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Abstract

In this paper we report exploratory analyses of high-density oligonucleotide array data from the Affymetrix

GeneChip R© system with the objective of improving upon currently used measures of gene expression.

Our analyses make use of three data sets: a small experimental study consisting of 5 MGU74A mouse

GeneChip R© arrays, part of the data from an extensive spike-in study conducted by Gene Logic and Wyeth’s
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Genetics Institute involving 95 HG-U95A human GeneChip R© arrays; and part of a dilution study con-

ducted by Gene Logic involving 75 HG-U95A GeneChip R© arrays. We display some familiar features of

the perfect match and mismatch probe (PM and MM) values of these data, and examine the variance-mean

relationship with probe-level data from probes believed to be defective, and so delivering noise only. We

explain why we need to normalize the arrays to one another using probe level intensities. We then examine

the behavior of the PM and MM using spike-in data and assess three commonly used summary measures:

Affymetrix’s i) average difference (AvDiff) and ii) MAS 5.0 signal, and iii) the Li and Wong multiplicative

model-based expression index (MBEI). The exploratory data analyses of the probe level data motivate a

new summary measure that is a robust multi-array average (RMA) of background adjusted, normalized,

and log transformed PM values. We evaluate the four expression summary measures using the dilution

study data, assessing their behavior in terms of bias, variance and (for MBEI and RMA) model fit. Finally,

we evaluate the algorithms in terms of their ability to detect known levels of differential expression using

the spike-in data. We conclude that there is no obvious downside to using RMA and attaching a standard

error (SE) to this quantity using a linear model which removes probe-specific affinities.

An R package with the functions used for the analyses in this paper is part of the Bioconductor project

and can be downloaded from (http://www.bioconductor.org). Supplemental material, such as

color versions of the figures, is available on the web (http://www.biostat.jhsph.edu/∼ririzarr/affy).

1 Introduction

High density oligonucleotide expression array technology is now widely used in many areas of biomedical

research. The system (Lockhart et al. (1996)) uses oligonucleotides with length of 25 base pairs that are used

to probe genes. Typically each gene will be represented by 16-20 pairs of oligonucleotides referred to as

probe sets. The first component of these pairs is referred to as a perfect match (PM) probe. Each PM probe

is paired with a mismatch (MM) probe that is created by changing the middle (13th) base with the intention

of measuring non-specific binding. The PM and MM are referred to as a probe pair. See the Affymetrix

Microarray Suite User Guide (1999) for details. RNA samples are prepared, labeled and hybridized with
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arrays. Arrays are scanned and images are produced and analyzed to obtain an intensity value for each probe.

These intensities represent how much hybridization occurred for each oligonucleotide probe. Of interest is

finding a way to combine the 16-20 probe pair intensities for a given gene to define a measure of expression

that represent the amount of the corresponding mRNA species.

We denote the intensities obtained for each probe as

PMi jn and MMi jn, i = 1, . . . , I, j = 1, . . . ,Jn, and n = 1, . . . ,N

with n representing the different genes, i representing different RNA samples, and j representing the probe

pair number (this number is related to the physical position of the oligonucleotide in the gene). The number

of genes N usually ranges from 8,000 to 20,000, the number of arrays I ranges from 1 to hundreds, and the

number of probe pairs within each gene Jn usually ranges from 16 to 20. Throughout the text indexes are

suppressed when there is no ambiguity.

Section 2 describes the three data sets used in this paper. Section 3 explores various interesting features

of the data with the objective of defining an effective measure of gene expression using the probe level

data. Section 4 describes normalization. Some expression measures, for example AvDiff and Li and Wong’s

MBEI, are based on PM−MM. Other measures, for example Affymetrix’s Average Log Ratio, are based

on log(PM/MM). In Sections 3 and 4 we also explore the behavior of these quantities. Section 5 describes

four measures of expression. Section 6 assesses the four expression measures in terms of bias, variance, and

model fit. Section 7 examines the ability of the four methods at detecting differentially expressed probe sets.

Section 8 presents our conclusions.

2 Description of Data

To properly compare summary measures of expression in terms of bias, variance, sensitivity, and specificity,

data for which we know the “truth” is required. In this paper we examine three data sets for which assess-

ments can be performed where specific results are expected. Data set A provides probes for which we can

assume the measurements are entirely due to non-specific binding. This permits us to study the variance-
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mean relationship for intensity measures. Data set B provides the results of a spike-in experiment where

gene fragments have been added at known concentrations. These data can be used to assess bias, sensitivity

and specificity. Data set C provides the results from a study in which samples were hybridized at different

dilutions. This permits us to assess bias and variance in a more “realistic” scenario than with data set B.

Data sets B and C are available from the web at http://qolotus02.genelogic.com/datasets.nsf/.

In this section we describe them in detail for readers interested in using them. We also explain which specific

subsets of the data were used for the analyses presented in this paper.

2.1 Mouse Data Set - A

Data set A comes from an experiment where five MG-U74A mouse GeneChip R© arrays were used. These

were hybridized with samples of lung tissue mRNA obtained from five mice exposed to different experimental

conditions. About 1/5 of the probe pairs in the MG-U74A array were incorrectly sequenced. We therefore

assume that the measurements read for most of these probes are entirely due to non-specific binding.

2.2 Spike-In Data Sets - B

Data set B consists of experiments where 11 different cRNA fragments were added to the hybridization

mixture of the GeneChip R© arrays at different picomolar (pM) concentrations. The 11 control cRNAs were

BioB-5, BioB-M, BioB-3, BioC-5, BioC-3, BioDn-5 (all E. coli), CreX-5, CreX-3 (phage P1), and DapX-5,

DapX-M, DapX-3 (B. subtilis) (Hill et al., 2000; Hill et al., 2001; Baugh et al., 2001). The cRNA were

chosen to match the target sequence for each of the Affymetrix control probe sets. For example, for DapX

(a B. subtilis gene), the 5’, middle and 3’ target sequences (identified by DapX-5, DapX-M, DapX-3) were

each synthesized separately and spiked-in at a specific concentration. Thus, for example, on one of the arrays

DapX-3 target sequence was added to the total hybridization solution of 200 µl to give a final concentration

of 0.5 pM.

There are 2 series of spike-in experiments. The experiments were originally carried out for the develop-

ment of normalization procedures (Hill et al., 2001). In this paper we use the data in a different way, mainly
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for the comparison of expression measures.

2.2.1 The varying concentration series data set - B1

For an individual array, all of the 11 control cRNAs were spiked-in at the same concentration and this con-

centration was varied across arrays, taking the values 0.0, 0.5, 0.75, 1, 1.5, 2, 3, 5, 12.5, 25, 50, and 150 pM.

For example, array 1 had all control cRNAs spiked with 0.0 pM and array 2 had all control cRNAs spiked

with 0.5 pM, etc.. Of these 12 concentrations, 0, 0.5, 0.75, 1, 1.5, 2, 3 were represented on just 1 array, 5

and 100 on 2 arrays, and the rest were in triplicate, i.e. on 3 arrays for a total of 27 arrays. All arrays have

a common background cRNA from an acute myeloid leukemia (AML) tumor cell line. In this paper we use

only 12 arrays, one replicate for each of the 12 concentrations. One of the probe set spike-in combinations

(CreX-3) failed to respond adequately, and data from that probe set is entirely omitted from the analysis.

Thus we analyze data from 10 spiked-in probe-sets.

2.2.2 Latin square series data set - B2

In this series each of the 11 control cRNAs were spiked-in at a different concentration on each array (apart

from replicates). The 12 concentrations used were 0.5, 1, 1.5, 2, 3, 5, 12.5, 25, 37.5, 50, 75, and 100 pM, and

these were arranged in a 12x12 cyclic Latin square, with each concentration appearing once in each row and

column. The 12 combinations of concentrations used on the arrays were taken from the first 11 entries of the

12 rows of this Latin square. Of the 12 combinations used, 11 were done on 3 arrays and 1 on just one array.

All of these arrays had the same AML background as in data set B1.

The analysis in this paper makes use of data from six arrays that are a pair of triplicates. The spike-in

concentrations for each of the 11 control RNAs on the two sets of triplicates is shown in Table 1. Notice

that relative concentrations of the spike-ins are 3-fold or more, which permits us to check the sensitivity of

expression indexes.
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2.3 Dilution Data Set - C

Two sources of cRNA. A (human liver tissue) and B (Central Nervous System cell line) were hybridized to

human array (HG-U95A) in a range of proportions and dilutions. In this publication, we study data from

arrays hybridized to source A starting with 1.25 µg cRNA, and rising through 2.5, 5.0, 7.5, 10.0 to 20.0 µg.

There were five replicate arrays for each tissue; that is each generated cRNA was hybridized on 5 HG-U95

GeneChip R© arrays. Five scanners were used in this study. Each array replicate was processed in a different

scanner.

3 Features of probe level data

Figure 1a shows histograms of log ratio, log2(PM/MM), stratified by quantiles of abundance, log2

√
PM×MM,

with gray scale representing height of histogram (light is high and dark is low) for one array from data set A.

The histograms have been scaled so that the mode of each histogram is represented with the same gray scale.

This figure shows that, in general, MM grows with PM. Furthermore, for larger values of abundance the

differences have a bimodal distribution with the second mode occurring for negative differences. The same

bimodal effect is seen when we stratify by log2(PM), thus it is not an artifact of conditioning on sums. In

Figures 1b–1e, four histograms with a broader stratification clearly show this effect. The figure also displays

(in darker grays) the histograms of the defective probes where the bimodal distribution is also seen. Notice,

there are many probe pairs with MM >> PM. Finally, notice that for about 1/3 of the probes MM > PM. The

number of probe pairs within probe sets for which MM > PM varies from 0 to 14. The distribution across

probe sets is the following:

# of times MM > PM 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

# of probe seta 7401 481 628 819 1123 1461 1759 1906 1555 1200 760 345 152 50 14

All these effects have been seen in many arrays.

The defective probes are used to assess the variance-mean relationship. Intensities obtained from probe j
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in arrays i = 1, . . . , I, PMi jn, are expected to have the same mean and variance. If standard deviations (SDs)

√

{(I−1)−1 ∑(PMi jn− ¯PM· jn)2} and averages ¯PM· jn = I−1 ∑i PMi jn are computed for a random sample of

2000 defective probe sets, the SD increases from roughly 50 to 5000, a factor of 100 fold, as the average

increases on its entire range. After a log transformation of the PM intensities there is only a 1.5 fold increase.

4 Normalization

In many of the applications of high density oligonucleotide arrays, the goal is to learn how RNA populations

differ in expression in response to genetic and environmental differences. For example, large expression of

a particular gene or genes may cause an illness resulting in variation between diseased and normal tissue.

These sources of variation are referred to as interesting variation. Observed expression levels also include

variation introduced during the sample preparation, manufacture of the arrays, and the processing of the

arrays (labeling, hybridization, and scanning). These are referred to as sources of “obscuring variation”. See

Hartemink et al. (2001) for a more detailed discussion. The obscuring sources of variation can have many

different effects on data. Unless arrays are appropriatly normalized, comparing data from different arrays can

lead to misleading results.

Dudoit et al. (2001) describe the need for normalization procedures for cDNA microarray data. Similar

issues are present with GeneChip R© arrays. Figures 2a and 2b show box plots of log2(PM) and PM−MM for

data set C. The different gray scales represent the six different sets of five replicates processed on scanners 1

to 5. The scanner effect is clearly seen in Figure 2. For example, note that the log2(PM) box-plot intensities

obtained using scanner/fluidic station 1 were in general higher than those obtained from scanner/fluidic station

5. For the replicate arrays we expect no genes to be differentially expressed. This figure shows direct array to

array comparison of PM values warrants normalization. Figure 2b boxplot shows that further normalization

is needed for the PM−MM as well.

Figures 3a and 3b show log ratios, M = log2(y/x) versus abundance A = log2
√

x× y, (MVA) plots for

x = PM1,y = PM2 and x = PM1−MM1,y = PM2−MM2 for two arrays (denoted with 1 and 2) in which the
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BioDn-3 gene has been spiked at 5 pM and 2 pM respectively. These plots have been used by, for example,

Dudoit et al. (2001) to explore intensity related biases. Because the same RNA background was hybridized

to arrays 1 and 2, we do not expect any of the non-spiked-in genes to be differentially expressed and therefore

these plots to scatter around 0. It is clear from Figure 3 that these data need normalization.

For cDNA arrays the normalization procedure presented in Dudoit et al. (2001) has worked well in

practice. For each array, a loess curve is fitted to the MVA plot of intensities of the red and green labels

and the residuals are considered the normalized log ratios. However, this approach is not appropriate for

GeneChip R© arrays because only one sample is hybridized to each array instead of two (red and green). A

procedure that normalizes each array against all others is needed.

Various methods have been proposed for normalizing GeneChip R© arrays. Bolstad et al. (2002) present a

review of these methods and find quantile normalization to perform best. The goal of quantile normalization

is to make the distribution of probe intensities the same for arrays i = 1, . . . , I. The normalization maps

probe level data from all arrays, i = 1, . . . , I, so that an I-dimensional quantile-quantile plot follows the I-

dimensional identity line. A possible problem with this approach is that we risk removing some of the signal

in the tails. However, empirical evidence suggest this is not a problem in practice; see Bolstad et al. (2002)

for details.

In Figure 3c and 3d the MVA plots of the normalized arrays are shown. Notice how the normalization has

removed the bias seen in Figures 3a and 3b. The large points represent the 20 spiked-in probes and the small

black dots represent a random sample of non-spiked-in probes. Notice that in all plots, normalization helps

identify the spiked-in probes as differentially expressed. The benefits of this normalization at the probe level

are also seen in Figures 2c and 2d.

5 Measures of expression

Various measures of expression have been proposed, for example see Li and Wong (2001a) , Naef et al.

(2001), and Holder et al. (2001). The most commonly used (at the time this paper was written) is AvDiff, the
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Affymetrix default. For each probe set n on each array i, AvDiff is defined by

AvDiff =
1

#A ∑
j∈A

(PM j−MM j)

with A the subset of probes for which d j = PM j−MM j are within 3 SDs away from the average of d(2), ..,d(J−1)

with d( j) the j-th smallest difference. #A represents the cardinality of A. Many of the other expression mea-

sures are versions of AvDiff with different ways of removing outliers and different ways of dealing with small

values.

We have observed that linear scale measures, such as AvDiff, are not optimal. Li and Wong (2001a)

observed this and proposed an alternative model based expression index. For each probe set n, Li and Wong’s

measure is defined as the maximum likelihood estimates of the θi, i = 1, . . . , I obtained from fitting

PMi j−MMi j = θiφ j + εi j (1)

with φ j representing probe-specific affinities and the εi jns are assumed to be independent normally distributed

errors. The estimation procedure includes rules for outlier removal.

Affymetrix also appears to have noticed that the linear scale is not appropriate and, in the new version

of their analysis algorithm MAS 5.0, are now using a log scale measure. Specifically the MAS 5.0 signal

(measure) is defined as

signal = Tukey Biweight{log(PM j−CTj)}

with CTj a quantity derived from the MMs that is never bigger than its PM pair. See Hubbell (2001) for more

details.

Each of these measures rely upon the difference PM −MM with the intention of correcting for non-

specific binding. However, the exploratory analysis presented in Section 3 suggests that the MM may be

detecting signal as well as non-specific binding. Some researchers (Naef et al. (2001) ) propose expression

measures based only on the PM. In Figure 4 we show the PM, MM, PM/MM and PM−MM values for

each of the 20 probes representing BioB-5 in the 12 spiked-in arrays, from data set B1, plotted against

spike-in concentration. The 20 different probe pairs are represented with different symbols and line types. As
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expected the PM values are growing in proportion to the concentration. Notice also that the lines representing

the 20 probes are close to being parallel, showing there is a strong additive (in the log scale) probe-specific

effect. As evident in Figure 4c, the additive probe-specific effect is also detected by the MM motivating their

subtraction from the PM. However, in Figure 4d the parallel lines are still seen in PM−MM, demonstrating

that subtracting is not enough to remove the probe effect. The fact that parallel lines are not as obvious in

Figure 4c shows that dividing by MM removes, to some degree, the probe effect. However, the MM also grow

with concentrations, because they detect signal as well as non-specific binding, hence the signal in PM/MM

is attenuated. Notice in particular that PM/MM is unable to distinguish between concentrations of 25 and

150. Since subtracting probe-specific MM adds noise with no obvious gain in bias and because PM/MM

results in a biased signal, in this paper we propose an alternative measure to those based on PM−MM or

PM/MM.

Figure 4a shows that on a log scale: i) the PMs grow roughly linearly with respect to concentrations ii) the

variances are roughly constant; and iii) the probe-specific affinity is approximately additive. This suggests

an additive linear model for the probe set data and the average J−1 ∑J
j=1 log(PMi j) as a log scale measure of

expression. However, this measure does not account for non-specific binding. Because, in Figure 4, the log-

scale slope of the PM is less than 1, particularly for small concentrations, the PM values should be adjusted to

account for non-specific binding. To see this consider a hypothetical case with two arrays where the signal of

a probe set is twice as big in one of the arrays, but an additive signal of 100 units occurs due to non-specific

binding and/or background noise in both arrays. In this case the observed difference in the signals would

be about log2(100 + 2s)− log2(100 + s) instead of log2(2s)− log2(s). For small values of s the incorrect

difference would be close to 0 instead of 1.

Figure 5 shows histograms of log2(MM) for an array in which no probe-set was spiked along with the 3

arrays in which BioB-5 was spiked-in at concentrations of 0.5, 0.75, and 1 pM (from data set B1). All arrays

in all data sets had similar shaped log2(MM) histograms. Furthermore, the log2(MM) histograms for the

spiked-in probe set had similar histograms as well. The MMs to the left of the mode of the histogram can be

approximated with the left-hand tail of a log-normal distribution. This suggests that the MMs are a mixture
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of probes for which i) the intensities are largely due to non-specific binding and background noise and ii) the

intensities include transcript signal just like the PMs. The mode of the histogram is a natural estimate of the

mean background level. The observed PM values for the 20 probes associated with BioB-5 are marked with

crosses and the average with an arrow. All the average PM values are close to 100. Thus, judging solely on

the average, a difference would be hard to detect. However, distance of the average PM from the average

background noise does in fact increase with concentration.

Figure 5 motivate a background plus signal model of the form PMi jn = bgi jn + si jn. Here bgi jn represents

background signal in array i caused by optical noise and non-specific binding. We assume each array has a

common mean background level, E(si jn) = βi. We want to adjust the PM intensities to remove the background

effect. A naive approach is to consider PMi jn− β̂i, with log2(β̂i) the mode of the log2(MM) distribution. An

estimate of this distribution can be obtained using a density kernel estimate. In practice, a problem with

this measure is that for a small percentage of probes PMi jn ≤ β̂i and log transforming PMi jn − β̂i becomes

a problem. An alternative background correction is to consider B(PMi jn) ≡ E(si jn|PMi jn). If we impose a

strictly positive distribution on si jn, then B(PMi jn) > 0. To obtain a computationally feasible B(·) we consider

the closed formed transformation obtained when assuming si jn is exponential and bgi jn is normal. Although

the data suggest that this model can be improved, the results obtained using B(·) work well in practice, as is

demonstrated in the next section.

To obtain an expression measure we assume that for each probe set n, the background adjusted, normal-

ized, and log transformed PM intensities, denoted with Y , follow a linear additive model

Yi jn = µin +α jn + εi jn, i = 1, . . . , I, j = 1, . . . ,J,n = 1, . . . ,n (2)

with α j a probe affinity effect, µi representing the log scale expression level for array i, and εi j representing

an independent identically distributed error term with mean 0. For identifiability of the parameters we assume

that ∑ j α j = 0 for all probe sets. This assumption is saying that Affymetrix technology has chosen probes

with intensities that on average are representative of the associated genes expression. The estimate of µi gives

the expression measures for probe set n on array i.
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To summarize, in this paper we consider a new expression measure that i) background corrects the arrays

using the transformation B(·), ii) normalizes the arrays using quantile normalization, and iii) for each probe

set n, fits a linear model (2) to the background corrected, normalized and log (base 2) transformed probe

intensities denoted here with Yi j, i = 1, . . . , I, j = 1, . . . ,J. To protect against outlier probes we use a robust

procedure, such as median polish (Holder et al., 2001), to estimate model parameters. We use the estimate of

µi as the log scale measure of expression which we refer to as robust multi-array average (RMA).

6 Bias, variance, and goodness of fit comparisons

Plots of log observed expression versus known concentration (not shown) demonstrate that the expression

measures perform similarly in detecting the spiked-in probe sets. However, for the highest concentration,

AvDiff and MBEI sometimes underestimate the predicted value from the known concentrations. This results

from the attenuation caused by subtracting MM. We also notice that RMA is less noisy than all other measures

at lower concentrations.

It is possible that the control genes used in data set B1 provide a stronger than usual signal. Therefore, a

comparison based on all probe sets of the HG-U95A arrays is conducted using data set C. For these data the

amount of hybridization of probe sets representing expressed genes is expected to double when the amount

of RNA hybridized to the array is double. Furthermore, the difference in gene expression across replicate

arrays should be small.

For each of the four measures, we denote the expression values with Eik, i = 1, . . . ,6,k = 1, . . . ,5 with i

representing the dilution concentration level and k the replicate (which also identifies scanner). The averages

are denoted with Ei· = (1/5)∑5
k=1 Eik and the SDs with SDi =

√

(1/4)∑5
k=1(Eik−Ei·)2. Figure 6a shows

boxplots of the Ei· for each dilution concentration i. Notice that all measures have roughly the same ability

to detect signal. Figure 6b shows loess curves fitted to the scatter plot (on the log scale) of SDi vs Ei·.

Clearly, RMA has the smallest SD across replicates. The advantage of RMA is especially noticeable in the

low expression values where the SD is 10 times smaller than the other measures.
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Li and Wong’s method provides not only an estimate of θi but a nominal SE for this estimate, denoted

here with σ̂i. Under (2) one can obtain a naive nominal estimate for the SE of µ̂ using an analysis of variance

approach. Because there are 5 replicates one can also obtain an observed SE of any estimate by simply

considering the SDi defined above. If the model is close to the actual mechanism giving rise to the data, the

nominal and observed SE should agree. Plots of nominal to observed SE log ratios versus expression (not

shown) show that in general, RMA is closer to 0 than Li and Wong’s MBEI showing that the observed and

nominal standard error methods are, in general, closer when using (2) instead of (1).

7 Detection of differential expression

Data set 2B was used to assess how well the different expression measures perform at detecting differentially

expressed probe sets. For each of the six arrays studied expression measures E11n,E12n,E13n,E21n,E22n,E23n

were obtained in their respective scale (log for MAS 5.0 and RMA) for each probe set n = 1, . . . ,N. We then

computed the averages over triplicates Ei·n = (1/3)∑3
k=1 Eikn, i = 1,2,n = 1, . . . ,N. For the probe sets rep-

resenting spike-in RNAs the observed ratios or “fold changes” (E2·n/E1·n for AvDiff and MBEI or 2E1·n−E2·n

for MAS 5.0 and RMA) should coincide with the true ratio of the spike-in concentrations shown in Table

1. Recall that apart from the spiked-in probe sets, the background samples hybridized to the six arrays are

the same. We therefore expect only the 11 probe sets shown in Table 1 to be differentially expressed. In

the left side of Figure 7 MVA plots of the average expressions obtained are shown. Probe sets with negative

expression measures were left out for AvDiff and Li and Wong’s MBEI. Notice that all measures separate 10

out of the 11 spiked-in probe sets from the cloud of points. However, the cloud of points for probe sets with

small total intensity has a much larger spread for AvDiff, MBEI, and MAS 5.0 than for RMA. For this reason,

many of the probe sets with high differential expressions for AvDiff, MBEI, and MAS 5.0 are not actually

the spiked-in probe-sets. The smaller spread of RMA results in better detection of differentially expressed

probe-sets. In the right side of Figure 7, quantile-quantile plots of the observed ratios are shown. RMA is the

only measure to perfectly differentiate the spiked-in probe sets (with the exception BioC-3, which no measure
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was able to detect) from the rest. Table 1 shows the observed rank of the spiked-in probe sets.

8 Conclusion

In this paper we have developed a novel measure of gene expression and compared it to other standard

measures. Through the analyses of three data sets, we have shown that expression is better measured using

log transformed PM values, after carrying out a global background adjustment and across array normalization.

We studied the performance of a version of the Affymetrix summary measures AvDiff and MAS 5.0, the Li

and Wong model-based expression index, and the new measure RMA. We evaluated the four expression

summary measures using spike-in and dilution study data, assessing their behavior in terms of bias, variance,

the ability to detect known differential expression levels, and (for MBEI and RMA) model fit. We conclude

that there is no obvious downside to summarizing the expression level of a probe set with RMA, and attaching

an SE to this quantity using a linear model that removes probe-specific affinities. The greater sensitivity and

specificity of RMA in detection of differential expression provides a useful improvement for researchers

using the GeneChip R© technology. We expect marginal though worthwhile gains to be achievable by using a

more carefully designed and tested background correction procedure.
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Table 1: Concentrations and observed ranks of each spiked-in gene in a comparison of 2 sets of triplicates
from the Latin square series spike-in data set.

Concentration Expected Rank Observed Rank
Probe set Set of triplicates 1 set of triplicates 2 AvDiff MAS 5.0 Li & Wong RMA
BioB-5 100.0 0.5 1 6 2 1 1
BioB-3 0.5 25.0 2 16 1 3 2
BioC-5 2.0 75.0 4 74 6 2 3
BioB-M 1.0 37.5 4 30 3 7 5
BioDn-3 1.5 50.0 5 44 5 6 4
DapX-3 35.7 3.0 6 239 24 24 7
CreX-3 50.0 5.0 7 333 73 36 9
CreX-5 12.5 2.0 8 3276 33 3128 8
BioC-3 25.0 100.0 9 2709 8579 681 6431
DapX-5 5.0 1.5 10 4598 102 12203 10
DapX-M 3.0 1.0 11 165 19 13 6
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Figure 1: a) Histograms of log ratio log2(PM/MM), stratified by quantiles of abundance, log2

√
PM×MM,

with gray scale representing height of histogram (light grays are high and dark grays are low) for one array
from the mouse data set. The histograms have been scaled so that the mode of each histogram is represented
with the same gray scale. b) Histogram of log ratios for first quartile of abundance with the histogram for
the defective probes represented by a darker gray. c) Like b) for abundance values between first and third
quartile. d) Like b) for abundance values in the last quartile excluding the highest 5 percent. e) Like b) for
the highest 5 percent of abundance.
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Figure 2: Box-plots of log2(PM) and PM−MM for the 30 arrays from data set C. Becasue PM−MM values
are usually between -2000 and 10000, a reduced range is used to get a better view of the interquartile range.
The bottom row are the after quantile normalization box-plots. The y-axis scale can be deduced from the plot
titles.
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Figure 3: MVA plots (described in text) of log2(PM) and log2(PM−MM) for two arrays in which the BioDn-
3 gene has been spiked at 5 pM and 2 pM respectively. The large points represent the 20 spiked-in probes and
the small black dots represent a random sample of non-spiked-in probes. a) and c) are before normalization
and b) and d) are after quantile normalization.
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Figure 4: PM, MM, PM/MM, and PM−MM values for each of the 20 probes representing BioB-5 (with the
exception of CreX-3, all other spike-in genes behaved similarly to BioB-5) in the 12 spiked-in arrays from
the varying concentration experiment plotted against concentration. The different probes are represented by
the different line types and symbols. The horizontal line represents the median of the 20 BioB-5 probes for
the non-spiked-in array. The dashed lines are the 25th and 75th quantiles.
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Figure 5: Histograms of log2(MM) for a array in which no probe-set was spiked along with the 3 arrays
in which BioB-5 was spiked-in at concentrations of 0.5, 0.75, and 1 pM. The observed PM values for the
20 probes associated with BioB-5 are marked with crosses and the average with an arrow. The black curve
represents the log normal distribution obtained from left-of-the-mode data.
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Figure 6: Data set C box-plots. a) Averages over replicates for each gene in b) Loess curves fitted to standard
deviation vs. average expression scatter-plots.
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Figure 7: MVA (described in text) and qq-plots indicating the positions of differentially expressed genes
ranked by their absolute log relative expression values.


