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Abstract

Deep Learning models are being applied to address plant phenotyping problems such
as leaf segmentation and leaf counting. Training these models requires large annotated
datasets of plant images, which, in many cases, are not readily available. We address the
problem of data scarcity by proposing a data augmentation approach based on generat-
ing artificial images using conditional Generative Adversarial Networks (cGANs). Our
model is trained by conditioning on the leaf segmentation mask of plants with the aim to
generate corresponding, realistic, plant images. We also provide a novel method to cre-
ate the input masks. The proposed system is thus capable of generating realistic images
by first producing a mask, and subsequently using the mask as input to the cGANs. We
evaluated the impact of the data augmentation on the leaf counting performance of the
Mask R-CNN model. The average leaf counting error is reduced by 16.67% when we
augment the training set with the generated data.

1 Introduction
Machine Learning and Deep Learning models have shown great potential in addressing plant
phenotyping tasks, such as leaf counting [2][19][7], leaf segmentation [22][24], and other
related problems.

In many cases, such models rely on a significant amount of data, especially when the
approach to solving the phenotyping problem is image-based. Several datasets of top-view
plant images have been released [4][18][5] to study new methodologies for leaf counting
and leaf segmentation. As it stands, there are limited amounts of labeled images in these
phenotyping datasets. The performance of the proposed models can be improved with ad-
ditional training data. Dataset augmentation techniques (e.g., rotation, scale) are useful, but
they do not sufficiently address the lack of labeled training data, given the small size of the
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original dataset and the fact that these techniques are based on variation of existing items in
that dataset. Hence the need for a different approach to overcome the data scarcity problem.

The Generative Adversarial Networks (GANs) model proposed by Goodfellow et al. [8]
is an architecture that consists of two components: A generative model G that captures the
data distribution, and a discriminative model D that estimates the probability that a sample it
is provided with comes from the training data distribution rather than from G. GANs models
have achieved impressive results in image generation [21], image editing [25] and other use
cases.

A drawback of GANs models is their training instability, which often results in a non-
sensical output produced by the generator [21]. Multiple approaches aiming at addressing
the training instability problem have been proposed. Radford et al. [21] provided a class
of architectures named Deep Convolutional GANs (DCGANs), which aims at improving
the training stability and the perceptual quality of generated images from GANs. The pro-
posed approach however does not address the root causes of the instability problem; most
of the GANs models rely on the Jensen-Shannon (JS) divergence to measure the degree of
similarity between the distribution of real images and the distribution of generated images.
However, it has been shown that even in very simple scenarios, the JS divergence does not
supply useful gradients for the generator [3], resulting in training instability. To better ad-
dress the problem, Arjovsky et al. [3] provided a new architecture, referred to as Wassertein
GANs (WGANs), which relies on a perfect discriminator. Although the approach provides
stability in training, it comes at the cost of long training time, and potential instability at
the discriminator as well as limited capacity at the discriminator due to weight clipping [9].
In order to enforce the Lipschitz constraint without clipping the weights of the discrimina-
tor, Gulrajani et al. [9] proposed WGANs with gradient penalty (WGAN-GP). The result of
WGAN-GP is a much more stable training environment and a higher quality of generated
images.

Recently, a conditional DCGAN model named "ARIGAN" has been published by Giuf-
frida et al. [6]. The model can generate images of Arabidopsis plants where the condition is
the required number of leaves. Giuffrida et al. also put forward a new dataset ("Ax") of ar-
tificial plant images, which is evaluated in combination with a state-of-the-art leaf counting
algorithm. The authors of ARIGAN showed that When Ax is used as part of the training data,
the testing error is reduced. Similarly, Purbayaet al. [20] showed that GANs can synthesize
a collection of lanceolate, lyrate and runcinate plant images. However both the ARIGAN
model and the work of Purbaya et al. are only able to capture the shape of leaves. Both
approaches are incapable of generating high frequency components (e.g. leaf veins and peti-
oles), and both cannot generate images with a background.

To solve the aforementioned lack of availability of large training datasets suitable to ad-
dress phenotyping problems, we present an approach to generate artificial plant images using
a Conditional Generative Adversarial model inspired by the work of Mathieu et al. [16]. We
trained our model on the CVPPP 2017 LSC dataset [18][4]. Our network learned how to
map random noise z into an Arabidopsis plant image, under a condition x. In our case, x
encodes the leaf segmentation mask that the artificially generated plant image should have.
The model can create 512×512 RGB images of Arabidopsis plants. We evaluated our model
by first tasking it with generating an image subset, referred to as Ax, and subsequently using
Ax as augmentation to the original training set. The combined dataset is then used as train-
ing input to a state-of-the-art instance segmentation algorithm [11] for leaf counting, and the
improvement in leaf counting performance is measured relative to the case where only the
original dataset is used for training.
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The paper is organized as follows: Section 2 describes the overall proposed methodology
to generate Arabidopsis plant images; Section 3 reports the results of our experiments and
discusses the achieved performance of our model; Section 4 concludes the paper.

2 Methodology
To achieve data augmentation, we generate new plant images by first creating high-resolution
masks, and then mapping each mask to a high-resolution, artificial, plant image. We build
on the assumption that although the input mask and output image differ in appearance, they
present the same underlying structure. Even though the mask has a different texture com-
pared to the output image, our model is still able to extract from it underlying structure
information, especially low-level information, e.g. edges.

Our model is based on the cGANs structure proposed by the "pix2pix" framework of
Isola et al. [13]. The model introduces one extra convolutional layer and one deconvolu-
tional layer to the generator as shown in Figure 2, as well as one convolutional layer to the
discriminator, as shown in Figure 3. These additional layers are used to generate 512×512
images rather than just the 256×256 images that the model of Isolaet al. is able to generate.

The overall data generation solution we devise is illustrated in Figure 1. It is based on
first automatically generating high-resolution plant masks from leaf mask samples according
to pre-defined rules, then providing the generated masks to the conditional GANs model, and
finally using the GANs output as artificial data that can serve to augment the original training
dataset.

Figure 1: Image Generation Pipeline

The following subsections provide a general description of cGANs and how we train the
model, describe the generator and discriminator in our modified cGANs model, present the
approach we devise to generate the input masks, and provide an evaluation of the data aug-
mentation technique and its impact on the performance of an instance segmentation model
for leaf counting.

2.1 Conditional Generative Adversarial Networks
Conditional GANs learn a mapping from observed image x and random noise vector z, to
target image y, G : {x,z} → y. The generator G is trained to produce outputs that cannot
be distinguished from "real" images by an adversarially trained discriminator, while the dis-
criminator is trained to detect the generator’s output as "fakes". The two models are trained
simultaneously.

To control the generated image, we use the mask as condition (input), and take the
dropout operations as random noise z. The generator network then learns a set of param-
eters to generate image G(x,z) that follows the distribution of the real training images. The

Citation
Citation
{Isola, Zhu, Zhou, and Efros} 



4 ZHU, AOUN, KRIJN, VANSCHOREN: DATA AUGMENTATION USING CGANS

discriminator D learns another set of parameters to classify x ∼ pdata as real images, and
G(x,z) as fake images.

The training process maximizes the probability of D assigning the correct label to y and
G(x,z), while G is trained to generate images that follows the same distribution of the real
data. We use cross-entropy as loss function to capture the characteristics that occur with
high-frequency, and the L1 term to force low-frequency correctness.

The objective of the conditional GANs with L1 term can be expressed as

G∗ = argmin
G

max
D
LGAN(G,D)+λLL1(G) (1)

The formula of the GAN term is

LGAN(G,D) = Ex,y[logD(x,y)]+Ex,z[log(1−D(x,G(x,z)))] (2)

The formula of the L1 term is

LL1(G) = Ex,y,z[‖y−G(x,z)‖1] (3)

We also replace the L1 term by an L2 term for comparison, with the L2 term being given
by

LL2(G) = Ex,y,z[‖y−G(x,z)‖2] (4)

The optimization of Formula (1) is achieved using the Adam optimizer [14].

To make a fair comparison, we also conduct experiments with the same loss function used
by Gulrajani et al. [9], to show why we do not choose a more recent WGAN-GP architecture.
The objective of the conditional WGAN-GP(cWGAN-GP) is expressed as

G∗ =argmin
G

max
D

Ex,z[D(x,G(x,z)))]−Ex,y[D(x,y)]

+λEx̂,ẑ[(‖∇x̂D(x̂,G(x̂, ẑ))‖−1)2]
(5)

2.2 Generator Model
As noted in the findings of Mathieu et al. [16], there is variability in the input of the generator
even in the absence of noise, which means noise is not necessary for the generator to obtain
variations when it generates a new image. Inspired by the work of Isola et al. [13], we
provide noise only in the form of dropout in the first four decoder layers of the generator.

As shown in Figure 2, we use modules of Leaky ReLu-BatchNorm-convolution[12][10]
in the encoder part of the generator, and modules of ReLu-BatchNorm-convolution in de-
coder part of the generator. Furthermore, to pass low-level features directly to deeper layers
across the network, we add skip-connections between each layer i and layer n− i, where n is
the total number of layers, following the general setting of "U-Net"[23]. The original model
only generates 256× 256 images, which is not consistent with the image size of the Ara-
bidopsis plants dataset. We therefore add one convolutional layer and one deconvolutional
layer to the generator to obtain 512× 512 images, and then rescal them to 441× 441(same
size as the images of the A4 subset).
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Figure 2: Generator. The network takes condition vector y as input, and takes the dropout
operations as variable z (random noise). The numbers denote spatial resolution and channels.

The input layer takes the mask image as a condition. This input is then provided to a
fully-convolutional layer conv1, which is followed by 8 convolutional layers and 8 decon-
volutional layers. After the last fully convolutional layer with tanh activation function, the
generated image is ready.

The deconvolutional steps are achieved through the use of (2,2) stride convolutional
layers. We adopt a 4× 4 kernel size for all convolutional and deconvolutional layers. The
output of each layer is batch-normalized and passed through leaky ReLU at the encoder side
and ReLU at the decoder side, before it is provided to the next layer.

2.3 Discriminator Model

Our discriminator tries to classify each N ×N patch in an image as being either real or
fake. We run this discriminator convolutionally across the image, averaging all responses to
provide the ultimate output of the discriminator. We implement the convolution-BatchNorm-
ReLu module here.

Figure 3: Discriminator. The network takes an RGB image concatenated with condition
mask image x as input. Numbers denote spatial resolution and channels.

The discriminator network, as illustrated in Figure 3, takes an RGB image concatenated
with condition mask image x as input. There are 6 convolutional layers, and the last layer
of the network is a single node that outputs a binary value activated by a sigmoid function.
The discriminator uses Leaky ReLu [15] at each layer, which shows a fast loss convergence
during training.
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2.4 Mask Generation
We collect 7016 leaf masks from the test set(500 images) of the CVPPP A4 subset. To make
the plant mask generation more convenient, we pick 250 leaf masks from the collection of
leaf masks, and divide them into 5 folders based on the leaf mask size, as shown in Figure 4.
We generate plant masks automatically based on the rules detailed in Algorithm 1.

(a) folder 1 (b) folder 2 (c) folder 3 (d) folder 4 (e) folder 5

Figure 4: Examples of leaf masks of different sizes.

Algorithm 1: Mask Generation
Data: The number n of leaves the plant mask should contain.
Result: Plant mask. A mask consists of many regions of different colors. Each region

corresponds to a leaf segmentation.
1 if n≤ 4 then
2 choose n leaf masks randomly from folder 1.
3 else if 4 < n≤ 8 then
4 select n−4 leaf masks from folder 2, and 4 leaf masks from folder 1.
5 else if 8 < n≤ 12 then
6 select n−8 leaf masks from folder 3, 4 leaf masks from folder 2, and 4 leaf masks

from folder 1.
7 else if 12 < n≤ 16 then
8 select n−12 leaf masks from folder 4, 4 leaf masks randomly from folder 3, 4

leaf masks from folder 2, and 4 leaf masks from folder 1.
9 else

10 select n−16 leaf masks from folder 5, 4 leaf masks from folder 4, 4 leaf masks
from folder 3, 4 leaf masks from folder 2, and the rest 4 leaf masks from folder 1.

11 end
12 Each leaf mask has a 140−200 degrees random rotation, compared to the previously

selected (and rotated) one. It also has a −10% to 10% zooming, selected randomly.
13 As a final step, overlay the leaf masks one by one.

Note that as a result of this procedure, the smaller leaf masks are naturally positioned
on top of the larger ones.

2.5 Dataset
We train our model on the CVPPP 2017 LSC plant dataset [18][4], containing Arabidopsis
plant images. The dataset, which also includes Tobacco plant images, consists of 4 subsets
(A1, A2, A3, and A4). We select the A4 subset for our study, since it has the largest number
of Arabidopsis images (624 images in total), has flower pot background information, and
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as such is the only one among the four subsets large enough to provide all the information
we need in this experiment. 441×441 input images are pre-processed to be all in the same
size of 448× 448 through the application of padding. 500 images (80%) of the A4 subset
are used as training set for both the cGANs model and the leaf counting model, and 124
images(20%) are used as test set. No augmentation such as rotation and scale is used for
training the cGANs model. Flipping the images left/right and up/down as well as rotation
by 90, 180, and 270 degrees are used as data augmentation techniques for the training of the
leaf counting model. Image pixel values are normalized to a range of [−1,1].

2.6 Hyper-parameters

To optimize the cGANs model, we alternate between one gradient descent step on D, and one
step on G, training to maximize log D(x,G(x,z)). We use Adam solver[14], with learning
rate 0.0002, and momentum parameters β1 = 0.5. The weight for gradient penalty λ is set
to 0.25 for WGAN-GP experiment. The higher λ is, the more stable the training, but the
slower the convergence. The model is trained on 500 images, with 200 epochs, and a batch
size equal to 1.

We implement the model in Tensorflow [1]. The training is performed on a GTX 1080Ti
GPU. In our setup, training takes ∼ 1 minute per epoch.

2.7 Evaluation Metrics

Using the overall data augmentation pipeline, we artificially generate a subset Ax of plant
images. The subset contains 500 images in total, along with the corresponding segmentation
masks. The segmentation mask images are just the input images of cGANs model that were
used to generate the artificial plant images.

We evaluate the impact of augmenting the training set with Ax on the performance of the
leaf counting algorithm (Mask RCNN model[11][17]). In particular we measure the average
leaf counting error of the algorithm under three training conditions: Training using only the
A4 dataset, training solely based on the Ax dataset, and finally, training based on the A4 and
Ax datasets combined.

To evaluate segmentation accuracy, we employ the Symmetric Best Dice (SBD) metric
used by Scharr et al. [24]. SBD is used to estimate average leaf segmentation performance.
It corresponds the symmetric average dice among all objects (leaves), where for each input
label the ground truth label yielding maximum Dice is used for averaging. High SBD value
indicates a good performance of instance segmentation.

SBD between Lgt , the ground truth, and Lar, the algorithmic result, is defined as

SBD(Lar,Lgt) = min(BD(Lar,Lgt),BD(Lgt ,Lar)) (6)

with Best Dice (BD) being defined as

BD(La,Lb) =
1
M

M

∑
i

max
1≤ j≤N

2|La
i ∩Lb

j |
|La

i |+ |Lb
j |

(7)

where | · | denotes leaf area (number of pixels), and La
i for 1 ≤ i ≤M and Lb

j for 1 ≤ j ≤ N
are sets of leaf object segments belonging to leaf segmentations La and Lb, respectively.
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To evaluate how good an algorithm is in identifying the correct number of leaves present
in an image, we rely on the Difference in Counting(DiC) and Absolute Difference in Counting(|DiC|)
metrics.

DiC =
1
N

N

∑
i
(#Li

ar−#Li
gt) (8)

|DiC|= 1
N

N

∑
i
|#Li

ar−#Li
gt | (9)

where N is the number of images, Lar is the predicted leaf number, and Lgt is the ground
truth leaf number.

3 Experimental results
We aim at identifying whether our data augmentation technique results in better leaf counting
performance. Our investigation covered multiple variants of the model from which the Ax
dataset is obtained. We ran several experiments to compare between the cGANs model
guided by only a GAN term in the loss function, the cGANs model using a loss function with
extra L1 term or L2 term, and the cGANs model with conditional WGAN-GP improvements.
This section provides the obtained qualitative and quantitative results.

3.1 Qualitative results
Figure 5 shows the qualitative effects of the different loss function variations on the gener-
ation of plant images. A loss function that only contains the GAN term leads to reasonable
results, but introduces visual artifacts along the edge of the flower pot, and has some checker-
board artifacts. Adding both the GAN term and the L1 term reduces such artifacts and helps
to obtain an Arabidopsis plant image with clear pot surrounding background.

Adding the L2 term provides a sharper and more contrasting image compared to the
L1 term version. The edges of the leaves are clearer, but the checkerboard artifacts and
unreasonable details along the flower pot still exist. A loss function based on a combination
of the GAN term and the L1 term provides comparable performance to a loss function based
on a combination of the GAN term and the L2 term.

Due to how the loss is calculated in cWGAN-GP, no L1 term or L2 term can be added to
the loss function. Images generated via cWGAN-GP are less blur and have fewer artifacts
than the one generated via a GAN term that does not use any extra loss term. However, im-
ages obtained through cWGAN-GP still have more artifacts than the ones obtained through
the cGANs + L1 term variant, and the images generated by the cGANs + L2 term variant.
Therefore, qualitatively, cWGAN-GP is not a good alternative to these two cGANs variants.

We hereafter further provide a comparison to establish whether it also underperforms
these two variants quantitatively.
3.2 Quantitative results
To investigate the performance of our cGANs-based data augmentation method, we eval-
uated the aforementioned leaf counting algorithm on three different datasets, namely; A4
only, Ax only, and the dataset resulting from combining A4 and Ax. The results are shown
in Table 1. In addition to providing DiC, |DiC| and percentage SBD values, the table shows
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4 Conclusion
We proposed a novel approach to data augmentation of plant image datasets for improving
the performance of leaf counting models in phenotyping applications. From our experiments,
we found that our model learned how to generate realistic plant images after 200 epochs. We
created an artificial Arabidopsis plant image subset via the model. We first evaluated the
quality of the dataset by observing the qualitative characteristics of the generated images.
We subsequently provided a quantitative evaluation of the model by using the generated
dataset as a data augmentation to existing data, prior to training a state-of-the-art instance
segmentation model and measuring its resulting leaf counting performance. Our quantitative
experiments show that the extension of the training dataset with the images in Ax reduced
the average leaf counting error by 16.67%. The proposed approach can effectively address
the annotated data scarcity problem encountered when solving phenotyping problems.
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