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Inhibitory Smads (I-Smads) have conserved carboxy-terminal MH2 domains but highly di-
vergent amino-terminal regions when compared with receptor-regulated Smads (R-Smads)
and common-partner Smads (co-Smads). Smad6 preferentially inhibits Smad signaling ini-
tiated by the bone morphogenetic protein (BMP) type I receptors ALK-3 and ALK-6, whereas
Smad7 inhibits both transforming growth factor b (TGF-b)- and BMP-induced Smad signal-
ing. I-Smads also regulate some non-Smad signaling pathways. Here, we discuss the verte-
brate I-Smads, their roles as inhibitors of Smad activation and regulators of receptor stability,
as scaffolds for non-Smad signaling, and their possible roles in the nucleus. We also discuss
the posttranslational modification of I-Smads, including phosphorylation, ubiquitylation,
acetylation, and methylation.

Ligands of the transforming growth factor b
(TGF-b) family play crucial roles in embry-

onic development and adult tissue homeostasis.
The family includes TGF-bs, activins, bone
morphogenetic proteins (BMPs), growth and
differentiation factors (GDFs), and Müllerian-
inhibiting substance (MIS). These ligands are
both structurally related to each other and share
the basic machinery for signal transduction.
TGF-b family ligands trigger signaling through
hetero-oligomerization of two types of trans-
membrane receptors with intrinsic serine-thre-
onine kinase activities: the type I and type II
receptors (Shi and Massagué 2003). Five type
II receptors and seven type I receptors, also
called activin receptor-like kinase (ALK) 1–7,

have been identified in mammalian cells. In the
ligand–receptor complex, the constitutively ac-
tive type II receptors phosphorylate and activate
the type I receptors. The type I receptors then
phosphorylate a subgroup of Smad proteins,
the receptor-regulated Smads (R-Smads). The
R-Smads comprise Smad2 and -3 for TGF-b
and activin signaling, and Smad1, -5, and -8
for BMP signaling. Phosphorylated R-Smads
form a heterotrimeric complex with a distinct
common-partner Smad (co-Smad), Smad4.
The complexes then translocate to the nucleus,
where they activate or repress gene expression in
association with other transcription factors and
transcriptional coactivators or corepressors (the
Smad signaling pathway). Alternatively, the ac-
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tivated receptors can transmit signals indepen-
dent of Smad proteins (non-Smad signaling
pathways) (Zhang 2009).

TGF-b family signaling is regulated through
multiple mechanisms and its amplitude is finely
tuned by a variety of positive and negative reg-
ulators (Miyazono 2000). Although negative
signal regulators are found in other signaling
pathways, the TGF-b family signaling systems
may be unique, as some negative regulators
are structurally related to the components of
the signaling pathway. In addition, TGF-b fam-
ily signaling induces the expression of many of
these negative regulators in different types of
cells, and these regulators, in turn, repress sig-
naling through negative feedback loops. Lefty 1
and lefty 2 contain cystine-knot motifs and are
structurally similar to the TGF-b family ligands,
but do not form disulfide-linked dimers (Meno
et al. 1999; Thisse and Thisse 1999). Lefty 1 and
lefty 2 bind to activin receptors and compete
with activins for receptor binding. Inhibins
are dimeric proteins composed of an a- and
b-chain, and antagonize the effects of activins
composed of b-chain dimers (Vale et al. 1988).
BAMBI (BMP and activin membrane-bound
inhibitor) is a transmembrane protein with ex-
tracellular and transmembrane domains struc-
turally similar to those type I receptors, but
lacks an intracellular kinase domain (Onich-
tchouk et al. 1999). BAMBI interacts with type
I receptors but is unable to transduce intracel-
lular signals.

Inhibitory Smads (I-Smads) are members of
the Smad family with conserved carboxy-termi-
nal MH2 domains, which inhibit intracellular
signaling through interactions with activated
type I receptors and R-Smads. Smad6 preferen-
tially inhibits Smad signaling by the BMP type I
receptors ALK-3 and ALK-6 (Goto et al. 2007),
whereas Smad7 inhibits both TGF-b- and BMP-
induced Smad signaling (Hanyu et al. 2001). I-
Smads also regulate certain non-Smad signaling
pathways. Here, we focus on the mechanisms of
action of I-Smads in TGF-b family signaling
pathways in vertebrates and their relation to cer-
tain clinical diseases. We also discuss the func-
tions of I-Smads that are independent of TGF-b
family signaling.

STRUCTURES OF I-SMADS

Among the eight different Smad proteins in ver-
tebrates, Smad6 and Smad7 are I-Smads (Ha-
yashi et al. 1997; Imamura et al. 1997; Nakao et
al. 1997; Hata et al. 1998; Souchelnytskyi et al.
1998). In Drosophila, daughters against DPP
(Dad) acts as an I-Smad (Tsuneizumi et al.
1997; Inoue et al. 1998). In Caenorhabditis ele-
gans, the TAG68 protein is structurally related to
I-Smads, but has not yet been shown to function
as an I-Smad (Padgett and Patterson 2006). The
carboxy-terminal MH2 domains are conserved
between I-Smads and other Smads, but the ami-
no-terminal regions (N domains) of I-Smads
diverge from the MH1 domains and linker re-
gions of R-Smads and common-partner Smads
(co-Smads) (Fig. 1). I-Smads inhibit TGF-b
family signaling through multiple mechanisms,
among which interactions with activated type I
receptors and activated R-Smads are crucial for
the inhibition of Smad-mediated signaling. The
MH2 domains are required for interactions with
activated type I receptors and R-Smads. R-
Smads have an Ser-Ser-X-Ser (SSXS) motif at
their carboxyl terminus, which is phosphorylat-
ed by type I receptors, whereas I-Smads and the
co-Smad lack such a motif and are not phos-
phorylated by type I receptors.

Only a low level (36.7%) of amino acid se-
quence identity exists between the N domains
of mouse Smad6 and Smad7. In addition, the
N domains of Smad6 and Smad7 are not highly
conserved between mammals and Xenopus
(51.3% amino acid sequence identity in Smad6
and 67.4% in Smad7) (Nakayama et al.
1998a,b). A truncated form of Smad6 lacking
235 amino acid residues of the amino terminus
is expressed in human endothelial cells (Topper
et al. 1997). In this truncated protein (termed
Smad6s), the long amino-terminal sequence of
Smad6 is replaced with a unique 12 amino acid
sequence followed by the carboxy-terminal half
of wild-type Smad6. On injection of Smad6s
RNA into Xenopus embryos, Smad6s antagoniz-
es BMP signaling similarly to full-length Smad6
(Krishnan et al. 2001). Smad6s is expressed
in the human coronary artery (Krishnan et al.
2001), with up-regulated expression in athero-
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scriptional regulation in the nucleus. I-Smads
also regulate non-Smad signaling pathways in-
duced by TGF-b family proteins and control
other signaling pathways and transcription fac-
tors that do not directly mediate TGF-b family
signaling.

Inhibition of TGF-b Family Signaling through
Direct Interaction with Type I Receptors

The MH2 domains of I-Smads associate direct-
ly with activated type I receptors and thus
compete with R-Smads for activation by the
receptors (Fig. 2A). The L3 loop in the MH2

domain of R-Smads plays an essential role in
determining their specificity for binding type
I receptors. Although the L3 loops in I-Smads
do not provide binding specificity, they are in-
dispensable for the association of I-Smads with
type I receptors and cannot be replaced by the
L3 loop of Smad4 (Kamiya et al. 2010). Smad7
uses two distinct protein surfaces in the MH2
domain, both of which include the L3 loop, for
its interaction with type I receptors. One surface
is the basic groove that includes the L3 loop and
a-helix 1, which is also important in R-Smads
for their binding specificity with type I recep-
tors (Mochizuki et al. 2004). The other surface
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Figure 2. Regulation of transforming growth factorb (TGF-b) family signaling through I-Smad association with
activated type I receptors. (A) Inhibitory Smads (I-Smads) inhibit TGF-b family signaling via interactions with
type I receptors and compete with receptor-regulated Smads (R-Smads) for receptor activation. The N domain
of Smad7 associates with the MH2 domain and facilitates the interaction with type I receptors. (B) Smad
ubiquitin regulatory factors (Smurfs) and other E3 ubiquitin ligases induce the degradation of receptors
through interactions with I-Smads. UbcH7 is recruited to the Smad7–Smurf2 complex. Salt-inducible kinase
(SIK) cooperates with the complex, whereas ubiquitin-specific peptidase 15 (USP15) counteracts the Smad7–
Smurf2 complex. (C) The growth arrest and DNA damage protein 34 (GADD34)–PP1c complex induces
dephosphorylation of activated type I receptors through interactions with I-Smads. (D) Toll-interacting protein
(Tollip) interacts with Smad7 and ubiquitylated type I receptor to facilitate the endosomal localization of
receptors, possibly leading to their lysosomal degradation.
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is a three-finger-like structure consisting of res-
idues 331–361, residues 379–387, and the L3
loop (Kamiya et al. 2010). Smad7 can use both
surfaces in its interaction with the ALK-2, -3,
and -4 receptors, but only the basic groove is
used in the interaction between Smad7 and the
TGF-b type I receptor (TbRI, also known as
ALK-5). In contrast, Smad6 exclusively uses
the basic groove in its interaction with the
BMP type I receptor ALK-3.

Although the MH2 domains of I-Smads are
required for interactions with type I receptors,
the Smad7 MH2 domain is not sufficient for
maximum inhibition of TGF-b signaling, and
the N domain of Smad7 plays an important role
in efficiently repressing TGF-b signaling. A chi-
meric protein composed of the N domain of
Smad7 and the MH2 domain of Smad6 is as
potent as wild-type Smad7 in inhibiting TGF-
b signaling (Hanyu et al. 2001). The R-Smad
MH1 domain may physically interact with the
MH2 domain, interfering with the R-Smad as-
sociation with type I receptors and complex
formation with Smad4 (Hata et al. 1997). In
contrast, the N domain of Smad7 physically as-
sociates with the MH2 domain and facilitates
interactions between the MH2 domain and type
I receptors (Hanyu et al. 2001; Nakayama et al.
2001).

Inhibition of TGF-b Family Signaling through
Effector Recruitment to Type I Receptors

In addition to the direct inhibition of type I
receptor kinase activity, I-Smads inhibit signal-
ing in cooperation with other proteins by affect-
ing the fate of type I receptors after activation.

BAMBI is a homolog of the type I receptors
and functions as a general negative regulator of
TGF-b family signaling by interfering with the
formation of a functional complex by type I and
type II receptors (Onichtchouk et al. 1999; Yan
et al. 2009). In addition, through the forma-
tion of a ternary complex with Smad7 and the
TbRI receptor, BAMBI suppresses the associa-
tion of R-Smads with the receptors, blocking
their phosphorylation. The inhibitory effect of
Smad7 on TGF-b signaling is partially attenu-
ated on silencing BAMBI expression and, con-

versely, that of BAMBI is partially attenuated on
silencing Smad7 (Yan et al. 2009).

The HECT (homologous to the E6-accesso-
ry protein) type E3 ligases Smurf1 and Smurf2
physically interact with I-Smads and enhance
their inhibition of TGF-b family signaling.
Smurf1 and Smurf2 were originally identified
as molecules that associate with and degrade
R-Smads (Zhu et al. 1999; Lin et al. 2000; Zhang
et al. 2001). The WW domains of Smurfs are
involved in their interaction with the PY motifs
of Smads (Zhu et al. 1999; Zhang et al. 2001). In
addition to targeting R-Smads for degradation,
leading to inhibition of TGF-b family signaling,
Smurfs associate with Smad6 and Smad7 and
assist in their association with type I recep-
tors, interfering with the interactions between
R-Smads and receptors (Fig. 2A) (Kavsak et al.
2000; Ebisawa et al. 2001; Murakami et al.
2003). Smurf1 has functional nuclear export
signals in the HECT domain and facilitates the
export of I-Smads from the nucleus to the cy-
toplasm in a CRM1-dependent fashion (Tajima
et al. 2003). Moreover, Smurf1 has a C2 domain
in its amino-terminal region that targets the
Smurf1–Smad7 complex to the plasma mem-
brane after nuclear export and enhances the
interaction of Smad7 with the activated TbRI
receptor (Suzuki et al. 2002). Such cooperative
action of Smad6 and Smurf1 has been shown in
vivo using transgenic mice expressing Smad6
and Smurf1 (Horiki et al. 2004). Although
transgenic mice with increased expression of
Smurf1 in chondrocytes do not show significant
abnormalities, double-transgenic mice overex-
pressing Smad6 and Smurf1 in chondrocytes
show a greater delay in endochondral ossifica-
tion than Smad6 transgenic mice, suggesting
that Smurf1 enhances the effects of Smad6 in
vivo (Horiki et al. 2004).

In addition to promoting R-Smad degrada-
tion, Smurfs induce the ubiquitylation and pro-
teasomal degradation of type I receptors and
down-regulate the number of receptors at the
cell surface, resulting in the suppression of TGF-
b family signaling (Fig. 2B). Ubiquitylation is
induced by an enzyme cascade, including acti-
vating (E1), conjugating (E2), and ligating (E3)
enzymes. Smad7 facilitates the interaction be-
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tween Smurf2 and the E2 enzyme UbcH7
(Ogunjimi et al. 2005). The N domain of
Smad7 interacts with the HECT domain of
Smurf2, as well as UbcH7 via its LRM sequence
(see Figs. 1 and 2B). Thus, Smad7 regulates the
function of Smurf2 by recruiting UbcH7 to the
HECT domain and facilitates the degradation of
type I receptors.

Salt-inducible kinase (SIK) is a serine-thre-
onine kinase of the AMP-activated protein ki-
nase family. SIK interacts and cooperates with
the Smad7–Smurf2 complex, facilitating the
down-regulation of activated TbRI receptor
(Kowanetz et al. 2008; Lönn et al. 2012). The
protein kinase activity of SIK enhances the
down-regulation of TbRI by Smurf2, but the
substrates involved in this pathway are un-
known. SIK expression is induced by TGF-b
and BMP signaling; thus, SIK functions as a
negative feedback regulator.

In contrast, ubiquitin-specific peptidase 15
(USP15) is a deubiquitylating enzyme that
counteracts the degradation of type I receptors
by the complex of Smad7 and Smurf2 (Eich-
horn et al. 2012). USP15 is recruited to the
TbRI receptor by interacting with the Smad7–
Smurf2 complex, then deubiquitylates and
stabilizes TbRI. The USP15 gene is amplified
in glioblastoma, breast carcinoma, and ovarian
carcinoma, and potentiates their malignant
phenotypes by enhancing TGF-b signaling.

Some other HECT type E3 ligases, such as
WWP1/Tiul1 and NEDD4-2, also inhibit TGF-
b and BMP signaling by promoting the degra-
dation of type I receptors (Komuro et al. 2004;
Seo et al. 2004; Kuratomi et al. 2005). AIP4/Itch
is another HECT type E3 ligase that interacts
with Smad7. Interestingly, AIP4/Itch inhibits
TGF-b signaling by enhancing the interaction
of Smad7 with the TbRI receptor, but it does
not induce the degradation of TbRI (Lallemand
et al. 2005). However, AIP4/Itch has been re-
ported to promote the ubiquitylation of Smad2
and enhance TGF-b-induced transcription (Bai
et al. 2004), suggesting that AIP4/Itch may
modulate TGF-b signaling in a context-depen-
dent fashion.

Smad7 has also been shown to interact
with IGADD34 (growth arrest and DNA dam-

age protein 34), a regulatory subunit of the pro-
tein phosphatase 1 (PP1) holoenzyme that re-
cruits the catalytic subunit of PP1 (PP1c) (Fig.
2C) (Shi et al. 2004). Smad7 facilitates dephos-
phorylation of the activated TbRI receptor
through recruitment of the GADD34-PP1c
complex. The expression of both GADD34
and Smad7 is induced by UV light irradiation,
leading to TGF-b resistance in epithelial cells
exposed to UV light. In endothelial cells, TGF-
b activates both the TbRI/ALK-5 receptor and
the ALK-1 receptor, a type I receptor that is
activated by either TGF-b or BMP-9/10 and
phosphorylates Smad1/5/8 (Goumans et al.
2003). By activating ALK-1, TGF-b induces
the expression of Smad7 and PP1a, a mamma-
lian isoform of PP1c, in endothelial cells.
Smad7 then recruits PP1a to ALK-1 and atten-
uates the ALK-1-induced activation of Smad1
and 5 (Valdimarsdottir et al. 2006).

Toll-interacting protein (Tollip) is an adap-
tor protein that consists of a Tom1 binding
domain (TBD), a C2 domain, and a coupling
of ubiquitin to endoplasmic reticulum degra-
dation (CUE) domain. Tollip interacts with
the MH2 domain of Smad7 through its C2 do-
main. In response to TGF-b, and with the aid
of Smad7, Tollip associates with the ubiquity-
lated TbRI receptor through its TBD and CUE
domains, facilitating endosomal localization of
TbRI (Fig. 2D). Tollip may promote the degra-
dation of TbRI without affecting Smurf-medi-
ated degradation (Zhu et al. 2012). Thus, Smad7
interacts with activated type I receptors and re-
presses TGF-b family signaling through compe-
tition with R-Smads for receptor interaction,
promoting proteasomal degradation of recep-
tors by Smurfs, dephosphorylation of activated
receptors by PP1, and facilitated endosomal lo-
calization by Tollip (Fig. 2).

Interference in R-Smad Complex Formation
with Co-Smad

Smad6 interacts with activated Smad1 and in-
hibits BMP signaling by interfering with the
formation of a complex between Smad1 and
Smad4 (Hata et al. 1998). In addition, the asso-
ciation of Smurf1 with I-Smads can result in an
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indirect association of Smurf1 with Smad1/5,
leading to Smad1/5 ubiquitylation and degra-
dation (Murakami et al. 2003). BMP stimulates
the interaction of I-Smads with Smad1 and -5,
which is further enhanced by Smurf1 (Hata
et al. 1998; Murakami et al. 2003). Similarly,
Smad7 can inhibit TGF-b signaling by targeting
Smad2/3. Smad7 forms a heteromeric complex
with activated Smad2/3 and interferes with
Smad2/3–Smad4 complex formation. It also
recruits the HECT-type E3 ligase NEDD4-2 to
the Smad2/3–Smad7 heteromeric complex
and facilitates the ubiquitylation and degrada-
tion of phosphorylated Smad2/3 (Yan et al.
2016). Consistently, a Smad7 mutant that fails
to interact with TbRI still inhibits signaling in-
duced by TGF-b (Kamiya et al. 2010).

Direct Transcriptional Regulation of
TGF-b Family Signaling by I-Smads
in the Nucleus

I-Smads are predominantly located in the nu-
cleus in most cell types and can act as transcrip-
tional regulators in the nucleus. Smad7 has been
reported to interfere with the formation of func-
tional Smad–DNA complex, with Smad7 inter-
acting with the Smad-binding DNA element
through its MH2 domain (Zhang et al. 2007).
Smad7 fused to the DNA-binding domain of
GAL4 represses Gal4 luciferase reporter genes
(Pulaski et al. 2001; Yan et al. 2014), and this
activity is enhanced in cooperation with YY1
and histone deacetylase 1 (HDAC-1) (Yan et al.
2014), suggesting that Smad7 acts as a transcrip-
tional corepressor.

Smad6 interacts with the transcriptional co-
repressor CtBP through its PLDLS motif in the
linker region (Fig. 1) (Lin et al. 2003). Because
the PLDLS motif is not conserved in Smad7,
only Smad6 can recruit CtBP. Smad6 possibly
associates with the Id1 promoter DNA through
interactions with Smad1 and represses BMP-in-
duced transcription of Id1 in the nucleus. CtBP
represses transcription in HDAC-dependent
and -independent fashions depending on the
promoter context. Whether the transcriptional
repression of Id1 by Smad6 is dependent on
HDACs is unknown.

Smad6 also interacts with the homeobox
transcription factors Hoxc-8 and -9 on BMP
stimulation and inhibits the transcription of
osteopontin (Bai et al. 2000). Smad6 interacts
with some HDACs, including HDAC-1 and -3,
through its MH2 domain. In addition, Smad6
has been reported to bind to DNA through its N
domain and recruit HDACs to DNA (Bai and
Cao 2002). The HDAC inhibitor trichostatin A
abolishes the repressive effect of Smad6 on BMP
signaling. Furthermore, Smad6 inhibits the in-
teraction of Smad1 with Hoxc-8 and suppresses
transcription by Smad1.

Roles of I-Smads in Non-Smad Signaling
Pathways

In addition to the Smad pathway, TGF-b can
transmit signals through non-Smad pathways,
many of which still remain to be elucidated in
detail. Among these, the TRAF6 (tumor necro-
sis factor [TNF] receptor-associated factor 6)
adaptor protein leads to activation of p38 mi-
togen activated kinase (MAPK) and c-Jun ami-
no-terminal kinase (JNK) signaling (Sorrentino
et al. 2008; Yamashita et al. 2008). Smad6 and
Smad7 have been shown to play distinct roles in
their activation.

In response to TGF-b, TRAF6 associates
with the heterotetrameric TGF-b receptor com-
plex through its TRAF homology domain.
TRAF6 then induces K63-linked polyubiquity-
lation of itself, as well as TAK1 (TGF-b activated
kinase 1), which is recruited to the TbRI recep-
tor by Smad7. TAK1 is a MAPKKK activated in
response to TGF-b, interleukin-1, and several
other inducers (Yamaguchi et al. 1995; Nino-
miya-Tsuji et al. 1999; Shim et al. 2005). K63-
linked polyubiquitylation activates TAK1,
which triggers the activation of p38 MAPK or
JNK by MAP kinase kinase 3 (MKK3) or
MKK6, inducing apoptosis (Edlund et al.
2003) or actin reorganization through activa-
tion of small GTPases Cdc42 and RhoA (Ed-
lund et al. 2004). Smad7 is required for the
TRAF6 pathway, as its scaffold function allows
assembly of TAK1, MKK3, and p38 MAPK, and
facilitates the activation of p38 MAPK (Edlund
et al. 2003; Jung et al. 2013).
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In contrast, Smad6 negatively regulates the
TRAF6 pathway (Jung et al. 2013). TGF-b in-
duces the expression of Smad6 through Smad-
mediated transcriptional activation (Afrakhte et
al. 1998). Smad6 then associates with TRAF6
and the TNF-a-induced protein A20 (Krikos
et al. 1992) via distinct regions of the protein.
A20 inhibits several ubiquitin ligases, including
TRAF6, and functions as a negative regulator of
the NF-kB pathway. Smad6 suppresses the acti-
vation of p38 MAPK and JNK by facilitating the
inhibition of TRAF6 by A20 (Jung et al. 2013).

Thus, Smad7 effectively enhances the TGF-
b-induced noncanonical TRAF6-p38-JNK
pathway, acting as a scaffold to facilitate TAK1-
mediated activation of downstream kinases and
also inhibiting the induction of Smad6 expres-
sion through suppression of the Smad pathway.
These findings explain previous reports that
increased Smad7 expression leads to the apo-
ptosis of some epithelial cell lines (Landström
et al. 2000; Lallemand et al. 2001; Mazars et al.
2001), probably because of increased TRAF6
pathway activity.

Regulation of Other Signaling Pathways
by I-Smads

TGF-b has anti-inflammatory activity that is
mediated through the induction of I-Smads.
Specifically, Smad7 aids in the inhibition of
proinflammatory TNF-a signaling (Lallemand
et al. 2001). The TNF receptor 1 signals through
TRAF2, which activates TAK1 in the presence of
TAB2 and TAB3, but Smad7 sequesters TAB2
and TAB3, inhibiting the activation of TAK1
and downstream NF-kB (Hong et al. 2007). Ac-
cordingly, Smad7 induces apoptosis in podo-
cytes through inhibition of NF-kB signaling
(Schiffer et al. 2001).

Smad6 also suppresses innate immunity re-
sponses. Toll-like receptors (TLRs) are involved
in innate immunity by excluding invading path-
ogens. Among the TLRs, TLR4 and TLR2 signal
through MyD88 to induce the activation of
NF-kB. TGF-b inhibits the MyD88-dependent
pathway by inducing Smad6 expression. Smad6
then recruits Smurfs to MyD88 and triggers its
polyubiquitylation and proteasomal degrada-

tion (Lee et al. 2011). In addition, Smad6 se-
questers Pellino, an adaptor protein that inter-
acts with interleukin-1 receptor-associated ki-
nase 1 (IRAK1) and interferes with the forma-
tion of the IRAK1-mediated signaling complex
downstream of MyD88 in the TLR4 signaling
pathway (Choi et al. 2006). A subregion of the
Smad6 MH2 domain spanning amino acid res-
idues 422–441 is responsible for the association
with Pellino. Smaducin-6, a palmitic acid-con-
jugated peptide containing the Pellino-binding
sequence, is therapeutically effective in cecal li-
gation puncture-induced sepsis, a mouse model
of TLR4-mediated inflammatory disease (Lee
et al. 2015).

Wnt proteins transmit signals through gly-
cogen synthase kinase 3b (GSK-3b) and stabi-
lize b-catenin. The expression of c-myc and
other genes is induced by complexes of b-
catenin with one of the related transcription
factors, lymphoid enhancer-binding factor 1
(LEF1) or T-cell factor (TCF). Smad7 has also
been shown to interact with b-catenin and
LEF1 or TCF in response to TGF-b stimulation,
and to induce b-catenin accumulation in a p38
MAPK-dependent manner (Edlund et al. 2005).
Thus, the induction of c-myc expression by
b-catenin may contribute, at least in part, to
the induction of apoptosis by Smad7. Smad7
is also required for the TGF-b-induced phos-
phorylation of Akt and GSK-3b (Edlund et al.
2005). Thus, Smad7 appears to function as a
scaffold protein for direct activation of p38
MAPK and other signaling pathways. However,
Smad7 inhibits apoptosis by suppressing TGF-
b signaling in some cells (Yamamura et al. 2000;
Arnold et al. 2004), suggesting that these sig-
naling pathways may be activated by Smad7 in
cell-type-specific and context-dependent fash-
ion. Smad6 plays an important role in promot-
ing the exit of neuronal progenitor cells from
the cell cycle and inducing neuronal differenti-
ation in the developing chick dorsal spinal cord,
where Smad6 recruits CtBP to the b-catenin/
TCF complex, suppressing the Wnt/b-catenin
pathway (Xie et al. 2011).

Smad7, but not Smad6, has been shown to
interact through its MH2 domain with c-Cbl
in keratinocytes (Ha Thi et al. 2015). Smad7
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destabilizes epidermal growth factor (EGF)-in-
duced complex formation between c-Cbl and
the epidermal growth factor receptor (EGFR),
inhibiting ligand-induced ubiquitylation and
degradation of EGFR (Ha Thi et al. 2015). These
observations are in contrast to the enhanced
EGFR signaling in Smad7DexI mice (Krampert
et al. 2010), suggesting multiple and complex
functions of Smad7 in the regulation of EGFR
signaling.

Smad7 can also directly interact with other
transcription factors and regulate their stability
and/or function. Smad7 promotes skeletal
muscle differentiation through association with
MyoD, a master regulator of myogenic differen-
tiation, and enhances its transcriptional activity
(Kollias et al. 2006) by protecting it from repres-
sion by MEK (Miyake et al. 2010). In turn,
MyoD binds to the Smad7 proximal promoter
region and induces its expression. Thus, Smad7
and MyoD form a positive feedback loop to
drive myogenic differentiation (Kollias et al.
2006). When Smad7 interacts with interferon
regulatory factor 1 (IRF1), it increases the
affinity of this transcription factor for the in-
terferon-stimulated response element (ISRE)
DNA sequence, regulating the cell death path-
way by enhancing the expression of target genes,
including the gene encoding caspase 8 (Hong
et al. 2013). Smad7 also interacts with c-Myc,
but it induces the down-regulation of c-Myc
protein via ubiquitylation-mediated proteolysis
on recruitment of the F-box protein Skp2, lead-
ing to cytostasis (Kim et al. 2014).

Smad6 interacts with the glucocorticoid re-
ceptor and represses the transactivation induced
by glucocorticoid receptor through recruitment
of HDAC-3 (Ichijo et al. 2005). Smad6 also co-
operates with Smurf1 in the degradation of
Runx2 (Shen et al. 2006). Although Smad6 func-
tions in manycases as atranscriptional repressor,
it appears to enhance the expression of osteo-
pontin, Hex, and Id2 during macrophage differ-
entiation by binding to their promoter regions
either directly or indirectly (Glesne and Huber-
man 2006). During macrophage differentiation,
Smad6 is phosphorylated at Ser435 by protein
kinase X, which may regulate the nuclear func-
tion of Smad6 (Glesne and Huberman 2006).

CONTROL OF I-SMAD FUNCTIONS BY
POSTTRANSLATIONAL MODIFICATIONS
AND PROTEIN INTERACTIONS

The functions of I-Smads are regulated by
posttranslational modifications and interac-
tions with other proteins, which in turn control
their stability and association with receptors
(Fig. 3).

Regulation of I-Smad Protein Stability

Multiple proteins, including ubiquitin ligases,
promote or enhance TGF-b family signaling
by inducing degradation of I-Smads in cooper-
ation with accessory molecules. Smad7 is ubiq-
uitylated at Lys64 and Lys70. These lysines are
also acetylated by the acetyltransferase p300
(Grönroos et al. 2002), conferring resistance
to ubiquitylation. In addition, Smad7 inter-
acts with HDACs, associating with class I
HDACs (HDAC-1 and -3) and class II HDACs
(HDAC-5 and -6) through its MH2 domain
(Simonsson et al. 2005), and with the class III
HDAC sirtuin 1 (SIRT1) through its N domain
(Kume et al. 2007). HDAC-1 and SIRT1 deace-
tylate Smad7 and facilitate its ubiquitylation.
Thus, modification of Smad7 by acetylation,
deacetylation, and ubiquitylation determines
its stability. TGF-b signaling inhibits the acety-
lation of Smad7, although the interaction be-
tween Smad7 and HDACs occurs independent-
ly of TGF-b signaling (Grönroos et al. 2002;
Simonsson et al. 2005). The regulatory mecha-
nisms for these modifications to Smad7 remain
to be elucidated.

Arkadia (also known as RNF111), a RING
type E3 ubiquitin ligase, was first identified as a
protein that enhances signaling by Nodal, in-
ducing the Spemann’s organizer during early
embryogenesis (Episkopou et al. 2001; Nieder-
lander et al. 2001). Arkadia controls the ampli-
fication of TGF-b family signaling through in-
teractions with I-Smads. In contrast to Smurfs,
Arkadia induces ubiquitin-dependent degrada-
tion of Smad6 and Smad7 but not of the type I
receptors, leading to enhanced TGF-b family
signaling (Koinuma et al. 2003; Tsubakihara
et al. 2015). The enhancement of Smad signal-
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ing by Arkadia is also attributed to its ability
to down-regulate c-Ski and SnoN, which sup-
presses Smad signaling in the nucleus (Levy
et al. 2007; Nagano et al. 2007; Le Scolan et al.
2008). The association of Arkadia with Smad7,
but not c-Ski or SnoN, is enhanced in the pres-
ence of Axin (Liu et al. 2006; Koinuma et al.
2011), a scaffold protein that assembles APC,
GSK-3b, and casein kinase Ia, and regulates
Wnt signaling through degradation of b-cate-
nin. Axin forms a ternary complex with Smad7
and Arkadia to facilitate the degradation of
Smad7 (Liu et al. 2006). Similarly, the associa-
tion of Arkadia with c-Ski, but not Smad7 nor
SnoN, is enhanced in the presence of RB1CC1
(RB1-inducible coiled-coil 1, also known as
FIP200) (Koinuma et al. 2011). Thus, Arkadia
appears to require accessory proteins to prefer-
entially target regulators of Smad signaling.

Screening ubiquitin ligases that regulate
TGF-b signaling using a small interfering
RNA (siRNA) library showed that, in addition
to Arkadia (Levy et al. 2007), RING-H2 finger
protein 12 (RNF12) also enhances TGF-b fam-
ily signaling through ubiquitin-dependent deg-
radation of Smad7 (Zhang et al. 2012). Further-
more, the nuclear receptor NR4A1 interacts
with Axin2 and Smad7, facilitating ubiquityla-
tion of Smad7 in cooperation with Arkadia or
RNF12, and strongly enhancing TGF-b signal-
ing (Zhou et al. 2014).

Jab1/CSN5 is a component of the COP9
signalosome complex involved in protein deg-
radation through the ubiquitin-proteasome
pathway. Jab1/CSN5 interacts with and trans-
locates Smad7 from the nucleus to the cyto-
plasm, facilitating its degradation (Kim et al.
2004a). However, Jab1/CSN5 also inhibits
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TGF-b-induced Smad signaling by inducing
the degradation of Smad4 (Wan et al. 2002),
suggesting that Jab1/CSN5 may positively or
negatively regulate TGF-b family signaling
through the degradation of Smad7 and/or
Smad4.

Cbl-b is a RING type E3 ubiquitin ligase
highly expressed in T cells that inhibits T-cell
activation. Cblb2/2 mice develop spontaneous
autoimmunity (Bachmaier et al. 2000), and
CD4þCD252Foxp32 effector T cells from
Cblb2/2 mice do not efficiently convert into
Foxp3þ regulatory T cells in response to TGF-
b in vitro (Wohlfert et al. 2006). Subsequently,
Cbl-b was shown to interact with and ubiquity-
late Smad7, leading to decreased Smad7 levels
and efficient TGF-b signaling in T cells (Gruber
et al. 2013). Consistent with these findings, the
repression of interleukin-2 and interferon-g ex-
pression by TGF-bwas attenuated in T cells pre-
pared from Cblb2/2 mice, but restored in those
prepared from Cblb2/2/CD4Cre-Smad7fl/fl

mice (Gruber et al. 2013).
Hydrogen peroxide–inducible clone-5

(Hic-5), an adaptor protein containing LIM do-
mains, interacts with Smad7 and induces its
down-regulation (Wang et al. 2008), which is
not inhibited by proteasomal inhibitors. Be-
cause Hic-5 also associates with Smad3 and in-
hibits Smad3-dependent transcription (Wang et
al. 2005), it may preferentially enhance Smad2-
dependent and non-Smad signaling through
targeted degradation of Smad7 (Wang et al.
2008).

Regulation of the Interaction between
I-Smads and Type I Receptors

Smad6 is methylated at Arg38 by protein
arginine N-methyltransferase 1 (PRMT1) (Ina-
mitsu et al. 2006; Xu et al. 2013). The methyla-
tion is facilitated in the BMP-induced receptor
complex; PRMT1 associates with the type II
receptor while Smad6 interacts with the type I
receptor (Xu et al. 2013). The resultant methyl-
ation of Smad6 in response to BMP leads to its
dissociation from the type I receptor, permit-
ting efficient signal transduction through phos-
phorylation of Smad1, -5, and -8. This reaction,

a prerequisite for BMP signaling, partly explains
the slow kinetics of Smad phosphorylation after
BMP stimulation.

The UBE2O (ubiquitin-conjugating en-
zyme E2O, also known as E2-230K), which
functions as an E2-E3 hybrid ubiquitin ligase,
was identified as an I-Smad-binding protein in
a proteomics screening (Zhang et al. 2013b).
UBE2O interacts with and monoubiquitylates
Smad6 at Lys174, reducing the interaction be-
tween Smad6 and BMP type I receptors. Thus,
UBE2O promotes BMP signaling by suppress-
ing Smad6 function. UBE2O also interacts with
Arkadia and RNF12, recruiting these proteins
to Smad7 and facilitating the polyubiquityla-
tion of Smad7 (Zhang et al. 2013b). The con-
tribution of this mechanism to TGF-b family
signaling is yet to be examined.

Smad7 is phosphorylated at Thr96 by the
murine protein serine/threonine kinase 38
(MPK38), which results in the translocation of
Smad7 from the nucleus to the cytoplasm, en-
hancing the inhibitory activity of Smad7 at the
TbRI receptor (Seong et al. 2010). Similar-
ly, Smad6 is phosphorylated at Thr176 by
MPK38, enhancing the inhibition of BMP sig-
naling by Smad6 (Seong et al. 2010). In contrast,
phosphorylation of Smad7 at Ser249 by other
unknown kinase(s) does not significantly affect
the inhibitory activity of Smad7 on TGF-b sig-
naling (Pulaski et al. 2001).

Another protein, AMSH (associated mole-
cule with the SH3 domain of STAM), binds
Smad6 on BMP stimulation and antagonizes
the inhibitory effects of Smad6 by preventing
the interaction of Smad6 with BMP type I re-
ceptors and Smad1 (Itoh et al. 2001). In re-
sponse to BMP-7 stimulation, Smad6 is export-
ed to the cytoplasm and colocalizes with
AMSH. BMP signaling induces the phosphory-
lation of AMSH by JNK and/or p38 MAPK,
leading to attenuation of the antagonistic effects
of AMSH on Smad6 function (Itoh et al. 2001).
AMSH2, an AMSH-related protein, also inter-
acts with Smad7 and suppresses its inhibitory
activity (Ibarrola et al. 2004). The activity of
AMSH is regulated by RNF11, a small RING
finger protein that interacts with Smurf2 and
AMSH (Li and Seth 2004). The RNF11–Smurf2

Regulation of TGF-b Family Signaling by Inhibitory Smads

Cite this article as Cold Spring Harb Perspect Biol 2017;9:a022095 11

http://cshperspectives.cshlp.org/


complex induces ubiquitin-dependent degra-
dation of AMSH, resulting in the inhibition of
TGF-b family signaling in RNF11- and Smurf2-
expressing cells. AMSH belongs to a family of
deubiquitylating enzymes, but whether the
deubiquitylation activity is required for its in-
hibitory action on I-Smads is unclear.

Tob (transducer of ErbB2) is a member of
the “antiproliferative protein” family, which
also includes Tob2, BTG1, BTG2/PC3/TIS21,
and BTG3. Tob associates with Smad1, -5, and
-8, and represses BMP-dependent transcription
in osteoblasts (Yoshida et al. 2000). In addition,
Tob and Tob2 interact with I-Smads and atten-
uate BMP signaling by enhancing the inter-
action of I-Smads with activated BMP type I
receptors at the plasma membrane (Yoshida
et al. 2003). Similarly, YAP65 and STRAP inter-
act with Smad7, facilitate its association with
activated type I receptors, and augment its in-
hibitory activity (Datta and Moses 2000; Fer-
rigno et al. 2002).

TGF-b-stimulated clone 22 (TSC-22), a
protein with a conserved TSC box and a leucine
zipper motif, interferes with the association
of the Smad7–Smurf complex with TbRI,
preventing ubiquitylation-dependent receptor
degradation (Yan et al. 2011). Because TSC-22
is posttranscriptionally up-regulated by TGF-b,
it is a positive feedback regulator of TGF-b sig-
naling.

CONTROL OF I-SMAD EXPRESSION

The expression of I-Smads is regulated in re-
sponse to a variety of stimuli, including TGF-
b, BMP, interferon-g, cytokines that activate
NF-kB signaling, laminar shear stress, and UV
irradiation. In response to TGF-b, the Smad3–
Smad4 complex associates with the Smad7 pro-
moter and activates its transcription, whereas
BMP induces Smad1 to bind and activate
Smad7 transcription through distinct regulato-
ry elements (Nagarajan et al. 1999; Denissova
et al. 2000; Benchabane and Wrana 2003). The
transcription factors AP-1, TFE3, and Sp1 also
bind to the Smad7 promoter and regulate its
transcription (Brodin et al. 2000; Hua et al.
2000), and GATA transcription factors cooper-

ate with Smad1 in BMP-induced Smad7 expres-
sion (Benchabane and Wrana 2003). Conceptu-
ally similarly, Smad1 and -5 associate with the
Smad6 promoter in response to BMP and in-
duce its transcription (Ishida et al. 2000). OAZ,
a transcription factor with 30 Krüppel-like zinc
fingers (Hata et al. 2000), interacts with Smad1
and induces BMP-dependent transcription of
Smad6 by binding to its promoter (Ku et al.
2006).

Under certain conditions, I-Smads enable
signaling cross talk. In some cells, interferon-g
and interleukin-6 repress TGF-b family signal-
ing through the induction of Smad7 expression
by the Jak-STAT pathway (Ulloa et al. 1999; Jen-
kins et al. 2005). Interleukin-7 activates Smad7
expression and inhibits TGF-b signaling in
fibroblasts derived from pulmonary fibrosis
induced by bleomycin (Huang et al. 2002). Nor-
epinephrine and the proinflammatory cyto-
kines TNF-a and interleukin-1 induce Smad7
expression in an NF-kB-dependent manner
(Bitzer et al. 2000; Kanamaru et al. 2001). The
transmembrane protein CD40, which is struc-
turally related to the TNF receptor family, also
induces the expression of Smad7 through the
NF-kB pathway (Patil et al. 2000).

CD4þCD25þ regulatory T cells play a cru-
cial role in maintaining immunological self-
tolerance. TGF-b induces a regulatory pheno-
type in human and mouse CD4þCD252 T cells
through the expression of the winged-helix/
forkhead transcription factor Foxp3. Foxp3 ef-
ficiently suppresses the expression of Smad7
(Fig. 3), leading to enhanced TGF-b signaling
and acquisition of regulatory properties by these
cells, including an antiproliferative effect on
CD4þ T cells (Fantini et al. 2004). Thus, a pos-
itive autoregulatory loop of TGF-b signaling is
formed in CD4þCD252 T cells through Foxp3-
mediated attenuation of Smad7 expression.

TGF-b signaling rapidly induces the expres-
sion of TIEG1 (TGF-b-inducible early gene-1),
a Krüppel-like transcription factor. TIEG1 di-
rectly associates with the Smad7 promoter and
represses its expression, thereby enhancing
TGF-b signaling (Johnsen et al. 2002a). Thus,
TIEG1 forms a positive feedback loop of TGF-b
signaling similar to Foxp3. The E3 ubiquitin
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ligase SIAH1 (seven in absentia homolog 1A)
associates with TIEG1 and induces its ubiq-
uitylation and degradation, relieving the sup-
pression of Smad7 expression (Johnsen et al.
2002b).

c-Ski and SnoN repress the basal transcrip-
tion of Smad7 by binding to the Smad-binding
sequence of the Smad7 promoter through
Smad4 (Denissova and Liu 2004; Briones-Orta
et al. 2006). However, on TGF-b stimulation,
these repressive complexes dissociate from the
Smad7 promoter region, permitting induction
of Smad7 expression by the activated Smad3–
Smad4 complex.

During osteoblast differentiation, the ex-
pression of I-Smads is strongly induced by
BMP signaling in a biphasic manner; Smad6
and Smad7 expression are transiently induced
by BMP within a few hours, and then later in-
duced during osteoblast maturation (Maeda
et al. 2004). Endogenous TGF-b also promotes
the expression of I-Smads during osteoblast
maturation, and the ALK-5/TbRI kinase in-
hibitor SB431542 represses endogenous TGF-
b signaling and, thus, the induction of I-Smad
expression. Consequently, inhibition of TGF-b
signaling by SB431542 facilitates mesenchymal
stem cell differentiation into osteoblasts in the
maturation phase (Maeda et al. 2004).

Smad6 and Smad7 expression is detected in
human vascular endothelium in vivo. Because
Smad6 and Smad7 are induced by laminar shear
stress, they may modulate the gene expression
induced by TGF-b and BMPs in response to
humoral and mechanical stimulation, respec-
tively, in the vasculature in homeostasis and
disease (Topper et al. 1997).

MicroRNA-21 (miR-21) is a TGF-b- and
BMP-regulated miRNA. Activated Smad pro-
teins promote the maturation of miR-21 inde-
pendent of Smad4 by associating with the stem
region of pri-miR-21 (Davis et al. 2008). Inter-
estingly, miR-21 suppresses the expression of
Smad7 protein in pulmonary fibroblasts (Liu
et al. 2010), and appears to inhibit Smad7 mes-
senger RNA (mRNA) translation while not af-
fecting the Smad7 mRNA level (Li et al. 2013). In
contrast, many microRNAs, including miR-181
and the miR-106b-25 and miR-216a/217 clus-

ters, suppress Smad7 expression by inducing
Smad7 mRNA degradation (Smith et al. 2012;
Xia et al. 2013; Parikh et al. 2014), enhancing
TGF-b signaling. miRNAs that control the ex-
pression of Smad6 have not yet been reported.

Several low molecular weight compounds
regulate the expression of I-Smads, affecting
TGF-b signaling. Simvastatin inhibits Smad6
and Smad7 expression in CD4þFoxp32 T cells
to promote the induction of Foxp3þ cells by
TGF-b (Kim et al. 2010). In contrast, halofugi-
none induces Smad7 mRNA expression (Xavier
et al. 2004). How these low molecular weight
compounds affect the expression of I-Smads
remains to be elucidated.

IN VIVO FUNCTIONS OF I-SMADS

Smad6

Smad6 is expressed in the heart and blood ves-
sels, and Smad62/2 mice show multiple car-
diovascular abnormalities (Galvin et al. 2000),
including defects in outflow tract septation and
hyperplasia of the cardiac valves. These findings
indicate important roles of Smad6 in the regu-
lation of endocardial cushion transformation.
Ossification of the outflow tracts of the heart
and elevated blood pressure have also been ob-
served in these mice. These findings are consis-
tent with the role of Smad6 in repressing BMP
signaling during normal development of the
heart valves and outflow tract (Kruithof et al.
2012). Intriguingly, two nonsynonymous mu-
tations that affect the inhibitory activity of
Smad6 have been found in patients with cardio-
vascular malformation accompanying aortic
stenosis (Tan et al. 2012). These mutations are
located at evolutionarily conserved positions in
the MH2 domain. The Smad6 C484F mutant
has minimal inhibitory activity in BMP signal-
ing, whereas the P415L mutant is hypomorphic.
These findings reveal a critical role of Smad6 in
cardiovascular organogenesis.

BMP signaling is also involved in the reg-
ulation of endochondral bone formation at
multiple stages; it stimulates the proliferation
of chondrocytes, but slows their hypertrophic
differentiation (Minina et al. 2001; Valcourt
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et al. 2002). Smad62/2 mice show craniofacial,
axial, and appendicular skeletal abnormalities
because of stage-specific defects in endochon-
dral bone formation (Estrada et al. 2011) that
can be attributed to enhanced BMP signaling in
chondrocytes. Consistent with these findings,
transgenic mice that express Smad6 in chondro-
cytes show dwarfism with osteopenia, delayed
chondrocyte hypertrophy, and thin trabecular
bone (Horiki et al. 2004).

Smad7

The phenotypes of Smad7 mutant mice have
been reported by several groups (reviewed in
Beppu 2013). Some of the phenotypes can be
explained by increased TGF-b or BMP activity,
but others suggest that Smad7 functions inde-
pendent of TGF-b family signaling. The first
reported Smad7 mutant mice lack the coding
region in exon 1 and only partially lose Smad7
functions (Li et al. 2006). These Smad7DexI mice
with a hypomorphic allele are smaller than
wild-type mice, but are viable and fertile. The
smaller body size of Smad7DexI mice appears to
be due largely to attenuated differentiation of
bone and skeletal muscle (Estrada et al. 2013;
Cohen et al. 2015).

As with Smad62/2 mice, Smad7DexI mice
show abnormalities in axial and appendicular
skeletal development (Estrada et al. 2013). Low
Smad7 activity results in impaired cell cycle
progression in chondrocytes and defects in ter-
minal maturation, which can be attributed to
enhanced BMP and TGF-b signaling in the
growth plates. Both Smad6 mutant mice and
Smad7 mutant mice show anterior and posteri-
or transformations, indicating that they have
overlapping functions. However, Smad7 mutant
mice have defects in lumbar patterning, whereas
Smad62/2 mice do not, suggesting a unique
function of Smad7.

The decreased muscle mass observed in
Smad7DexI mice can be attributed to enhanced
myostatin (also known as GDF-8) signaling
(Cohen et al. 2015). Myostatin is a member of
the TGF-b family that potently suppresses skel-
etal muscle growth (Lee 2004) and decreases the
transcriptional activity of MyoD in the absence

of Smad7 (Kollias et al. 2006). Smad7DexI mice
also show altered myofiber type composition
toward oxidative types, impaired skeletal mus-
cle regeneration, and decreased satellite cell pro-
liferation, probably as a result of enhanced my-
ostatin signaling (Cohen et al. 2015).

TGF-b is a potent inducer of tissue fibrosis.
In the CCl4-induced chronic liver damage mod-
el, Smad7DexI mice show more severe liver inju-
ry, elevated collagen deposition, and increased
numbers of activated hepatic stellate cells
(Hamzavi et al. 2008) compared with control
mice. The mutant mice also show enhanced tis-
sue injury, more progressive fibrosis, inflamma-
tion in a unilateral ureteral obstruction (UUO)
model of renal fibrosis (Chung et al. 2009),
streptozotocin-induced model of diabetic kid-
ney injury (Chen et al. 2011), and angiotensin
II-induced hypertensive nephropathy and car-
diac remodeling (Liu et al. 2013; Wei et al.
2013). Enhanced inflammation in Smad7 mu-
tant mice may be attributed, at least in part, to
the inhibitory effect of Smad7 on NF-kB signal-
ing. Mutant B lymphocytes also show pheno-
types with enhanced TGF-b signaling: facilitat-
ed class switch recombination to IgA, enhanced
spontaneous apoptosis, and attenuated prolif-
eration after stimulation with lipopolysaccha-
ride (Li et al. 2006).

Intriguingly, Smad7DexI mice are more sus-
ceptible to diethylnitrosoamine-induced hepa-
tocarcinogenesis, suggesting that Smad7 has a
tumor suppressor function in the liver (Wang
et al. 2013). In addition, enhanced cell prolifer-
ation and suppressed apoptosis have been ob-
served in the mutant mice. The phenotypes may
be caused by derepression of c-Myc expression,
enhanced NF-kB signaling, and/or attenuation
of the TRAF6 pathway of TGF-b signaling.

Smad7D/D mutant mice, which lack expres-
sion of the entire Smad7 protein, are embryonic
lethal (Kleiter et al. 2010). Furthermore,
Smad7DMH2 mice on a C57BL/6 background,
which lack the MH2 domain required for the
inhibitory activity of Smad7, die before weaning
(Chen et al. 2009; Tojo et al. 2012). Smad7DMH2

mice that die in utero have cardiac defects, in-
cluding ventricular septal defects, noncompac-
tion, and outflow tract malformation (Chen
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et al. 2009). These phenotypes do not overlap
with those of Smad62/2 mice (Galvin et al.
2000), suggesting functional specificity of each
I-Smad in the cardiac system. Unexpectedly, the
induction of TGF-b or BMP target genes, such
as the genes encoding plasminogen activator
inhibitor-1 or Id1, respectively, is not enhanced
in mouse embryonic fibroblasts prepared from
Smad7DMH2 embryos on the C57BL/6 back-
ground (Tojo et al. 2012) compared with cells
from different organs in other reports (Kleiter
et al. 2010; Zhu et al. 2011; Estrada et al. 2013).
In addition, Smad7DMH2 mice with an internal
control region (ICR) genetic background de-
velop to adulthood, although their body size is
smaller (Tojo et al. 2012). Thus, the phenotypic
effects of Smad7 inactivation are largely depen-
dent on the context of the cells or organs.

High expression of Smad7 is observed in
peripheral CD4þ cells from multiple sclerosis
patients during relapse (Kleiter et al. 2010).
The expression of Smad7 correlates positively
with that of T-bet, a transcription factor in-
volved in T helper cell type 1 (TH1) responses.
Consistent with these observations, transgenic
mice with increased Smad7 expression in T cells
(CD2-Smad7) show enhanced experimental
autoimmune encephalomyelitis, a model of
multiple sclerosis in which the infiltration of
inflammatory cells and TH1 responses are facil-
itated in the central nervous system. In contrast,
T-cell-specific Smad7 knockout in CD4Cre-
Smad7fl/fl mice results in immunosuppression
and reduced TH1 responses, with unaltered
TH17 responses. The Smad7 expression level
in T cells has been shown to be a determinant
of TH1 differentiation (Kleiter et al. 2010).

Smad7 is expressed in the lens and retina
during embryonic eye development in mice,
where BMP signaling has been shown to play
important roles in lens induction, optic vesicle
invagination, and retinal spatial patterning
(Zhang et al. 2013a). Smad7DMH2 mice have
multiple defects in eye development, including
coloboma and microphthalmia. The effects of
Smad7 inactivation during eye development
depend on the cell type, developmental stage,
and genetic background of the mice. These
phenotypes observed in mutant mice with the

C57BL/6 background are rarely seen in mice
with the 129/FVB hybrid background. In ad-
dition, enhanced apoptosis in the retina of
Smad7DMH2 mice has been observed at E10.5
(Zhang et al. 2013a), whereas conditional inac-
tivation of Smad7 in developing neural retina
(aCre-Smad7fl/fl) has been shown to attenuate
apoptosis at E16.5 and later, in which TGF-b
signaling protects against developmental cell
death through the induction of nerve growth
factor (NGF) expression (Braunger et al. 2013).

Hepatocyte-specific deletion of the Smad7
MH2 domain using albumin-Cre transgenic
mice results in spontaneous liver dysfunction
with the apoptosis of hepatocytes and aggrava-
tion of alcohol-induced liver injury because of
the down-regulation of alcohol dehydrogenase
1 (ADH1) expression (Zhu et al. 2011). Sponta-
neous liver damage is not observed in hypomor-
phic Smad7DexI mice (Hamzavi et al. 2008),
probably because of incomplete inactivation
of Smad7 activity. Conditional silencing of
Smad7 in the pancreas at E10.5 (PdxCre-ERT-
Smad7fx/fx) results in a diminished number of
hormone-producing cells, whereas genetic ab-
lation of both Smad2 and Smad3 expression has
effects that are opposite to those of Smad7 (El-
Gohary et al. 2013). These phenotypes are ex-
plained by increased TGF-b signaling.

Smad7 may function independently from
TGF-b and BMP signaling in certain situations.
The proliferation of adult neural stem/progen-
itor cells is normally inhibited by TGF-b in vitro
and in vivo (Wachs et al. 2006). However, the
cells derived from Smad7DexI mice have higher
potential to proliferate, form spheres, and self-
renew compared with cells from wild-type mice
as a result of enhanced EGF signaling (Kram-
pert et al. 2010). Another example is promotion
of pancreas b-cell proliferation during inflam-
mation induced by pancreatic duct ligation
(PDL) (Xiao et al. 2014). After PDL, infiltrated
M2 macrophages secrete TGF-b1, which induc-
es Smad7 in b cells. Smad7 then promotes the
proliferation of b cells by inducing the expres-
sion of cyclin D1 and D2 and excluding p27Kip1

from the nucleus. Increased Smad7 expression
is required and sufficient for b-cell prolifera-
tion. The effect of Smad7 does not appear to
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be caused by inhibition of TGF-b signaling, as
conditional deletion of both TGF-b type I and
II receptors in b cells substantially inhibits b-
cell proliferation after PDL (El-Gohary et al.
2014).

DYSREGULATION OF I-SMADS IN
DISEASE

Fibrosis

Decreased expression or deficient function of
Smad7 leading to the acceleration of TGF-b-
induced fibrosis has been reported in various
diseases, including those of the skin, kidney,
and lung. Smad7 expression is higher in sclero-
derma fibroblasts than in normal fibroblasts,
but the inhibitory effect of Smad7 on TGF-b
signaling is impaired in scleroderma fibroblasts
(Asano et al. 2004). The expression levels of
Smurfs do not differ significantly between nor-
mal and scleroderma cells (Asano et al. 2004),
and the mechanisms underlying the impaired
negative regulation of TGF-b signaling by the
Smad7-Smurf system remain to be elucidated.

Although the Smad7 mRNA level is in-
creased, a significant decrease in Smad7 protein
has been observed in obstructive nephropathy
in mice with UUO as a result of increased ubiq-
uitylation and degradation of Smad7 (Fukasawa
et al. 2004). Although the expression of Smurf1
and Smurf2 is increased in UUO kidneys, how
Smad7 protein expression is reduced is un-
known.

Consistent with the finding that TGF-b sig-
naling plays important roles in the development
of tissue fibrosis, adenovirus-mediated expres-
sion of Smad7 attenuates TGF-b-induced fibro-
sis in various tissues, including the lung and
kidney (Nakao et al. 1999; Terada et al. 2002).
In addition, adenoviral expression of Smad7
prevents the epithelial-mesenchymal transition
(EMT) of lens epithelial cells and accelerates the
healing of corneal tissue after ocular burns
(Saika et al. 2005). Transgenic mice expressing
Smad7 in the skin show severe epithelial abnor-
malities, including epidermal hyperplasia and
aberrant morphogenesis of hair follicles (He
et al. 2002).
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cells induces Smad7 expression in a STAT1-de-
pendent manner, leading to sustained TH1-in-
duced tissue injury (Monteleone et al. 2004c).

High-dose radiation often induces oral mu-
cositis, accompanied by excessive inflammation
and epithelial ablation. Transgenic mice overex-
pressing Smad7 in keratinocytes are resistant to
radiation-induced oral mucositis (Han et al.
2013). Smad7 suppresses inflammation through
inhibition of the NF-kB pathway and enhances
keratinocyte migration through derepression of
Rac1 expression. Rac1 expression is down-reg-
ulated by TGF-b signaling in the presence of
CtBP. Notably, Smad7 protein fused to a cell-
permeable tag (Tat) shows therapeutic, as well
as prophylactic effects on radiation-induced
oral mucositis when topically applied to oral
mucosa in mice (Han et al. 2013). In wounded
skin, Smad7 is up-regulated in migrating kera-
tinocytes and proliferative fibroblasts, accelerat-
ing wound healing and remodeling (Han et al.
2011).

Cancer

Decreased sensitivity to TGF-b-induced growth
inhibition because of Smad7 overexpression
may aid in the progression of some tumors.
Both Smad7 and Smad6 have been shown to
be overexpressed in pancreatic cancer cells and
to confer resistance to TGF-b family signaling
in these cells (Kleeff et al. 1999a,b). Pancreas-
specific expression of Smad7 in mice results
in the development of premalignant ductal le-
sions characterized by pancreatic intraepithelial
neoplasia and increased fibrosis (Kuang et al.
2006), suggesting a critical role of up-regulated
Smad7 expression in pancreas carcinogenesis.
Increased expression of Smad7 correlates with
poor prognosis for certain types of cancer, in-
cluding hepatocellular carcinoma and gastric
cancer (Kim et al. 2004b; Park et al. 2004). In
addition, SMAD7 copy number and patient
survival correlate inversely in colorectal cancer
(Boulay et al. 2003). Furthermore, single nucle-
otide polymorphisms in SMAD7 are associated
with increased risk of colorectal cancer (Brode-
rick et al. 2007; Slattery et al. 2010). Although
these polymorphisms do not affect the coding

sequence of Smad7, they may result in de-
creased mRNA expression (Pittman et al. 2009).

UV irradiation may contribute to the pro-
gression of squamous cell carcinomas as a result
of Smad7-mediated suppression of TGF-b sig-
naling (Quan et al. 2005). The expression of
Smad7 and GADD34 is up-regulated by UV
irradiation, and the GADD34–PP1c complex
cooperates with Smad7 in the inhibition of
TGF-b signaling by promoting receptor de-
phosphorylation (Shi et al. 2004). Thus, the
Smad7–GADD34–PP1c complex may induce
the proliferation and hyperplasia of keratino-
cytes and reduce extracellular matrix deposition
and premature skin aging, leading to the pro-
gression of cancer.

Smad7 has been showed to play a role in the
transformation of keratinocytes. Overexpres-
sion of Smad7 alone results in facilitated prolif-
eration and the prevention of differentiation of
mouse keratinocytes, but fails to induce tumor
formation. Cells manipulated to express v-rasHa

or v-rasHa and Smad6 form benign papilloma in
vivo, but those coexpressing v-rasHa and Smad7
rapidly progress to squamous cell carcinoma
(Liu et al. 2003). In addition, TGF-b signaling
is suppressed and the production of EGF family
growth factors, including TGF-a, heparin bind-
ing (HB)-EGF, or amphiregulin, is induced in
keratinocytes expressing v-rasHa and Smad7.
Thus, Smad7 may cooperate with v-rasHa in
the rapid progression of keratinocytes from be-
nign papilloma to malignant squamous carci-
noma by preventing TGF-b signaling and en-
hancing EGFR signaling.

Although perturbations in TGF-b signaling
result in the transformation of normal cells,
TGF-b signaling also facilitates the invasion by
and metastasis of some advanced cancers. Using
the JygMC(A) mouse breast cancer cell line,
which spontaneously metastasizes to the lung
and liver after subcutaneous inoculation in
nude mice, systemic administration of an ade-
novirus expressing Smad7 was shown to prevent
metastasis to the lung and liver and prolonged
mean survival (Azuma et al. 2005). Smad7 di-
rectly affects the cancer cells to inhibit EMT
and prevent metastasis. Thus, the blockade of
TGF-b signaling by Smad7 may provide new

Regulation of TGF-b Family Signaling by Inhibitory Smads

Cite this article as Cold Spring Harb Perspect Biol 2017;9:a022095 17

http://cshperspectives.cshlp.org/


therapeutic strategies for preventing metastasis
in patients with advanced cancers.

CONCLUSION AND PERSPECTIVES

I-Smads are now known to regulate both Smad
and non-Smad pathways of TGF-b family sig-
naling through multiple mechanisms. In addi-
tion, recent studies have suggested that I-Smads
are also involved in the regulation of other sig-
naling pathways. Although it is well established
that Smad7, but not Smad6, effectively inhibits
TGF-b signaling, how these functional differ-
ences arise remains unclear. Because I-Smads
are implicated in the development of certain
clinical diseases, it is important to elucidate
the molecular mechanisms by which I-Smads
inhibit TGF-b family signaling. Recent progress
in the field have revealed that the functions of I-
Smads are tightly regulated by various enzymes,
including ubiquitin ligases, acetyltransferases,
deacetylase, and methyl transferase. Elucidating
the functional roles of these regulators in vivo
will be important. As aberrant I-Smad expres-
sion has been suggested to play roles in various
diseases, it will also be important to determine
how the expression levels of I-Smad proteins are
controlled in these diseases. Moreover, I-Smads
play crucial roles in fine-tuning the magnitude
of TGF-b family signaling. Thus, defining the
regulatory mechanisms of I-Smad function may
aid in understanding how TGF-b family signal-
ing coordinates the growth, differentiation, and
morphogenesis of various cells and tissues in
physiological and pathological conditions.

ACKNOWLEDGMENTS

This manuscript is a substantially updated ver-
sion of a work by K. Miyazono (2008).

REFERENCES

Afrakhte M, Morén A, Jossan S, Itoh S, Sampath K, Wester-
mark B, Heldin CH, Heldin NE, ten Dijke P. 1998. In-
duction of inhibitory Smad6 and Smad7 mRNA by TGF-
b family members. Biochem Biophys Res Commun 249:
505–511.

Arnold NB, Ketterer K, Kleeff J, Friess H, Buchler MW, Korc
M. 2004. Thioredoxin is downstream of Smad7 in a path-

way that promotes growth and suppresses cisplatin-in-
duced apoptosis in pancreatic cancer. Cancer Res 64:
3599–3606.

Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K. 2004. Im-
paired Smad7-Smurf-mediated negative regulation of
TGF-b signaling in scleroderma fibroblasts. J Clin Invest
113: 253–264.

Azuma H, Ehata S, Miyazaki H, Watabe T, Maruyama O,
Imamura T, Sakamoto T, Kiyama S, Kiyama Y, Ubai T,
et al. 2005. Smad7 inhibits metastasis of mouse breast
cancer by direct action on cancer cells. J Natl Cancer
Inst 97: 1734–1746.

Bachmaier K, Krawczyk C, Kozieradzki I, Kong YY, Sasaki T,
Oliveira-dos-Santos A, Mariathasan S, Bouchard D,
Wakeham A, Itie A, et al. 2000. Negative regulation of
lymphocyte activation and autoimmunity by the molec-
ular adaptor Cbl-b. Nature 403: 211–216.

Bai S, Cao X. 2002. A nuclear antagonistic mechanism of
inhibitory Smads in transforming growth factor-b sig-
naling. J Biol Chem 277: 4176–4182.

Bai S, Shi X, Yang X, Cao X. 2000. Smad6 as a transcriptional
corepressor. J Biol Chem 275: 8267–8270.

Bai Y, Yang C, Hu K, Elly C, Liu YC. 2004. Itch E3 ligase-
mediated regulation of TGF-b signaling by modulating
Smad2 phosphorylation. Mol Cell 15: 825–831.

Benchabane H, Wrana JL. 2003. GATA- and Smad1-depen-
dent enhancers in the Smad7 gene differentially interpret
bone morphogenetic protein concentrations. Mol Cell
Biol 23: 6646–6661.

Beppu H. 2013. Smad7-modified alleles by various gene-
targeting strategies. J Biochem 153: 399–401.

Berg DT, Myers LJ, Richardson MA, Sandusky G, Grinnell
BW. 2005. Smad6s regulates plasminogen activator in-
hibitor-1 through a protein kinase C-b-dependent up-
regulation of transforming growth factor-b. J Biol Chem
280: 14943–14947.

Bitzer M, von Gersdorff G, Liang D, Dominguez-Rosales A,
Beg AA, Rojkind M, Böttinger EP. 2000. A mechanism of
suppression of TGF-b/SMAD signaling by NF-kB/RelA.
Genes Dev 14: 187–197.

Boulay JL, Mild G, Lowy A, Reuter J, Lagrange M, Terrac-
ciano L, Laffer U, Herrmann R, Rochlitz C. 2003. SMAD7
is a prognostic marker in patients with colorectal cancer.
Int J Cancer 104: 446–449.

Braunger BM, Pielmeier S, Demmer C, Landstorfer V, Ka-
wall D, Abramov N, Leibinger M, Kleiter I, Fischer D,
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AL, Pedré X, Hövelmeyer N, Yogev N, Mildner A, et al.
2010. Smad7 in T cells drives T helper 1 responses in
multiple sclerosis and experimental autoimmune en-
cephalomyelitis. Brain 133: 1067–1081.

Koinuma D, Shinozaki M, Komuro A, Goto K, Saitoh M,
Hanyu A, Ebina M, Nukiwa T, Miyazawa K, Imamura T,
et al. 2003. Arkadia amplifies TGF-b superfamily signal-
ling through degradation of Smad7. EMBO J 22: 6458–
6470.

Koinuma D, Shinozaki M, Nagano Y, Ikushima H, Horigu-
chi K, Goto K, Chano T, Saitoh M, Imamura T, Miyazono
K, et al. 2011. RB1CC1 protein positively regulates trans-
forming growth factor-b signaling through the modula-
tion of Arkadia E3 ubiquitin ligase activity. J Biol Chem
286: 32502–32512.

Kollias HD, Perry RL, Miyake T, Aziz A, McDermott JC.
2006. Smad7 promotes and enhances skeletal muscle dif-
ferentiation. Mol Cell Biol 26: 6248–6260.

Komuro A, Imamura T, Saitoh M, Yoshida Y, Yamori T,
Miyazono K, Miyazawa K. 2004. Negative regulation of
transforming growth factor-b (TGF-b) signaling by WW
domain-containing protein 1 (WWP1). Oncogene 23:
6914–6923.
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