph analysis
systems, where switching, for example, from NetworkX to igraph, only involves some

Page 18 of 23Panayiotou et al. Applied Network Science (2024) 9:75

syntactic differences when we focus on core graph operators (generators, basic centrality
measures, etc.).

Data definition and manipulation Our taxonomy is also useful when looking at what
operators are missing. There is no consensus on what should be considered a basic (or
necessary) operator to manipulate MLNs, and there is a lack of such operators. As a con-
sequence, it is not possible to express complex portable queries, e.g. generating different
views and aggregations from the same initial dataset and sharing the definition of the
manipulation process instead of the resulting data.

At the same time, there is no support for constraints to control the validity of the data,
nor indices, to control the balance between time and space efficiency. This also makes it
difficult to formulate complex queries.

Large networks As we can observe from the scalability tests in the experimental study,
there are general issues handling very large networks. Not surprisingly, network size and
density affect the performance of the tested operators. With the number of vertices in
the network increasing, even with low average degrees no software is able to load the
network within the timeout. Often, the processes are killed due to not enough memory
being available. Considering modern data sources can be very large in size (e.g. popula-
tion networks (Kazmina et al. 2023; Bokányi et al. 2023), containing tens of millions of
nodes), this further points towards the need for a discussion about the performance of
different data structures for MLNs.

In addition, the experiments suggest that none of the featured implementations can
consistently outperform the rest, as all have their own advantages and disadvantages. An
adjacency matrix representation, for example, performs better for operators like layer
aggregation, and edges can be quickly added and removed, while adding and removing
nodes or layers might require recreating the object, as the matrix structure becomes dif-
ferent. Adjacency list-based data structures are able to handle large networks, but they
appear to be less efficient for layer aggregation. On the other hand, using native graph
objects from other libraries to represent layers can often be efficient, but it does not nec-
essarily scale well as the number of layers increases, nor does it efficiently support layer
transformation capabilities. The choice of data structure affects which operators can be
more or less easily implemented in the first place, and their efficiency.

Benchmarks A major consequence of the previous issues is a difficulty designing sys-
tematic experimental comparisons, including the one presented in this work. First, the
lack of a common standard makes it hard to decide what should be deemed a necessary
operator when designing an MLN system. Second, it is equally difficult to establish a fair
baseline for comparison of the various operators, also considering the variety in data
structure choices. As a result, this slows down the process of identifying operators in
need of optimization.

If we look at research areas focused on the development of data management and
analysis pipelines, the above considerations have been critical. Looking at the relational
database meta-model, we have a clear understanding of what operators can be applied to
the data, and also practical knowledge of how different operators behave based on their
implementations (e.g. data structures) and data distributions, through well-established
benchmarks.

Page 19 of 23Panayiotou et al. Applied Network Science (2024) 9:75 	

Future explorations

The overview of MLN engineering presented in the previous section suggests that the
field is ready for the development of effective data manipulation and analysis systems.
Several MLN systems exist, and when considered together they do provide a lot of the
required functionality. However, looking at typical criteria used when selecting software
components, like interoperability (Carvallo Vega et al. 2007), the field clearly requires
additional efforts. Similarly, there are little considerations for other important charac-
teristics, such as the security and functionality compliance of the software. These could
be critical, for example, when analyzing MLNs from registry or personal data. Consider-
ing the usefulness and increasing popularity of MLNs in analyzing complex data, future
steps in the field should aim to address these challenges.

Our overview highlights a critical area of exploration: addressing data management
needs for MLN software. Considering the challenges when processing large MLNs, a
potential solution includes designing a database management system-based model to
store and manipulate MLN data. Such a model should then be integrated into MLN
analysis software for testing. Implementing data management models inspired by well-
established ones, such as those used in relational and graph databases, into MLN sys-
tems, can also help alleviate potential security and functionality compliance concerns.

Also relevant is the definition of a set of essential operators (i.e. a query language),
complemented with a clear definition of operator behaviour. Such a set of operators
would allow for improved interoperability between software, easier formulation of com-
plex queries and definition of constraints for MLNs. Given a set of basic operators, we
can then consider a common basis for experimental comparisons of software, data struc-
tures and novel operator extensions. A set of operators alone does not make the task of
comparing software trivial, as it is not easy to define a single comparative indicator with-
out considering other design choices in the software. However, this process will simplify
the identification of operators and queries that can be optimized. In summary, such a
language would address several of the limitations we highlighted in the previous section.

MLN engineering as a field will still benefit from new theoretical developments. Exam-
ples of areas where we foresee new developments include computationally expensive
analytical tasks like community detection and classification, where modern approaches
used in machine learning (such as graph neural networks and embeddings) have started
appearing in the MLN literature, but are still not as developed and especially accessi-
ble as in other areas. A related challenge is also defining methods for MLNs consider-
ing attributes, for example aggregating or slicing layers based on the values of a node
attribute. At the same time, this study suggests how theoretical developments have so far
lacked corresponding efforts to engineer them into usable systems.

Conclusion
With the popularity of MLNs for storage, manipulation and analysis of complex systems,
it is imperative to question whether the MLN engineering landscape is mature enough
to handle challenges posed by modern data sources. In this paper, we delve into these
questions by looking at currently available MLN analysis software. We provide a tax-
onomy of MLN manipulation and analysis operators featured in the software included
in this study, and experimentally study common operators. Based on these analyses, we

Page 20 of 23Panayiotou et al. Applied Network Science (2024) 9:75

then discuss the current status and limitations of MLN engineering as a distinct research
area.

We find that the current MLN engineering ecosystem consists of multiple software
implementations with limited interoperability between them. For example, there is a
relatively small number of common operators within the featured software, along with
a variety of underlying implementations, and a limited support for vertex, node and
edge metadata. This lack of a common baseline creates practical problems not only for
researchers using MLNs, but also when designing benchmark studies. We also note the
issues software currently faces when processing large MLNs.

Considering the popularity of MLNs, future work in the MLN engineering field should
aim to address these limitations, in order to improve usability of MLN systems. A major
future direction includes the design of systems capable of efficiently processing large
MLN data. This can potentially be achieved via integrating relational- or graph-database
management systems into MLN analysis software, in order to be able to process large
networks. As our experimental study focuses primarily on the manipulation operators,
it can potentially be extended to compare the scalability of relational and graph data-
base management-based models for MLNs. Other major future directions include the
definition of a query language for MLNs, the design of larger-scale benchmarks includ-
ing more datasets and operators, also on settings with more computational resources. In
turn, this can help highlighting potential areas for optimization. Finally, another promis-
ing direction is the theoretical definition and testing of novel methods for computation-
ally expensive MLN tasks, such as community detection or layer manipulation.
Acknowledgements
The computations were enabled by resources provided by the National Academic Infrastructure for Supercomputing in
Sweden (NAISS) at Chalmers Centre for Computational Science and Engineering (C3SE), High Performance Computing
Center North (HPC2N) and Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) partially
funded by the Swedish Research Council through grant agreement no. 2022-06725. We would like to thank the authors
of the featured software, Manlio De Domenico, Mikko Kivelä, Blaž Škrlj, Pietro Monticone and Claudio Moroni, for their
correspondence and insightful feedback on early versions of the manuscript. Finally, we are grateful to the anonymous
reviewers for their helpful remarks.

Author contributions
G.P., M.M. and B.P. designed the study. G.P. performed the feature comparison and experiments, and led writing of the
paper. All authors revised and approved the final manuscript.

Funding
Open access funding provided by Uppsala University. This work has been partly funded by eSSENCE, an e-Science col-
laboration funded as a strategic research area of Sweden. M.M. has been partly funded by EU CEF grant number 2394203
(NORDIS - NORdic observatory for digital media and information DISorder). We also acknowledge support from the
French Institute in Sweden (IFS).

 Availability of data and materials
The scripts for the experimental comparison, including the synthetic network generator, are available on https://​github.​
com/​uuinf​olab/​paper.​24_​ApplN​etSci_​MLN-​Engin​eering-​Chall​enges. All other datasets used are publicly available; see
Sect. Datasets for references.

Declarations

Competing interests
The authors declare no competing interest.

Received: 2 April 2024 Accepted: 25 November 2024

https://github.com/uuinfolab/paper.24_ApplNetSci_MLN-Engineering-Challenges
https://github.com/uuinfolab/paper.24_ApplNetSci_MLN-Engineering-Challenges

Page 21 of 23Panayiotou et al. Applied Network Science (2024) 9:75 	

References
Aleta A, Meloni S, Moreno Y (2017) A Multilayer perspective for the analysis of urban transportation systems. Scientific

Reports 7(1):44359. Number: 1 Publisher: Nature Publishing Group. Accessed 2023-10-20 https://​doi.​org/​10.​1038/​
srep4​4359

Angles R, Hogan A, Lassila O, Rojas C, Schwabe D, Szekely P, Vrgoč D (2022) Multilayer graphs: a unified data model for
graph databases. In: Proceedings of the 5th ACM SIGMOD joint international workshop on graph data manage-
ment experiences & systems (GRADES) and network data analytics (NDA). GRADES-NDA ’22, pp. 1–6. Association for
computing machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​35345​40.​35346​96. Accessed 2022-09-27

Auber D, Archambault D, Bourqui R, Delest M, Dubois J, Lambert A, Mary P, Mathiaut M, Melançon G, Pinaud B, Renoust B,
Vallet J (2017) Tulip 5. In: Alhajj R, Rokne J (eds) Encyclopedia of social network analysis and mining. Springer, New
York, NY, pp 1–28. https://​doi.​org/​10.​1007/​978-1-​4614-​7163-9_​315-1

Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In:
Proceedings of the international AAAI conference on web and social media 3(1):361–362. Accessed 2023-08-30
https://​doi.​org/​10.​1609/​icwsm.​v3i1.​13937

Berlingerio M, Coscia M, Giannotti F, Monreale A, Pedreschi D (2011) Foundations of multidimensional network analysis.
In: 2011 International conference on advances in social networks analysis and mining, pp. 485–489. IEEE, Kaohsiung
City, Taiwan. https://​doi.​org/​10.​1109/​ASONAM.​2011.​103 . http://​ieeex​plore.​ieee.​org/​docum​ent/​59926​18/ Accessed
2023-08-30

Bianconi G (2022) Multilayer networks: structure and function. Oxford University Press, Oxford, New York
Boccaletti S, Bianconi G, Criado R, Genio CI, Gómez-Gardeñes J, Romance M, Sendiña-Nadal I, Wang Z, Zanin M (2014) The

structure and dynamics of multilayer networks. Phys Rep 544(1):1–122. https://​doi.​org/​10.​1016/j.​physr​ep.​2014.​07.​
001. (Accessed 2022-11-30)

Bokányi E, Heemskerk EM, Takes FW (2023) The anatomy of a population-scale social network. Scientific Reports
13(1):9209. Nature Publishing Group. Accessed 2023-08-24 https://​doi.​org/​10.​1038/​s41598-​023-​36324-9

Bokanyi E, Jong R, Zoete B, Kazmina Y (2022) POPNET multi layered network library. https://​github.​com/​popnet-​io/​
popnet_​mln

Borgatti SP, Mehra A, Brass DJ, Labianca G (2009) Network analysis in the social sciences. Science 323(5916):892–895.
https://​doi.​org/​10.​1126/​scien​ce.​11658​21. (Accessed 2024-03-23)

Bott H (1928) Observation of play activities in a nursery school. Genet Psychol Monogr 4:44–88
Brandes U, Eiglsperger M, Herman I, Himsolt M, Marshall MS (2002) GraphML progress report structural layer proposal.

In: Mutzel P, Jünger M, Leipert S (eds) Graph Drawing. Springer, Berlin, pp 501–512. https://​doi.​org/​10.​1007/3-​540-​
45848-4_​59

Brehmer M, Munzner T (2013) A multi-level typology of abstract visualization tasks. IEEE Trans Visual Comput Graphics
19(12):2376–2385. https://​doi.​org/​10.​1109/​TVCG.​2013.​124. (Accessed 2024-03-23)

Brodka P, Chmiel A, Magnani M, Ragozini G (2018) Quantifying layer similarity in multiplex networks: a systematic study. R
Soc Open Sci 5(8):171747

Cardillo A, Gómez-Gardeñes J, Zanin M, Romance M, Papo D, Pozo Fd, Boccaletti S (2013) Emergence of network features
from multiplexity. Scientific Reports 3, 1344 https://​doi.​org/​10.​1038/​srep0​1344 . Accessed 2022-12-07

Carvallo Vega JP, Franch Gutiérrez J, Quer C (2007) Determining criteria for selecting software components: lessons
learned. IEEE Softw 24(3):84–94. https://​doi.​org/​10.​1109/​MS.​2007.​70

Celli F, Di Lascio FML, Magnani M, Pacelli B, Rossi L (2010) Social network data and practices: the case of friendfeed. In:
Chai S-K, Salerno JJ, Mabry PL (eds) Advances in social computing lecture notes in computer science. Springer,
Berlin, pp 346–353. https://​doi.​org/​10.​1007/​978-3-​642-​12079-4_​43

Chen C, Yan X, Zhu F, Han J, Yu PS (2009) Graph OLAP: a multi-dimensional framework for graph data analysis. Knowl Inf
Syst 21(1):41–63. https://​doi.​org/​10.​1007/​s10115-​009-​0228-9. (Accessed 2023-11-29)

Coscia M (2022) Generalized Euclidean Measure to Estimate Distances on Multilayer Networks. ACM Trans Knowl Discov
Data 16(6):1–22. https://​doi.​org/​10.​1145/​35293​96. (Accessed 2023-08-30)

Cuenca E, Sallaberry A, Ienco D, Poncelet P (2022) VERTIGo: a visual platform for querying and exploring large multilayer
networks. IEEE Trans Visual Comput Graphics 28(3):1634–1647. https://​doi.​org/​10.​1109/​TVCG.​2021.​30678​20

De Domenico M (2017) Multilayer modeling and analysis of human brain networks. GigaScience 6(5):1–8. https://​doi.​org/​
10.​1093/​gigas​cience/​gix004. (Accessed 2022-12-07)

De Domenico M, Solé-Ribalta A, Gómez S, Arenas A (2014) Navigability of interconnected networks under random fail-
ures. Proc Natl Acad Sci USA 111(23):8351–8356. https://​doi.​org/​10.​1073/​pnas.​13184​69111. (Accessed 2022-12-07)

De Domenico M, Porter MA, Arenas A (2015) MuxViz: a tool for multilayer analysis and visualization of networks. J Com-
plex Netw 3(2):159–176. https://​doi.​org/​10.​1093/​comnet/​cnu038. (Accessed 2022-12-07)

Dickison ME, Magnani M, Rossi L (2016) Multilayer social networks. Cambridge University Press, Cambridge. https://​doi.​
org/​10.​1017/​CBO97​81139​941907 . https://​www.​cambr​idge.​org/​core/​books/​multi​layer-​social-​netwo​rks/​39383​
306D9​84331​3057C​ECEBF​7B9BF​26 Accessed 2023-10-23

Espinosa-Rada A (2023) netmem: social network measures using matrices. original-date: 2020-04-26T14:04:09Z. https://​
github.​com/​anesp​inosa/​netmem Accessed 2023-08-30

Feyer SP, Pinaud B, Kobourov S, Brich N, Krone M, Kerren A, Behrisch M, Schreiber F, Klein K (2023) 2D, 2.5 D, or 3D? an
exploratory study on multilayer network visualisations in virtual reality. IEEE Transactions on Visualization and Com-
puter Graphics. IEEE. Accessed 2024-03-23

Finn KR (2021) Multilayer network analyses as a toolkit for measuring social structure. Current Zool 67(1):81–99. https://​
doi.​org/​10.​1093/​cz/​zoaa0​79. (Accessed 2023-08-30)

Finn KR, Silk MJ, Porter MA, Pinter-Wollman N (2019) The use of multilayer network analysis in animal behaviour. Anim
Behav 149:7–22. https://​doi.​org/​10.​1016/j.​anbeh​av.​2018.​12.​016. (Accessed 2023-08-24)

Frydman N, Freilikhman S, Talpaz I, Pilosof S (2023) Practical guidelines and the EMLN R package for handling ecological
multilayer networks. EcoEvoRxiv. Accessed 2023-08-30

https://doi.org/10.1038/srep44359
https://doi.org/10.1038/srep44359
https://doi.org/10.1145/3534540.3534696
https://doi.org/10.1007/978-1-4614-7163-9_315-1
https://doi.org/10.1609/icwsm.v3i1.13937
https://doi.org/10.1109/ASONAM.2011.103
http://ieeexplore.ieee.org/document/5992618/
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1038/s41598-023-36324-9
https://github.com/popnet-io/popnet_mln
https://github.com/popnet-io/popnet_mln
https://doi.org/10.1126/science.1165821
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1109/TVCG.2013.124
https://doi.org/10.1038/srep01344
https://doi.org/10.1109/MS.2007.70
https://doi.org/10.1007/978-3-642-12079-4_43
https://doi.org/10.1007/s10115-009-0228-9
https://doi.org/10.1145/3529396
https://doi.org/10.1109/TVCG.2021.3067820
https://doi.org/10.1093/gigascience/gix004
https://doi.org/10.1093/gigascience/gix004
https://doi.org/10.1073/pnas.1318469111
https://doi.org/10.1093/comnet/cnu038
https://doi.org/10.1017/CBO9781139941907
https://doi.org/10.1017/CBO9781139941907
https://www.cambridge.org/core/books/multilayer-social-networks/39383306D9843313057CECEBF7B9BF26
https://www.cambridge.org/core/books/multilayer-social-networks/39383306D9843313057CECEBF7B9BF26
https://github.com/anespinosa/netmem
https://github.com/anespinosa/netmem
https://doi.org/10.1093/cz/zoaa079
https://doi.org/10.1093/cz/zoaa079
https://doi.org/10.1016/j.anbehav.2018.12.016

Page 22 of 23Panayiotou et al. Applied Network Science (2024) 9:75

Galimberti E, Bonchi F, Gullo F, Lanciano T (2020) Core decomposition in multilayer networks: theory, algorithms,
and applications. ACM Trans Knowl Discov Data 14(1):11–11140. https://​doi.​org/​10.​1145/​33698​72. (Accessed
2023-08-30)

Gallotti R, Barthelemy M (2014) Anatomy and efficiency of urban multimodal mobility. Sci Rep 4:6911. https://​doi.​org/​10.​
1038/​srep0​6911. (Accessed 2022-12-07)

Ghawi R, Pfeffer J (2022) A community matching based approach to measuring layer similarity in multilayer networks.
Social Netw 68:1–14. https://​doi.​org/​10.​1016/j.​socnet.​2021.​04.​004. (Accessed 2024-06-03)

Gibson RA, Mucha PJ (2022) Finite-state parameter space maps for pruning partitions in modularity-based community
detection. Sci Rep 12(1):15928. https://​doi.​org/​10.​1038/​s41598-​022-​20142-6

Giordano G, Ragozini G, Vitale MP (2019) Analyzing multiplex networks using factorial methods. Social Netw 59:154–170.
https://​doi.​org/​10.​1016/j.​socnet.​2019.​07.​005. (Accessed 2024-06-03)

Hammoud Z, Kramer F (2018) mully: an R package to create modify and visualize multilayered graphs. Genes 9(11):519.
https://​doi.​org/​10.​3390/​genes​91105​19

Hammoud Z, Kramer F (2020) Multilayer networks: aspects, implementations, and application in biomedicine. Big Data
Analytics 5(1):2. https://​doi.​org/​10.​1186/​s41044-​020-​00046-0. (Accessed 2023-08-24)

Hanteer O, Rossi L, D’Aurelio DV, Magnani M (2018) From interaction to participation: the role of the imagined audience
in social media community detection and an application to political communication on twitter. In: 2018 IEEE/ACM
international conference on advances in social networks analysis and mining (ASONAM), pp. 531–534. https://​doi.​
org/​10.​1109/​ASONAM.​2018.​85085​75 . ISSN: 2473-991X. https://​ieeex​plore.​ieee.​org/​docum​ent/​85085​75 Accessed
2024-06-05

Heer J, Perer A (2014) Orion: a system for modeling, transformation and visualization of multidimensional heterogeneous
networks. Inf Vis 13(2):111–133. https://​doi.​org/​10.​1177/​14738​71612​462152. (Accessed 2022-11-14)

Hoe-Lian GD, Chua A, Anqi KD, Boon-Hui KE, Bok-Tong ME, Wen-Min NM (2006) A checklist for evaluating open source
digital library software. Online information review 30(4):360–379. Emerald Group Publishing Limited. Accessed
2024-06-05. Publisher: Emerald Group Publishing Limited. Accessed 2024-06-05 https://​doi.​org/​10.​1108/​14684​
52061​06862​83

Hristova D, Noulas A, Brown C, Musolesi M, Mascolo C (2016) A multilayer approach to multiplexity and link prediction
in online geo-social networks. EPJ Data Science 5(1):1–17. SpringerOpen. Accessed 2024-06-05 https://​doi.​org/​10.​
1140/​epjds/​s13688-​016-​0087-z

Interdonato R, Tagarelli A, Ienco D, Sallaberry A, Poncelet P (2017) Local community detection in multilayer networks.
Data Min Knowl Disc 31(5):1444–1479. https://​doi.​org/​10.​1007/​s10618-​017-​0525-y. (Accessed 2023-08-30)

Interdonato R, Magnani M, Perna D, Tagarelli A, Vega D (2020) Multilayer network simplification: approaches, models and
methods. Comput Sci Rev 36:100246. https://​doi.​org/​10.​1016/j.​cosrev.​2020.​100246. (Accessed 2023-01-24)

Jeub LGS, Bazzi M, Jutla IS, Mucha PJ (2019) A generalized Louvain method for community detection implemented in
MATLAB. GenLouvain. original-date: 2016-11-25T14:49:08Z. https://​github.​com/​GenLo​uvain/​GenLo​uvain Accessed
2023-08-30

Kazmina Y, Heemskerk EM, Bokanyi E, Takes FW (2023) Socio-economic Segregation in a Population-scale social network.
arXiv:​2305.​02062 [physics]. Accessed 2023-08-25

Kinsley AC, Rossi G, Silk MJ, VanderWaal K (2020) Multilayer and multiplex networks: an introduction to their use in veteri-
nary epidemiology. Frontiers in Veterinary Science 7. Accessed 2023-08-24

Kivelä, M.: Multilayer Networks Library for Python (Pymnet) - Multilayer Networks Library 0.1 documentation. http://​www.​
mkive​la.​com/​pymnet/ Accessed 2023-02-19

Kivela M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2(3):203–
271. https://​doi.​org/​10.​1093/​comnet/​cnu016. (Accessed 2022-11-30)

Kouvaris NE, Hata S, Guilera AD- (2015) Pattern formation in multiplex networks. Sci Rep 5(1):10840. https://​doi.​org/​10.​
1038/​srep1​0840

Kriegel H-P, Schubert E, Zimek A (2017) The (black) art of runtime evaluation: are we comparing algorithms or implemen-
tations? Knowl Inf Syst 52(2):341–378. https://​doi.​org/​10.​1007/​s10115-​016-​1004-2. (Accessed 2023-12-13)

Magnani M, Rossi L (2013) Formation of multiple networks. In: Greenberg AM, Kennedy WG, Bos ND (eds) Social comput-
ing, behavioral-cultural modeling and prediction. Springer, Berlin, pp 257–264. https://​doi.​org/​10.​1007/​978-3-​642-​
37210-0_​28

Magnani M, Hanteer O, Interdonato R, Rossi L, Tagarelli A (2021) Community detection in multiplex networks. ACM Com-
put Surv. https://​doi.​org/​10.​1145/​34446​88

Magnani M, Rossi L, Vega D (2021) Analysis of Multiplex Social Networks with R. J Stat Softw 98:1–30. https://​doi.​org/​10.​
18637/​jss.​v098.​i08. (Accessed 2022-12-05)

Magnani M, Micenkova B, Rossi L (2013) Combinatorial analysis of multiple networks. arXiv.​ arXiv:​1303.​4986 [physics].
Accessed 2023-08-24

Magnani M, Rossi L (2011) The ML-model for multi-layer social networks. In: Proceedings - 2011 International conference
on advances in social networks analysis and mining, ASONAM 2011. https://​doi.​org/​10.​1109/​ASONAM.​2011.​114

Matter D, Kuznetsova E, Vziatysheva V, Vitulano I, Pfeffer J (2023) Temporally stable multilayer network embeddings: a
longitudinal study of Russian propaganda. arXiv.​ arXiv:​2307.​10264 [cs]. Accessed 2024-03-26

McGee F, Ghoniem M, Melançon G, Otjacques B, Pinaud B (2019) The state of the art in multilayer network visualization.
Computer graphics forum 38(6), 125–149 https://​doi.​org/​10.​1111/​cgf.​13610. _eprint: https://​onlin​elibr​ary.​wiley.​
com/​doi/​pdf/​10.​1111/​cgf.​13610. Accessed 2022-11-30

McGee F, Ghoniem M, Otjacques B, Renoust B, Archambault D, Kerren A, Pinaud B, Melançon G, Pohl M, Landesberger T
(2021) Visual analysis of multilayer networks. Synthesis lectures on visualization. Springer, Cham. https://​doi.​org/​10.​
1007/​978-3-​031-​02608-9 . Accessed 2022-11-30

Mondal S, Basu A, Mukherjee N (2020) Building a trust-based doctor recommendation system on top of multilayer graph
database. J Biomed Inform 110:103549. https://​doi.​org/​10.​1016/j.​jbi.​2020.​103549. (Accessed 2023-06-11)

Moreno JL, Jennings HH (1934) Who shall survive?: A new approach to the problem of human interrelations. Nervous
and Mental Disease Publishing Co., Washington, D. C

https://doi.org/10.1145/3369872
https://doi.org/10.1038/srep06911
https://doi.org/10.1038/srep06911
https://doi.org/10.1016/j.socnet.2021.04.004
https://doi.org/10.1038/s41598-022-20142-6
https://doi.org/10.1016/j.socnet.2019.07.005
https://doi.org/10.3390/genes9110519
https://doi.org/10.1186/s41044-020-00046-0
https://doi.org/10.1109/ASONAM.2018.8508575
https://doi.org/10.1109/ASONAM.2018.8508575
https://ieeexplore.ieee.org/document/8508575
https://doi.org/10.1177/1473871612462152
https://doi.org/10.1108/14684520610686283
https://doi.org/10.1108/14684520610686283
https://doi.org/10.1140/epjds/s13688-016-0087-z
https://doi.org/10.1140/epjds/s13688-016-0087-z
https://doi.org/10.1007/s10618-017-0525-y
https://doi.org/10.1016/j.cosrev.2020.100246
https://github.com/GenLouvain/GenLouvain
http://arxiv.org/abs/2305.02062
http://www.mkivela.com/pymnet/
http://www.mkivela.com/pymnet/
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1038/srep10840
https://doi.org/10.1038/srep10840
https://doi.org/10.1007/s10115-016-1004-2
https://doi.org/10.1007/978-3-642-37210-0_28
https://doi.org/10.1007/978-3-642-37210-0_28
https://doi.org/10.1145/3444688
https://doi.org/10.18637/jss.v098.i08
https://doi.org/10.18637/jss.v098.i08
http://arxiv.org/abs/1303.4986
https://doi.org/10.1109/ASONAM.2011.114
http://arxiv.org/abs/2307.10264
https://doi.org/10.1111/cgf.13610
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13610
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13610
https://doi.org/10.1007/978-3-031-02608-9
https://doi.org/10.1007/978-3-031-02608-9
https://doi.org/10.1016/j.jbi.2020.103549

Page 23 of 23Panayiotou et al. Applied Network Science (2024) 9:75 	

Moroni C, Monticone P (2023) MultilayerGraphs.jl: Multilayer network science in Julia. J Open Source Softw 8(83):5116.
https://​doi.​org/​10.​21105/​joss.​05116

Nurmi T, Badie-Modiri A, Coupette C, Kivelä M (2024) pymnet: A python library for multilayer networks. J Open Source
Softw 9(99):6930. https://​doi.​org/​10.​21105/​joss.​06930

Ostoic JAR (2020) Algebraic analysis of multiple social networks with multiplex. J Stat Softw 92:1–41. https://​doi.​org/​10.​
18637/​jss.​v092.​i11. (Accessed 2023-08-30)

Peixoto TP (2014). The graph-tool python library figshare https://​doi.​org/​10.​6084/​m9.​figsh​are.​11641​94.​v14. https://​figsh​
are.​com/​artic​les/​datas​et/​graph_​tool/​11641​94/​14 Accessed 2023-08-30

Perna D, Interdonato R, Tagarelli A (2018) Identifying users with alternate behaviors of lurking and active participation in
multilayer social networks. IEEE Trans Comput Social Syst 5(1):46–63. https://​doi.​org/​10.​1109/​TCSS.​2017.​27627​30

Pilosof S, Porter MA, Pascual M, Kéfi S (2017) The multilayer nature of ecological networks. Nat Ecol Evol 1(4):0101. https://​
doi.​org/​10.​1038/​s41559-​017-​0101

Renoust B, Melançon G, Munzner T (2015) Detangler: visual analytics for multiplex networks. Comput Graphics Forum
34(3):321–330. https://​doi.​org/​10.​1111/​cgf.​12644. (Accessed 2022-11-14)

Robitaille AL, Webber QMR, Turner JW, Vander Wal E (2021) The problem and promise of scale in multilayer animal social
networks. Current Zool 67(1):113–123. https://​doi.​org/​10.​1093/​cz/​zoaa0​52. (Accessed 2023-08-30)

Rossi L, Magnani M (2015) Towards effective visual analytics on multiplex and multilayer networks. Chaos, Solitons and
Fractals. https://​doi.​org/​10.​1016/j.​chaos.​2014.​12.​022

Santana J, Hoover R, Vengadasubbu M (2017) Investor commitment to serial entrepreneurs: a multilayer network analysis.
Soc Netw 48:256–269. https://​doi.​org/​10.​1016/j.​socnet.​2016.​10.​002. (Accessed 2024-03-26)

Santra A, Komar K, Bhowmick S, Chakravarthy S (2022) From base data to knowledge discovery - a life cycle approach -
using multilayer networks. Data & Knowl Eng 141:102058. https://​doi.​org/​10.​1016/j.​datak.​2022.​102058. (Accessed
2023-02-20)

Shi C, Li Y, Zhang J, Sun Y, Yu PS (2017) A survey of heterogeneous information network analysis. IEEE Trans Knowl Data
Eng 29(1):17–37. https://​doi.​org/​10.​1109/​TKDE.​2016.​25985​61

Škrlj B, Kralj J, Lavrač N (2019) Py3plex: a library for scalable multilayer network analysis and visualization. In: Aiello LM,
Cherifi C, Cherifi H, Lambiotte R, Lió P, Rocha LM (eds) Complex networks and their applications VII studies in com-
putational intelligence. Springer, Cham, pp 757–768. https://​doi.​org/​10.​1007/​978-3-​030-​05411-3_​60

Steer B, Arnold N, Ba CT, Lambiotte R, Yousaf H, Jeub L, Murariu F, Kapoor S, Rico P, Chan R, Chan L, Alford J, Cuadrado
RGCF, Barnes MR, Zhong P, Biyong JNP, Alnaimi A (2023) Raphtory: The temporal graph engine for Rust and Python.
arXiv.​ arXiv:​2306.​16309. Accessed 2023-08-25

Sun Y, Han J, Yan X, Yu PS, Wu T (2022) Heterogeneous information networks: the past, the present, and the future. In:
Proceedings of the VLDB endowment vol. 15, no. 12, pp. 3807–3811. https://​doi.​org/​10.​14778/​35548​21.​35549​01.
(Accessed 2023-11-29)

Szárnyas G, Kővári Z, Salánki A, Varró D (2016) Towards the characterization of realistic models: evaluation of multidisci-
plinary graph metrics. In: Proceedings of the ACM/IEEE 19th international conference on model driven engineering
languages and systems. MODELS ’16, pp. 87–94. Association for Computing Machinery, New York, NY, USA. https://​
doi.​org/​10.​1145/​29767​67.​29767​86 . Accessed 2023-08-30

Timme N, Ito S, Myroshnychenko M, Yeh F-C, Hiolski E, Hottowy P, Beggs JM (2014) Multiplex networks of cortical and
hippocampal neurons revealed at different timescales. PLoS ONE 9(12):115764. https://​doi.​org/​10.​1371/​journ​al.​
pone.​01157​64. (Accessed 2022-12-07)

Timóteo S, Correia M, Rodríguez-Echeverría S, Freitas H, Heleno R (2018) Multilayer networks reveal the spatial structure
of seed-dispersal interactions across the Great Rift landscapes. Nat Commun 9:140. https://​doi.​org/​10.​1038/​s41467-​
017-​02658-y. (Accessed 2022-12-07)

Traxl D, Boers N, Kurths J (2016) Deep graphs-a general framework to represent and analyze heterogeneous complex sys-
tems across scales. Chaos: An Interdiscip J Nonlinear Sci 26(6):065303. https://​doi.​org/​10.​1063/1.​49529​63. (Accessed
2023-08-30)

Trimbour R, Deutschmann IM, Cantini L (2023) Molecular mechanisms reconstruction from single-cell multi-omics data
with HuMMuS. bioRxiv. Pages: 2023.06.09.543828 Section: New Results. https://​doi.​org/​10.​1101/​2023.​06.​09.​543828 .
https://​www.​biorx​iv.​org/​conte​nt/​10.​1101/​2023.​06.​09.​54382​8v1 Accessed 2023-08-30

Ustek-Spilda F, Vega D, Magnani M, Rossi L, Shklovski I, Lehuede S, Powell A (2021) A twitter-based study of the European
Internet of Things. Inf Syst Front 23(1):135–149. https://​doi.​org/​10.​1007/​s10796-​020-​10008-5. (Accessed 2023-03-01)

Vaiana M, Muldoon SF (2020) Multilayer brain networks. J Nonlinear Sci 30(5):2147–2169. https://​doi.​org/​10.​1007/​s00332-​
017-​9436-8. (Accessed 2024-06-05)

Vijayaraghavan VS, Noël P-A, Maoz Z, D’Souza RM (2015) Quantifying dynamical spillover in co-evolving multiplex net-
works. Sci Rep 5(1):15142. https://​doi.​org/​10.​1038/​srep1​5142

Wehmuth K, Fleury E, Ziviani A (2016) On multiaspect graphs. Theoretical Comput Sci 651:50–61. https://​doi.​org/​10.​
1016/j.​tcs.​2016.​08.​017

Xia J, Gill EE, Hancock REW (2015) Network analyst for statistical, visual and network-based meta-analysis of gene expres-
sion data. Nature Protocols 10(6):823–844. https://​doi.​org/​10.​1038/​nprot.​2015.​052

Zitnik M, Leskovec J (2017) Predicting multicellular function through multi-layer tissue networks. Bioinformatics
33(14):190–198. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btx252. (Accessed 2023-08-30)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.21105/joss.05116
https://doi.org/10.21105/joss.06930
https://doi.org/10.18637/jss.v092.i11
https://doi.org/10.18637/jss.v092.i11
https://doi.org/10.6084/m9.figshare.1164194.v14
https://figshare.com/articles/dataset/graph_tool/1164194/14
https://figshare.com/articles/dataset/graph_tool/1164194/14
https://doi.org/10.1109/TCSS.2017.2762730
https://doi.org/10.1038/s41559-017-0101
https://doi.org/10.1038/s41559-017-0101
https://doi.org/10.1111/cgf.12644
https://doi.org/10.1093/cz/zoaa052
https://doi.org/10.1016/j.chaos.2014.12.022
https://doi.org/10.1016/j.socnet.2016.10.002
https://doi.org/10.1016/j.datak.2022.102058
https://doi.org/10.1109/TKDE.2016.2598561
https://doi.org/10.1007/978-3-030-05411-3_60
http://arxiv.org/abs/2306.16309
https://doi.org/10.14778/3554821.3554901
https://doi.org/10.1145/2976767.2976786
https://doi.org/10.1145/2976767.2976786
https://doi.org/10.1371/journal.pone.0115764
https://doi.org/10.1371/journal.pone.0115764
https://doi.org/10.1038/s41467-017-02658-y
https://doi.org/10.1038/s41467-017-02658-y
https://doi.org/10.1063/1.4952963
https://doi.org/10.1101/2023.06.09.543828
https://www.biorxiv.org/content/10.1101/2023.06.09.543828v1
https://doi.org/10.1007/s10796-020-10008-5
https://doi.org/10.1007/s00332-017-9436-8
https://doi.org/10.1007/s00332-017-9436-8
https://doi.org/10.1038/srep15142
https://doi.org/10.1016/j.tcs.2016.08.017
https://doi.org/10.1016/j.tcs.2016.08.017
https://doi.org/10.1038/nprot.2015.052
https://doi.org/10.1093/bioinformatics/btx252

	Current challenges in multilayer network engineering
	Abstract
	Introduction
	Other comparative studies
	Research design

	Multilayer network analysis software
	Multilayer networks
	Criteria for inclusion
	Software included
	Other relevant software

	Models and operators
	MLN models
	MLN implementations
	MLN operators

	Scalability
	Datasets
	Settings
	Results

	Discussion
	MLN engineering: an overview
	Future explorations

	Conclusion
	Acknowledgements
	References

