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Abstract 

Multilayer networks (MLNs) have become a popular choice to model complex systems. 
However, current MLN engineering solutions, that is, systems and methods to store, 
manipulate, and support the analysis of MLNs, are challenged by the size and complex-
ity of contemporary sources of network data. We assess the maturity level of the MLN 
engineering ecosystem through an analysis of software libraries for MLNs, focusing 
on supported functionality, operators and their scalability. Based on this analysis, we 
provide an overview of the current status of the MLN engineering landscape, compile 
a list of current limitations to be addressed and propose future developments for more 
effective and broadly applicable MLN engineering solutions.
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Introduction
Multilayer networks (MLNs) have become increasingly popular across disciplines for 
representing, manipulating, and analyzing complex systems (Kivela et al. 2014; Bocca-
letti et al. 2014; Dickison et al. 2016; Bianconi 2022). While special types of MLNs have 
been used for a long time in social network analysis (Bott 1928; Moreno and Jennings 
1934), the range of application areas has recently expanded, including brain (Timme 
et  al. 2014; De  Domenico 2017; Vaiana and Muldoon 2020), transportation (Cardillo 
et  al. 2013; Gallotti and Barthelemy 2014; Aleta et  al. 2017), ecological (Pilosof et  al. 
2017; Timóteo et al. 2018; Finn et al. 2019), biomedical (Hammoud and Kramer 2020; 
Kinsley et al. 2020; Mondal et al. 2020), and online communication networks (Magnani 
and Rossi 2011; Hristova et  al. 2016; Hanteer et  al. 2018). This breadth of application 
highlights the value of research focusing on the design, building, and use of systems for 
MLNs — what we here call MLN engineering.

Despite this extensive range of applications, recent work has questioned whether the 
current landscape of MLN engineering is mature enough to address the challenges asso-
ciated to contemporary sources of data (Finn et al. 2019; Kinsley et al. 2020; Finn 2021). 
One challenge is that, for complex secondary data,1 there are multiple possible MLN 
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modelling choices. For example, layers can be used to model different parts of social 
media data depending on the analysis task (Magnani and Rossi 2011; Hanteer et al. 2018; 
Ustek-Spilda et al. 2021; Santra et al. 2022). This indicates a need for an expressive set 
of data manipulation operators (i.e. a query language) to interactively explore possible 
alternative MLNs. Manipulation operators for MLNs are also needed to support interac-
tive visual analysis systems (McGee et al. 2021), and can reduce the amount of ad-hoc 
scripting, thus decreasing data preprocessing costs (Interdonato et al. 2020). As another 
example of a challenge, to fully exploit contemporary sources of digital data we must be 
able to handle increasingly larger networks, such as MLNs representing the population 
of entire countries (Bokányi et  al. 2023; Kazmina et  al. 2023), which further increases 
computational demands.

In this paper we investigate the status of MLN engineering through an analysis of soft-
ware programs natively supporting MLNs. We first provide a taxonomy of operators to 
store, manipulate and analyze MLNs, to identify which functionality can be expected in 
MLN systems and what is currently missing compared with more established data engi-
neering solutions. We then focus on scalability through an experimental study. These 
analyses combined allow us to draw a picture of current limitations and challenges in 
MLN engineering, establishing it as a distinct research area in need of further research, 
providing an overview of the area, and proposing future developments. In addition, on 
a more practical level, our findings can also help researchers and data scientists choose 
the MLN software that best fits their needs. For example, we look at which data features, 
types of networks and operators are supported by different software, making them more 
or less appropriate for different types of MLN engineering tasks.

Other comparative studies

Despite the broad literature on MLNs, works summarizing available operators for MLNs 
and comparisons of them are scarce. General overviews on MLNs (Kivela et  al. 2014; 
Boccaletti et al. 2014; Dickison et al. 2016; Bianconi 2022) cover topics such as model, 
structure, and analytics, but do not look at which operators are practically available and 
usable in software. Similarly, relevant studies on specific sub-tasks for MLNs, such as 
preprocessing (Interdonato et al. 2020), conceptual design (Santra et al. 2022) and vis-
ualization (McGee et  al. 2019, 2021) neither look at available operators, nor perform 
experimental comparisons. Here, we note that visualization-oriented task taxonomies 
for MLNs have been introduced in McGee et al. (2019, 2021). Other studies include layer 
similarity (Brodka et  al. 2018; Ghawi and Pfeffer 2022), structural analysis (Giordano 
et  al. 2019) and community detection (Magnani et  al. 2021), the latter also looking at 
algorithm scalability. However, these studies only focus on specific operators.

While a variety of software for MLN analysis are available online, there are few stud-
ies comparing them. Only a subset of the libraries and operators covered in this article 
are considered in Škrlj et al. (2019), and the experimental comparison is limited to the 
processing time for visualisation tasks. An experimental comparison of database man-
agement systems for a multilayer doctor-patient network can be found in Mondal et al. 
(2020). Software implementations of multilayer networks in the context of biomedi-
cine are discussed in Hammoud and Kramer (2020), although there is no comparison 
between the implementations. Finally, a matching of libraries with different tasks in 
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animal behaviour research is done in Finn et al. (2019). This comparison is specific to 
those tasks, and does not contain an experimental part.

Research design

The current landscape of MLN engineering is rich and rapidly evolving, with new soft-
ware and algorithms introduced frequently, so it is important to clearly define the scope 
of this work and provide a way to evaluate which new software should be included in 
future versions of this study. A consequence of performing a study based on software 
(compared, for example, with a literature review, which would not highlight what func-
tionality is actually available in MLN systems) is that our taxonomy only includes opera-
tors found in the selected libraries.

Furthermore, our study is not designed to draw conclusions about the effect of specific 
design choices, because our list of selected MLN software consists of a variety of pro-
gramming languages, data structures and related but not identical operators. For exam-
ple, we cannot assess the suitability of specific data structures for specific tasks without 
re-implementing the data structures under comparable conditions, since execution time 
is the result of a combination of this and all other design choices (Kriegel et al. 2017).

The rest of the paper is organized as follows: In Sect.  "Multilayer network analysis 
software", we discuss our selection of representative MLN software. We provide a tax-
onomy of common operators in Sect.  "Models and operators", and in Sect.  "Scalabil-
ity", we experimentally compare the software on selected tasks. We discuss the current 
limitations in MLN engineering through the findings of the present study in Sect. "Dis-
cussion", along with areas for future explorations in the field. Finally, we conclude in 
Sect. "Conclusion".

Multilayer network analysis software
Given the popularity of MLNs across disciplines, the question of which software should 
be included in our study is complex. First, different definitions of MLN exist, and there 
are also network meta-models not called MLNs but still providing similar data represen-
tation constructs and operators. Therefore, in Sect. "Multilayer networks", we provide a 
definition of the meta-model and terminology used in this paper, which is largely based 
on the work by Kivela et  al. (2014). We also acknowledge some alternatives, which is 
useful because part of our comparison can be applied or extended to related network 
meta-models. Then, in Sect. "Criteria for inclusion", we provide the criteria we have used 
to select the software included in this study. In Sect. "Software included", we list the soft-
ware we used along with a short overview of them. Finally, in Sect. "Other relevant soft-
ware" we list other software relevant to MLN analysis and why we decided not to include 
them. Overall, we give enough details for any practitioner or researcher on MLNs inter-
ested in reproducing or extending our experiment with, for instance, new software or 
criteria we have not considered.

Multilayer networks

The following is a summarised version of the definition of an MLN by Kivelä et al. (2014), 
that we use as a reference throughout the paper:
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Definition 1  (Multilayer network) Let L1, . . . , Ld be sets of elementary layers called 
aspects. A multilayer network (MLN) is a quadruplet M = (VM ,EM ,V ,L) , where V is a 
set of vertices, L = L1 × · · · × Ld , VM ⊆ V × L and EM ⊆ VM × VM.

Remaining consistent with the original model, a layer is simply an element of L . We 
refer to elements of VM as nodes – not to be confused with vertices, the elements of V. 
See Fig. 1 for an example of such a network.

Special types of MLNs have been used for a long time in social network analysis, 
including networks with multiple edges between a common set of actors (multi-rela-
tional), with multi-valued edges (multiplex), with different types of nodes (two-mode, 
multi-mode), and with nodes representing both individuals and groups or organisa-
tions (multi-level) (Borgatti et al. 2009).

In addition, meta-models resembling the above definition have been previously 
studied by the data engineering community. A popular example is the heterogeneous 
information network (Sun et al. 2022; Shi et al. 2017), which is a special case of attrib-
uted MLN. Other similar models include the multidimensional graph online analyti-
cal processing (OLAP) cubes (Chen et al. 2009) and the recently proposed multilayer 
graphs, an extension for property graphs that can be used to model complex layered 
relationships (Angles et  al. 2022). While we do not expand on the aforementioned 
models in this study, all of the previous are based on complex graph types covered by 
the MLN definition found in Kivela et al. (2014).

Fig. 1  Example of an MLN representing a public transportation network in two regions. The nodes represent 
stations, and an edge between two nodes represents a route between them. Following Def. 1, this network 
has two dimensions L1 = {RegionA, RegionB} and L2 = {Train, Bus} , representing the regions and transport 
methods respectively, and four layers: L = {(RegionA, Train), (RegionA, Bus), (RegionB, Train), (RegionB, Bus)} . 
The six vertices in this network, V = {S1, S2, S3, S4, S5, S6} , do not all participate in all layers. Notice the 
coupling edges (in dotted lines) which can be used to signify that the same vertex (station) is present in both 
layers (transportation media)
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Criteria for inclusion

Software included in this study fulfill the following criteria about their support of MLNs: 

C1 Explicit support:	� the documentation has to explicitly mention the support for 
MLN and the concept of layer.

C2 Native support:	� an MLN-native object should be supported, that is, the soft-
ware should expose an MLN data-structure through its API.

C3 General-purpose:	� a broad set of functions allowing different types of process-
ing, not designed for a specific application or domain has to 
be provided.

C4 API-based:	� a documented API allowing execution from external code/
scripts has to be provided.

C5 Publicly available:	� the source code is available and downloadable under an open 
source license from a website or a public repository.

C6 Actively maintained:	� the last release or update has to be within the last year at the 
time of our experiment (Autumn 2023).

Our criteria reflect desired software component functionality characteristics: suitabil-
ity (providing an appropriate set of functions for MLN tasks, C1–C3), interoperability 
(able to interact with other systems, C4–C5), and accuracy (providing correct results, 
C6) (Carvallo Vega et al. 2007). Other studies have also considered criteria for software 
popularity, for example by means of the number of downloads (Hoe-Lian et al. 2006). 
However, we decided not to use it, as the relevant statistics are often not available.

Software included

Below, we provide information about the libraries featured in this study. A summary can 
be found in Table 1.

MultilayerGraphs.jl (Moroni and Monticone 2023) (hereinafter MLG.jl) is a package 
for the Julia programming language, extending Julia’s graph analysis package with MLN 
capabilities. It offers functions for manipulation and analysis of multiple types of MLNs. 
The MLN representation is based on graph objects from the Graphs.jl library.

Multinet (Magnani et al. 2021) is a C++ library, also available in Python and R.2 It pro-
vides features for manipulating, visualizing and mining MLNs, along with methods for 
community detection and evaluation, plus layer transformation and comparison. It uses 

Table 1  Summary of included MLN software

Library Version Prog. language MLN implementation Licence Ref.

MLG.jl 1.1.4 Julia Graph objects (Graphs.jl) MIT (Moroni and Monticone 2023)

Multinet 4.1.2 R ML-cube objects Apache 2.0 (Magnani et al. 2021)

MuxViz 3.1 R Supra-adjacency matrix GPL 3.0 (De Domenico et al. 2015)

Pymnet 0.1 Python Supra-adjacency lists GPL 3.0 (Nurmi et al. 2024)

Py3plex 0.95a Python Graph objects (NetworkX) BSD 3-clause (Škrlj et al. 2019)

2  We use the R version of the library in our experiments.
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a cube-based MLN representation inspired by the data warehouse multi-dimensional 
model.

MuxViz (De  Domenico et  al. 2015) is an R library for MLN analysis. It represents 
MLNs using supra-adjacency matrices. MuxViz supports manipulation and visualiza-
tion of MLNs, centrality and structural reducibility analysis, discovery of meso-struc-
tures such as communities, components and motifs, as well as analytics for dynamical 
processes.

Pymnet (Nurmi et al. 2024) is a Python MLN analysis library. It uses a supra-adjacency 
list representation for MLNs to address scaling needs for larger graphs. It provides func-
tions for manipulating and visualizing MLNs, computing multiple variants of MLN-spe-
cific clustering coefficient metrics, as well as testing for auto- and iso-morphisms.

Py3plex (Škrlj et  al. 2019) is a Python library offering algorithms for manipulating, 
analysing and visualizing MLNs, as well as node classification and network embedding 
methods. It uses lists of NetworkX graph objects to represent MLNs.

Other relevant software

We do not consider software without explicit support for MLNs (i.e. no support for lay-
ers), such as the graph analysis libraries graph-tool (Peixoto 2014) and Gephi (Bastian 
et al. 2009) and libraries where transformation of an MLN to another data structure is 
required, such as Tulip (Auber et al. 2017), netmem (Espinosa-Rada 2023), DeepGraph 
(Traxl et al. 2016) and MultiAspectGraphs (Wehmuth et al. 2016).

We also exclude software only providing limited support for general MLNs, e.g. 
mully (Hammoud and Kramer 2018), EMLN (Frydman et  al. 2023), Raphtory (Steer 
et al. 2023), HuMMuS (Trimbour et al. 2023), POPNET (Bokanyi et al. 2022). This also 
includes implementations of single algorithms for MLN analysis provided as comple-
mentary material for papers, and software programs without a documented and call-
able interface-API, such as (Coscia 2022; Ostoic 2020; Xia et  al. 2015; Vijayaraghavan 
et  al. 2015; Robitaille et  al. 2021; Jeub et  al. 2019; Galimberti et  al. 2020; Gibson and 
Mucha 2022; Berlingerio et al. 2011; Szárnyas et al. 2016; Interdonato et al. 2017; Perna 
et al. 2018; Zitnik and Leskovec 2017). While such software can be used in applied stud-
ies, they are typically not designed to provide the additional functionality that can be 
expected in a full-fledged MLN analysis library; namely, an API exposing functions for 
input and output, manipulation and analysis of the network. Without an API, it is also 
difficult to experimentally test the software.

Finally, we exclude software for MLNs where the source code is not publicly available 
or not actively maintained. Examples include multinetX (Kouvaris et al. 2015), Detangler 
(Renoust et al. 2015), Orion (Heer and Perer 2014) and VERTIGo (Cuenca et al. 2022).

Models and operators
While the literature often refers to the mathematical definition of MLN by Kivela et al. 
(2014), when we look at MLNs from an engineering perspective we have to ask whether 
(1) a system uses the same variation of the mathematical definition, and (2) how the defi-
nition adopted by the system is implemented. This is a common way of looking at data 
management systems: for example, while relations (as mathematical objects) in the rela-
tional model are often defined as sets, relational database systems are typically based on 
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bags, and depending on the system a relation can be implemented by row or by column, 
with this choice impacting the efficiency of different operations.

In this section we first focus on variations of the MLN meta-model used in the 
included software, both with respect to the supported features (Sect.  MLN models), 
and their implementations (Sect. MLN implementations). Then we look at the operators 
defined on these MLN models, providing a taxonomy in Sect. MLN operators.

MLN models

In Table  2, we indicate which features of the MLN meta-model are supported by the 
selected software, as exposed by their API and documentation. In general, we can see 
that the selected software supports the most distinguishing features of the MLN meta-
model: the concept of layer and the existence of edges connecting nodes between differ-
ent layers (interlayer edges).

However, some features are only supported by some of the libraries. First, most librar-
ies only support one aspect. Indeed, this is sufficient to represent the most common 
types of MLNs, in particular multiplex networks, where each layer corresponds to a 
specific type of edge, and multipartite and multilevel networks, where each layer cor-
responds to a type of vertex. At the same time, a feature of MLNs is that they do not only 
generalise common network models, but can also combine them into more complex 
ones, for example allowing the definition of longitudinal multiplex networks (Santana 
et al. 2017; Matter et al. 2023). Without multiple aspects, the representation capabilities 
of MLNs are limited.

Second, attributes on nodes, edges and layers are not always supported. It should be 
noted that attributes are not part of the most commonly cited definition of MLNs (Kivela 
et  al. 2014). This is not surprising, considering attributes can be handled outside the 
library if vertex, node, and edge identifiers are accessible and stable. At the same time, 
attributes are not only important to represent complex contemporary data (e.g. text in 
social media networks, or income in population-scale networks extracted from statisti-
cal registers). Once attributes are part of the model, it also becomes possible to define 
manipulation operators that transform attribute values (Brehmer and Munzner 2013), 
for example transforming a temporal attribute into layers representing time intervals.

It should also be noted that the ability to represent features of the MLN meta-model 
does not imply that these features are supported by the operators. For example, weights 
can be represented by all libraries, but are typically meaningful only if weighted versions 

Table 2  Supported MLN features in included software

Feature MLG.jl multinet MuxViz Pymnet Py3plex

Layers � � � � �

Interlayer edges � � � � �

Aspects �

Directed edges � � � � �

Weights � � � � �

Generic attributes � �
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of the analysis algorithms are also provided, e.g. weighted clustering and shortest path 
algorithms. Similarly, the fact that interlayer edges can be specified in a library is not 
particularly useful if there are no (or few) operators that can process them. Finally, direc-
tionality is in general supported for simple operators (such as finding out-neighbors, or 
computing out-degree), but only partially supported by more sophisticated algorithms, 
e.g. for community detection where only one of the considered algorithms supports this 
feature.

MLN implementations

We observe three main approaches to implement the MLN meta-model, as summarised 
in Table 1. One approach extends two common representations used for simple graphs: 
adjacency matrices and adjacency lists. Supra-adjacency matrices, used by MuxViz, 
extend the concept of an adjacency matrix for MLNs. In a supra-adjacency matrix, each 
row and column represents a node (an element of VM ), and each value in the matrix rep-
resents the weight of an edge between two nodes. We note that it is not trivial to add and 
remove nodes from a supra-adjacency matrix, so this implementation is better suited to 
support analysis than data manipulation. Supra-adjacency lists, used in Pymnet, extend 
the adjacency list format for MLNs. This is implemented as a dictionary, where each 
node of M is a key, and its value is a dictionary containing information about its adjacent 
edges in EM , while for multiplex networks a list of dictionaries  is used. It is designed 
with large networks in mind.

A second type of MLN implementation re-uses graph objects provided by popular 
network analysis libraries. This is the case for Py3plex, representing the various layers as 
NetworkX objects. Similarly, MLG.jl uses the native graph object of the Graphs.jl library 
to represent layers. Systems adopting this strategy have to then represent the mapping 
between nodes in different layers, and inter-layer edges.

As a third option, Multinet implements a custom data structure inspired by the multi-
dimensional model used in data warehouses (data cube). A multilayer vertex cube organ-
ises its vertices into a number of dimensions (or aspects, using the terminology of Kivela 
et al. (2014)), and each cell of the cube corresponds to a layer. Similarly, a multilayer edge 
cube connects two vertex cubes, and its edges can themselves be organised into multiple 
dimensions. However, currently this library only allows to use one dimension in its R 
and Python APIs.

MLN operators

The MLN operators provided by the selected libraries are summarized in Table 3, where 
we have organised them into categories and sub-categories. Defining a taxonomy of 
MLN operators has several potential benefits: from practical guides for developers to 
identify missing areas in specific software, to standardisation. In particular, having com-
mon operators allows code re-use and enables the definition of benchmarks.

For brevity and clarity, a single row in the table may indicate multiple variants of 
operators with a similar function, e.g. different operators computing different global 
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clustering coefficient metrics. We only list MLN variants of operators explicitly imple-
mented in the library and found in the library’s API documentation.

The focus of this paper is on MLNs, so Table  3 only lists operators taking a whole 
MLN as input, or producing MLNs as output. Some of the selected libraries also include 

Table 3  Summary of available operators in MLN software

We note ( � ) if a feature is available in the corresponding library. A (+) indicates availability of multiple variants of the same 
feature in the software, and (‡) signifies the availability of a feature by directly manipulating the library’s representation for 
MLNs

Operator MLG.jl Multinet MuxViz Pymnet Py3plex

Data I/O Read network from file � � � �

Write network to file � � �

Gen Layer-by-layer genera-
tors

� � � � �

Multilayer model gen-
erators

+ + � �

Def Add/remove layer � � �

Add/remove attribute � �

Manipulation Basic Add/remove node � � � �

Add/remove edge � � ‡ � �

Set/get attribute values � �

Layer Layer aggregation + � � �

Layer projection �

Layer selection/sub-
graph

� � �

Retrieval (Excl.) neighbours � � �

Path/distance � �

Components � �

Triangles/motifs + � �

Isomorphisms � �

Analysis Structural measures Node degree � � � � �

Node centrality � � + �

Layer similarity/entan-
glement

+  ✓ �

Network density � �

Network reducibility �

Network entropy � �

Network modularity � � �

Local clustering coef-
ficient

� +

Global clust. coeff./
transitivity

� � +

Learning Clustering/community 
detection

+ � +

Community evaluation 
metrics

+ �

Node classification �

Network embedding �

Dyn Get supratransition 
matrix

�

Get coverage evolution �

Vis Layer-by-layer layout � � � �

Circular/disc layout � � � �

Force-directed layout � � � �
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operators to independently analyse single layers, or provide functions to access the indi-
vidual layers (or combinations of layers) using general graph libraries such as igraph or 
NetworkX. These operators are not reviewed here.

Obtaining and storing MLN data The Input/Output (I/O) category includes functions 
to read and save an MLN from and to a file. It is interesting to see that not all libraries 
provide output functions, indicating that their typical usage does not involve the gen-
eration of new MLNs from existing ones: even if new networks are temporarily created, 
their creation is intended as a step of the analysis process, and not as a self-contained 
task generating new data.

We also note that for the libraries providing read or write functions, there is no unique 
file format. This is a limitation that also affected early graph processing systems, which 
was partly addressed through the definition of GraphML (Brandes et al. 2002). Gener-
ally, the libraries support the multilayer edgelist input format, which however offers lim-
ited support for node, edge, and layer metadata. It should be also noted that the libraries 
use slightly different variants of the edgelist. Namely, Py3plex and MuxViz expect text 
files with layer and node labels to complement the edgelist, while Multinet’s format can 
also include header and attribute data. Also, while GraphML is used by Pymnet and 
Multinet as possible formats for input and output respectively, GraphML only allows to 
save attributed graphs where the attributes are implicitly used to represent the layers.

MLN data can also be obtained using synthetic network generators (see category 
Network generation (Gen)), which is common practice for monoplex networks (i.e. sin-
gle-layer graphs) using a variety of models such as Erdős-Rényi’s random graphs, Bara-
bási-Albert’s preferential attachment, Watts-Strogatz’s small world etc. The availability 
of generators suffers from the additional complexity of MLNs, where one has to con-
trol both structural features of individual layers (e.g. the degree distribution on each 
layer) and across layers (e.g. the proportion of common edges or the correlation of node 
degrees) (Feyer et al. 2023; Magnani and Rossi 2013). While almost all libraries allow to 
generate a MLN by randomly generating layers one-by-one, there is limited support and 
no common way to generate a MLN with structurally dependent layers.

The Data definition (Def ) category includes operators to define data structures, such 
as creating aspects and layers. The capability to create the supported data structures is, 
of course, internally available, as it is used for example when an MLN is read from a file. 
Table 3 only shows which of these data definition capabilities are also exposed through 
the API, i.e. which ones can be interactively executed by the users of the library.

Comparing this category with the functionality available for other types of data, for 
example in the relational data meta-model, we note the absence of operators to define 
efficient data access structures (e.g. indexes) and to impose constraints. The lack of con-
trol over constraints is particularly notable. Each special type of MLN is characterised by 
some data objects that are not allowed; for example, a multiplex network does not allow 
interlayer edges, and a bipartite network represented as a two-layer MLN does not allow 
node overlapping. However, there is no direct way to enforce these or other constraints 
in the examined libraries, and one has to trust that the data satisfies them.

Data manipulation The next three sub-categories in Table  3 refer to basic capa-
bilities typically required by a data manipulation language. Basic Manipulation 
includes operators to update individual elements, e.g. to add a node or an edge to 
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a layer. Layer Manipulation includes operators transforming a layer based on its 
topology. Examples include layer aggregation, projection, and filtering (for example 
through selecting a subset of nodes from one or more layers). Retrieval lists opera-
tors where the objective is to find subgraphs over multiple layers. Examples include 
finding a node’s neighbourhood, whose result depends on the considered layers, 
paths between nodes which can cross multiple layers, etc.

It is interesting to see how the support for the operators that would provide the 
building blocks for a data manipulation language is sparse, in some cases even miss-
ing explicit API functions for basic operations such as adding a node. Notice that the 
table indicates operators provided by the API: the absence of an operator does not 
mean that the operation cannot be performed. For example, a node can be added to 
a network without an API function to add a node, either by adding it to the input file 
or by directly modifying the underlying data structure storing the MLN, e.g. by add-
ing columns and rows to the supra-adjacency matrix. However, this suggests that the 
library is not designed to perform these manipulations.

It is also worth noticing how layer manipulation is only defined based on the lay-
ers’ structure. There is currently no function to manipulate layers based on edge or 
node attributes, which points once again at a general limited support for attributes 
(McGee et al. 2019, 2021). Even when we only focus on structure, we notice how the 
layer projection operator, providing a basic and common way to process interlayer 
edges, is only offered by one of the examined libraries.

The Retrieval category also suffers from the additional complexity of MLNs if 
compared with simple networks. Even simple patterns, such as triangles, may cor-
respond to multiple different structures in MLNs where nodes and edges can appear 
in the same or different layers, leading to a larger number of possible patterns to 
look for and questions about what different versions of the same pattern mean when 
found in an MLN.

Data analysis From the previous discussion, it is clear how the selected libraries 
are more focused on analysis than data storage and manipulation, although such 
capabilities are also provided. In fact, a variety of operators to study the structure 
and dynamics of MLNs are available. Under the category Structural measures we list 
operators quantifying different properties of MLNs, such as the number of neigh-
bours of a vertex across a set of layers, or the proportion of common edges inside 
two or more layers. As for other categories, there is limited overlapping of operators, 
with MLN versions of functions that are very common for simple networks, such as 
modularity or clustering coefficients, only supported by some of the libraries.

We can also see some support for machine learning operators, in particular unsu-
pervised and supervised learning (clustering and classification) and representation 
learning (embedding). Clustering is the only learning task currently supported by 
multiple libraries, but only two provide more than one method from the many that 
exist (Magnani et al. 2021).

Capabilities for visual analysis are limited in all cases: while almost all libraries 
provide ways to visualise the MLN, there is no operator to interact with the vis-
ual representation, so that most visual analysis tasks are not currently supported 
(McGee et al. 2019, 2021).
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Scalability
From a data engineering perspective, benchmarks are fundamental tools to improve sys-
tem performance, for example to compare alternative solutions for the same problem 
and identify bottlenecks to optimize. However, we are not aware of existing systematic 
and comparative evaluations of MLN systems. In fact, Sect. Models and operators sug-
gests that it is currently challenging to perform a fair experimental comparison of the 
selected software. First, there is limited overlap of operators. Second, even when two 
libraries are marked as providing the same type of operator in Table 3, specific defini-
tions can vary between software. For example, while all libraries can generate MLNs, the 
way in which relations between different layers are enforced (e.g. controlling the amount 
of edge overlap, or the correlation of degree centrality) can be very different, if present at 
all (Brodka et al. 2018).

As a first step towards a benchmark for MLNs, we set up three basic manipulation 
tasks that we can test on most of the systems considered in this study: loading an MLN, 
interactively updating it, and aggregating layers. While these tasks are relevant for many 
MLN studies, execution times are seldomly reported, leaving an open question about the 
size of MLNs that we are currently able to handle using specialised software.

How long does it take to load an MLN from file, and how large are the networks that 
can be loaded? A direct comparison of loading times cannot be used alone to draw con-
clusions about the ability to process large networks, because different data structures are 
used inside different libraries, and a longer reading time may be caused by the creation 
of indexing functions that would later speed up other operators. However, this analysis 
may identify different time complexities (e.g. linear vs super-linear), very large differ-
ences in loading time (which can then be matched to execution times for other operators 
to assess whether loading time is correlated to other execution times), and upper bounds 
in the size of MLNs that can be currently processed using a personal computer.

How fast can a network be updated? While the literature on MLNs is mostly focused 
on analysis, the ability to efficiently update a network is useful in many contexts. For 
example, we update network data while generating it, we may update network data when 
simulating dynamic processes, and we update networks (or network views) while inter-
actively exploring them (e.g. filtering layers and nodes to zoom into a subset of the data).

How scalable is the aggregation of layers? Aggregating (also known as flattening or 
merging) layers, that is, creating a single layer by combining edges from multiple layers, 
is a fundamental manipulation function for MLNs where the initial set of layers does not 
correspond to the one needed for exploration or analysis.

In Sect.  Datasets we present the datasets used in the experiments. Section  Settings 
lists the experiment settings and assumptions. In Sect. Results we provide the results of 
the experiments.

Datasets

We evaluate the performance of the aforementioned operators for previously studied 
MLN datasets. Table 4 presents a summary of all datasets used. Specifically, we select 
five real networks representing: (a) employees at a computer science department at a 
university in Denmark (Rossi and Magnani 2015) (cs-aarhus), (b) the transportation 
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system in London (De  Domenico et  al. 2014) (london-transport), (c) European airline 
flight routes (Cardillo et  al. 2013) (euair-transport), (d) interactions between users on 
both the FriendFeed and Twitter platforms (Magnani et  al. 2013) (friendfeed-twitter) 
and, (e) interactions between FriendFeed-only users (Celli et  al. 2010) (friendfeed). 
These are selected in order to evaluate performance and scalability for a variety of net-
work sizes.

We also construct synthetic networks of various sizes to assess the operators in more 
detail. We generate random node-aligned, single aspect Erdős-Rényi MLNs. We convert 
the generated networks to all libraries’ native input file formats where necessary. To test 
for various parameters that might affect scalability (that is, the computation time of the 
operators for increasing network size), we construct sets of synthetic data with increas-
ing number of vertices and layers. To also assess performance with respect to the net-
work density increasing, we generate two sets of synthetic networks, where the average 
node degree increases with the number of nodes in the network. Specifically, we gener-
ate networks for the following settings, where 〈k〉 denotes the average node degree: 

(a)	 |V | ∈ [1000,10 M], |L| = 2 , �k� ≈ 4
(b)	 |V | ∈ [1000,100K], |L| = 2 , �k� ≈ 

√
|VM |

(c)	 |V | = 1000 , |L| ∈ [5,10000], �k� ≈ 4
(d)	 |V | = 1000 , |L| ∈ [5,10000], �k� ≈ 

√
|VM |

Settings

To assess the performance of tasks such as layer aggregation, a network needs to already 
be present into memory. Therefore, we have to first load a network in memory before 
evaluating the manipulation operator. Since the featured software supports various 
MLN input formats, we need to convert all datasets to the file format accepted by the 
software. In order to maintain consistency, we always assume that the network is undi-
rected and contains no other attributes or metadata. If the software does not include a 
network loading operator, as is the case for MLG.jl, we do not consider the rest of its 
operator runtimes in the comparison. We measure the execution time of each operator 
individually to ensure that the performance is not affected by any additional calculations 
or caching by the library.

Table 4  Summary of MLN data used

Data #Layers #Vertices #Edges Ref.

Synthetic 2-10000 1000-10M ≈ 32000-316M -

cs-aarhus 5 61 620 (Rossi and Magnani 2015)

London-transport 3 369 503 (De Domenico et al. 2014)

Euair-transport 37 450 3588 (Cardillo et al. 2013)

Friendfeed-twitter 2 155804 13.65M (Magnani et al. 2013)

Friendfeed 3 510896 20.33M (Celli et al. 2010)
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Finally, we conduct the experiments on a desktop-like environment, which we con-
sider to be the most typical processing environment for MLNs. Specifically, we use a 
virtual machine running Ubuntu 22.04, with 8 cores @2.1 GHz and 32GB RAM. We 
halt the execution with a timeout of 30 min. If a network cannot be loaded within the 
time allotted to each experiment, the following task is also considered to have timed out. 
These cases indicate that the scalability of the software is an issue, and more computa-
tional resources would be needed.

All experiments are repeated four times, and we provide average execution times and 
standard deviations.

Results

In this section we report the execution times for our three experiments. Note that where 
runtime information is not provided for a library, the task has not terminated success-
fully. This signifies that either the timeout per task (30 min) had been reached, or that 
the process was killed due to a memory overflow.

Network loading from file
As we can observe from Table 5, both large social network datasets friendfeed-twitter 

and friendfeed become increasingly difficult for the libraries to process within a rea-
sonable time; Multinet is not able to process the friendfeed network before the time-
out, probably due to the additional indexing needed for its data structure. We also note 

Fig. 2  Network loading time for synthetic data: a increasing number of vertices, |L| = 2 , �k� ≈ 4 (top left), b 
increasing number of vertices, |L| = 2 , �k� ≈ 

√
|VM| (bottom left), c increasing number of layers, |V | = 1000 , 

�k� ≈ 4 (top right), and d increasing number of layers, |V | = 1000 , �k� ≈ 
√
|VM| (bottom right). The error bars 

in black indicate standard deviation over four runs
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the stark performance differences between smaller and larger networks in Table  5; 
this is directly related to the size of the network. This trend is confirmed when loading 
large synthetic data. In Fig. 2, we can see most software time out for networks where 
|V | > 2 M; the exception is MuxViz, which is able to process a two-layer network with a 
size up to |V | = 5 M, but faces memory issues for the largest synthetic dataset.

While adjacency matrix representations perform better for this task, they do not scale 
well in memory as the network size increases in nodes. However, none of the other 
parameters examined (i.e. increasing network density, number of layers) directly affects 
scalability; the only notable exception is the performance of Py3plex for a large number 
of layers, as we can observe both in Fig. 2 and Table 5 for the euair-transport network. 
This can be related to the design choice of representing individual layers as separate 
networks.

Network interactive update

Table 5  Network loading operator performance

Rounded values in seconds. We report the average performance and standard deviation (in parentheses) over four runs. A dash 
indicates that the task did not complete within the timeout

Dataset Multinet MuxViz Pymnet Py3plex

cs-aarhus 0.0 (0.0) 1.1 (0.3) 0.0 (0.0) 0.0 (0.0)

London-transport 0.0 (0.0) 0.7 (0.1) 0.0 (0.0) 0.0 (0.0)

Euair-transport 0.0 (0.0) 0.7 (0.1) 0.0 (0.0) 2.2 (0.1)

Friendfeed-twitter 418.7 (5.1) 30.7 (1.0) 390.1 (21.6) 106.8 (4.0)

Friendfeed – 52.1 (1.3) 1044.2 (48.5) 175.6 (2.3)

Fig. 3  Total time elapsed in seconds after interactively adding and removing edges from a randomly 
generated multilayer network with |V | = 1000, |EM| = 10000, |L| = 10 . The error bars in black indicate 
standard deviation over four runs
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In Fig. 3 we note performance differences between the software when interactively 
updating the network, sometimes in orders of magnitude. This difference is particu-
larly apparent in software for different programming languages: we note the sharp 
differences in performance between Python (Pymnet, Py3plex) and R (Multinet, Mux-
Viz) software. However, we note that all software follows a similar exponential curve 
when adding and removing edges to the network. This suggests that the observed per-
formance differences can be attributed to software design choices other than the data 
structure.

Layer aggregation

Fig. 4  Layer aggregation time in seconds for synthetic data: a increasing number of vertices, |L| = 2 , �k� ≈ 
4 (top left), b increasing number of vertices, |L| = 2 , �k� ≈ 

√
|VM| (bottom left), c increasing number of layers, 

|V | = 1000 , �k� ≈ 4 (top right), and d increasing number of layers, |V | = 1000 , �k� ≈ 
√
|VM| (bottom right). The 

error bars in black indicate standard deviation over four runs

Table 6  Layer aggregation operator performance

Rounded values in seconds. We report the average performance and standard deviation (in parentheses) over four runs. A dash 
indicates that the task did not complete within the timeout

Dataset multinet MuxViz Pymnet Py3plex

cs-aarhus 0.0 (0.0) 0.2 (0.2) 0.0 (0.0) 0.0 (0.0)

London-transport 0.0 (0.0) 0.1 (0.0) 0.0 (0.0) 0.0 (0.0)

Euair-transport 0.0 (0.0) 0.1 (0.0) 0.0 (0.0) 0.2 (0.0)

Friendfeed-twitter – 31.5 (1.6) 309.8 (15.4) 96.0 (1.2)

Friendfeed – 47.6 (0.8) 559.2 (14.4) 168.4 (1.1)
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Similarly to the network loading operator, in Fig. 4 we can observe that the num-
ber of edges increasing heavily affects the performance of the different implementa-
tions for the layer aggregation task. This trend is also particularly visible in Table 6, as 
Multinet is not able to load and aggregate the large social networks within the time-
out, despite being able to process synthetic networks with a greater amount of nodes. 
We can also observe that adjacency matrix-based MLN representations (MuxViz) 
appear to perform better, sometimes faster by an order of magnitude, except when 
aggregating a large number of layers. Finally, for networks of smaller sizes, we note 
that the difference in execution times between the tested libraries is minimal.

Discussion
Based on the previous two sections, we can now summarize the status of MLN engineer-
ing as seen through current MLN software. We do this by first providing an overview 
of the area, organised along four main points, in Sect. MLN engineering: an overview. 
Building on this overview and on the limitations we identify in the area, in Sect. Future 
explorations we discuss possible future directions.

MLN engineering: an overview

Interoperability As previously discussed, not all features of the MLN model are univer-
sally supported within the software covered. The algorithmic support for features such 
as interlayer edges and multiple aspects varies, and the same applies to vertex, node and 
edge attributes. This effectively limits the development and implementation of meta-
data-enriched methods, e.g. for layer manipulation or community detection. In conjunc-
tion with a low coverage for layer manipulation operators, all of the previous restrict our 
ability to visually explore alternative MLNs interactively (McGee et al. 2021).

We also note the lack of a common file input/output format for MLNs. While there is 
general support for the multilayer edgelist as input, the format offers limited support for 
node metadata.

There is also a limited overlap of operators between the selected software. Looking 
at our taxonomy in Sect. Models and operators, we observe that most of the software 
implement a few common operators (e.g. reading, generating, aggregating and visualiz-
ing networks) along with structural measures like node degree and centrality. However, 
each library typically specializes in different types of operators. For example, MuxViz 
contains operators for dynamics and various network metrics, Pymnet implements 
operators for isomorphisms and multiple MLN variants for clustering coefficients, while 
Multinet provides more options for layer comparison and clustering.

Overall, there is little interoperability between MLN software programs, which can 
cause practical problems for researchers using MLNs, as they need to become famil-
iar with the specific software representation to reach their expected research objective 
(Kinsley et al. 2020; Finn 2021). This can be compared both with relational database sys-
tems, where anyone familiar with the relational model can easily switch from one system 
to the other when it comes to using their core functionality, and also with graph analysis 
systems, where switching, for example, from NetworkX to igraph, only involves some 
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syntactic differences when we focus on core graph operators (generators, basic centrality 
measures, etc.).

Data definition and manipulation Our taxonomy is also useful when looking at what 
operators are missing. There is no consensus on what should be considered a basic (or 
necessary) operator to manipulate MLNs, and there is a lack of such operators. As a con-
sequence, it is not possible to express complex portable queries, e.g. generating different 
views and aggregations from the same initial dataset and sharing the definition of the 
manipulation process instead of the resulting data.

At the same time, there is no support for constraints to control the validity of the data, 
nor indices, to control the balance between time and space efficiency. This also makes it 
difficult to formulate complex queries.

Large networks As we can observe from the scalability tests in the experimental study, 
there are general issues handling very large networks. Not surprisingly, network size and 
density affect the performance of the tested operators. With the number of vertices in 
the network increasing, even with low average degrees no software is able to load the 
network within the timeout. Often, the processes are killed due to not enough memory 
being available. Considering modern data sources can be very large in size (e.g. popula-
tion networks (Kazmina et al. 2023; Bokányi et al. 2023), containing tens of millions of 
nodes), this further points towards the need for a discussion about the performance of 
different data structures for MLNs.

In addition, the experiments suggest that none of the featured implementations can 
consistently outperform the rest, as all have their own advantages and disadvantages. An 
adjacency matrix representation, for example, performs better for operators like layer 
aggregation, and edges can be quickly added and removed, while adding and removing 
nodes or layers might require recreating the object, as the matrix structure becomes dif-
ferent. Adjacency list-based data structures are able to handle large networks, but they 
appear to be less efficient for layer aggregation. On the other hand, using native graph 
objects from other libraries to represent layers can often be efficient, but it does not nec-
essarily scale well as the number of layers increases, nor does it efficiently support layer 
transformation capabilities. The choice of data structure affects which operators can be 
more or less easily implemented in the first place, and their efficiency.

Benchmarks A major consequence of the previous issues is a difficulty designing sys-
tematic experimental comparisons, including the one presented in this work. First, the 
lack of a common standard makes it hard to decide what should be deemed a necessary 
operator when designing an MLN system. Second, it is equally difficult to establish a fair 
baseline for comparison of the various operators, also considering the variety in data 
structure choices. As a result, this slows down the process of identifying operators in 
need of optimization.

If we look at research areas focused on the development of data management and 
analysis pipelines, the above considerations have been critical. Looking at the relational 
database meta-model, we have a clear understanding of what operators can be applied to 
the data, and also practical knowledge of how different operators behave based on their 
implementations (e.g. data structures) and data distributions, through well-established 
benchmarks.
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Future explorations

The overview of MLN engineering presented in the previous section suggests that the 
field is ready for the development of effective data manipulation and analysis systems. 
Several MLN systems exist, and when considered together they do provide a lot of the 
required functionality. However, looking at typical criteria used when selecting software 
components, like interoperability (Carvallo  Vega et  al. 2007), the field clearly requires 
additional efforts. Similarly, there are little considerations for other important charac-
teristics, such as the security and functionality compliance of the software. These could 
be critical, for example, when analyzing MLNs from registry or personal data. Consider-
ing the usefulness and increasing popularity of MLNs in analyzing complex data, future 
steps in the field should aim to address these challenges.

Our overview highlights a critical area of exploration: addressing data management 
needs for MLN software. Considering the challenges when processing large MLNs, a 
potential solution includes designing a database management system-based model to 
store and manipulate MLN data. Such a model should then be integrated into MLN 
analysis software for testing. Implementing data management models inspired by well-
established ones, such as those used in relational and graph databases, into MLN sys-
tems, can also help alleviate potential security and functionality compliance concerns.

Also relevant is the definition of a set of essential operators (i.e. a query language), 
complemented with a clear definition of operator behaviour. Such a set of operators 
would allow for improved interoperability between software, easier formulation of com-
plex queries and definition of constraints for MLNs. Given a set of basic operators, we 
can then consider a common basis for experimental comparisons of software, data struc-
tures and novel operator extensions. A set of operators alone does not make the task of 
comparing software trivial, as it is not easy to define a single comparative indicator with-
out considering other design choices in the software. However, this process will simplify 
the identification of operators and queries that can be optimized. In summary, such a 
language would address several of the limitations we highlighted in the previous section.

MLN engineering as a field will still benefit from new theoretical developments. Exam-
ples of areas where we foresee new developments include computationally expensive 
analytical tasks like community detection and classification, where modern approaches 
used in machine learning (such as graph neural networks and embeddings) have started 
appearing in the MLN literature, but are still not as developed and especially accessi-
ble as in other areas. A related challenge is also defining methods for MLNs consider-
ing attributes, for example aggregating or slicing layers based on the values of a node 
attribute. At the same time, this study suggests how theoretical developments have so far 
lacked corresponding efforts to engineer them into usable systems.

Conclusion
With the popularity of MLNs for storage, manipulation and analysis of complex systems, 
it is imperative to question whether the MLN engineering landscape is mature enough 
to handle challenges posed by modern data sources. In this paper, we delve into these 
questions by looking at currently available MLN analysis software. We provide a tax-
onomy of MLN manipulation and analysis operators featured in the software included 
in this study, and experimentally study common operators. Based on these analyses, we 
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then discuss the current status and limitations of MLN engineering as a distinct research 
area.

We find that the current MLN engineering ecosystem consists of multiple software 
implementations with limited interoperability between them. For example, there is a 
relatively small number of common operators within the featured software, along with 
a variety of underlying implementations, and a limited support for vertex, node and 
edge metadata. This lack of a common baseline creates practical problems not only for 
researchers using MLNs, but also when designing benchmark studies. We also note the 
issues software currently faces when processing large MLNs.

Considering the popularity of MLNs, future work in the MLN engineering field should 
aim to address these limitations, in order to improve usability of MLN systems. A major 
future direction includes the design of systems capable of efficiently processing large 
MLN data. This can potentially be achieved via integrating relational- or graph-database 
management systems into MLN analysis software, in order to be able to process large 
networks. As our experimental study focuses primarily on the manipulation operators, 
it can potentially be extended to compare the scalability of relational and graph data-
base management-based models for MLNs. Other major future directions include the 
definition of a query language for MLNs, the design of larger-scale benchmarks includ-
ing more datasets and operators, also on settings with more computational resources. In 
turn, this can help highlighting potential areas for optimization. Finally, another promis-
ing direction is the theoretical definition and testing of novel methods for computation-
ally expensive MLN tasks, such as community detection or layer manipulation.
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