@prefix dbo: .
@prefix dbr: .
dbr:Sobel_operator dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Canny_edge_detector dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Libfixmath dbo:wikiPageWikiLink dbr:Atan2 .
@prefix foaf: .
@prefix wikipedia-en: .
wikipedia-en:Atan2 foaf:primaryTopic dbr:Atan2 .
dbr:Kepler_orbit dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Parallactic_angle dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Great-circle_navigation dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Complex_number dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Exponentiation dbo:wikiPageWikiLink dbr:Atan2 .
dbr:IEEE_754 dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Orthographic_map_projection dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Astronomical_coordinate_systems dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Great-circle_distance dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Solar_azimuth_angle dbo:wikiPageWikiLink dbr:Atan2 .
dbo:wikiPageWikiLink dbr:Atan2 .
@prefix rdf: .
dbr:Atan2 rdf:type dbo:Disease .
@prefix rdfs: .
dbr:Atan2 rdfs:label "Arcotangente de dos par\u00E1metros"@es ,
"\u0642\u0648\u0633 \u0627\u0644\u0638\u0644 \u062B\u0646\u0627\u0626\u064A \u0627\u0644\u0639\u0645\u062F\u0629"@ar ,
"Atan2"@zh ,
"Atan2"@cs ,
"Arctan2"@de ,
"Atan2"@ja ,
"Atan2"@en ,
"Arcotangente2"@it ,
"Atan2"@fr ;
rdfs:comment "In computing and mathematics, the function atan2 is the 2-argument arctangent. By definition, is the angle measure (in radians, with ) between the positive -axis and the ray from the origin to the point in the Cartesian plane. Equivalently, is the argument (also called phase or angle) of the complex number The function first appeared in the programming language Fortran in 1961. It was originally intended to return a correct and unambiguous value for the angle \u03B8 in converting from Cartesian coordinates (x, y) to polar coordinates (r, \u03B8). If and , then and"@en ,
"\u5728\u4E09\u89D2\u51FD\u6570\u4E2D\uFF0C\u4E24\u4E2A\u53C2\u6570\u7684\u51FD\u6570\u662F\u6B63\u5207\u51FD\u6570\u7684\u4E00\u4E2A\u53D8\u79CD\u3002\u5BF9\u4E8E\u4EFB\u610F\u4E0D\u540C\u65F6\u7B49\u4E8E0\u7684\u5B9E\u53C2\u6570\u548C\uFF0C\u6240\u8868\u8FBE\u7684\u610F\u601D\u662F\u5750\u6807\u539F\u70B9\u4E3A\u8D77\u70B9\uFF0C\u6307\u5411\u7684\u5C04\u7EBF\u5728\u5750\u6807\u5E73\u9762\u4E0A\u4E0Ex\u8F74\u6B63\u65B9\u5411\u4E4B\u95F4\u7684\u89D2\u7684\u89D2\u5EA6\u3002\u5F53\u65F6\uFF0C\u5C04\u7EBF\u4E0Ex\u8F74\u6B63\u65B9\u5411\u7684\u6240\u5F97\u7684\u89D2\u7684\u89D2\u5EA6\u6307\u7684\u662Fx\u8F74\u6B63\u65B9\u5411\u7ED5\u9006\u65F6\u9488\u65B9\u5411\u5230\u8FBE\u5C04\u7EBF\u65CB\u8F6C\u7684\u89D2\u7684\u89D2\u5EA6\uFF1B\u800C\u5F53\u65F6\uFF0C\u5C04\u7EBF\u4E0Ex\u8F74\u6B63\u65B9\u5411\u6240\u5F97\u7684\u89D2\u7684\u89D2\u5EA6\u6307\u7684\u662Fx\u8F74\u6B63\u65B9\u5411\u7ED5\u987A\u65F6\u9488\u65B9\u5411\u8FBE\u5230\u5C04\u7EBF\u65CB\u8F6C\u7684\u89D2\u7684\u89D2\u5EA6\u3002 \u5728\u51E0\u4F55\u610F\u4E49\u4E0A\uFF0C\u7B49\u4EF7\u4E8E\uFF0C\u4F46\u7684\u6700\u5927\u4F18\u52BF\u662F\u53EF\u4EE5\u6B63\u786E\u5904\u7406\u800C\u7684\u60C5\u51B5\uFF0C\u800C\u4E0D\u5FC5\u8FDB\u884C\u4F1A\u5F15\u53D1\u9664\u96F6\u5F02\u5E38\u7684\u64CD\u4F5C\u3002 \u51FD\u6570\u6700\u521D\u5728\u8BA1\u7B97\u673A\u7F16\u7A0B\u8BED\u8A00\u4E2D\u88AB\u5F15\u5165\uFF0C\u4F46\u662F\u73B0\u5728\u5B83\u7684\u5E94\u7528\u5728\u79D1\u5B66\u548C\u5DE5\u7A0B\u7B49\u5176\u4ED6\u591A\u4E2A\u9886\u57DF\u5341\u5206\u5E38\u89C1\u3002\u4ED6\u7684\u51FA\u73B0\u6700\u65E9\u53EF\u4EE5\u8FFD\u6EAF\u5230FORTRAN\u8BED\u8A00\uFF0C\u5E76\u4E14\u53EF\u4EE5\u5728C\u8BED\u8A00\u7684\u6570\u5B66\u6807\u51C6\u5E93\u7684math.h\u6587\u4EF6\u4E2D\u627E\u5230\uFF0C\u6B64\u5916\u5728Java\u6570\u5B66\u5E93\u3001.NET\u7684System.Math\uFF08\u53EF\u5E94\u7528\u4E8EC#\u3001VB.NET\u7B49\u8BED\u8A00\uFF09\u3001Python\u7684\u6570\u5B66\u6A21\u5757\u4EE5\u53CA\u5176\u4ED6\u5730\u65B9\u90FD\u53EF\u4EE5\u627E\u5230atan2\u7684\u8EAB\u5F71\u3002\u8BB8\u591A\u811A\u672C\u8BED\u8A00\uFF0C\u6BD4\u5982Perl\uFF0C\u4E5F\u5305\u542B\u4E86C\u8BED\u8A00\u98CE\u683C\u7684atan2\u51FD\u6570\u3002"@zh ,
"Die mathematische Funktion arctan2, auch atan2, ist eine Erweiterung der inversen Winkelfunktion Arkustangens und wie diese eine Umkehrfunktion der Winkelfunktion Tangens. Sie nimmt zwei reelle Zahlen als Argumente, im Gegensatz zum normalen Arkustangens, welcher nur eine reelle Zahl zum Argument hat. Damit hat sie gen\u00FCgend Information, um den Funktionswert in einem Wertebereich von (also allen vier Quadranten) ausgeben zu k\u00F6nnen, und muss sich nicht (wie der normale Arkustangens) auf zwei Quadranten beschr\u00E4nken. Der volle Wertebereich wird h\u00E4ufig ben\u00F6tigt, beispielsweise bei der Umrechnung ebener kartesischer Koordinaten in Polarkoordinaten: wenn der Funktion die beiden kartesischen Koordinaten als Argumente gegeben werden, erh\u00E4lt man den Polarwinkel , der sich im richtigen Quadranten"@de ,
"En trigonom\u00E9trie, la fonction atan2 \u00E0 deux arguments est une variante de la fonction arc tangente. Pour tous arguments r\u00E9els x et y non nuls, est l'angle en radians entre la partie positive de l'axe des abscisses d'un plan, et le point de ce plan de coordonn\u00E9es (x, y). Cet angle est positif pour les angles dans le sens anti-horaire dit sens trigonom\u00E9trique (demi-plan sup\u00E9rieur, y > 0) et n\u00E9gatif dans l'autre (demi-plan inf\u00E9rieur, y < 0)."@fr ,
"atan2\uFF08\u30A2\u30FC\u30AF\u30BF\u30F3\u30B8\u30A7\u30F3\u30C82\uFF09\u306F\u3001\u95A2\u6570\u306E\u4E00\u7A2E\u3002\u300C2\u3064\u306E\u5F15\u6570\u3092\u53D6\u308Barctan\uFF08\u30A2\u30FC\u30AF\u30BF\u30F3\u30B8\u30A7\u30F3\u30C8\uFF09\u300D\u3068\u3044\u3046\u610F\u5473\u3067\u3042\u308B\u3002x\u8EF8\u306E\u6B63\u306E\u5411\u304D\u3068\u3001\u70B9(x, y) \uFF08\u305F\u3060\u3057\u3001(0, 0)\u3067\u306F\u306A\u3044\uFF09\u307E\u3067\u4F38\u3070\u3057\u305F\u534A\u76F4\u7DDA\uFF08\u30EC\u30A4\uFF09\u3068\u306E\u9593\u306E\u3001\u30E6\u30FC\u30AF\u30EA\u30C3\u30C9\u5E73\u9762\u4E0A\u306B\u304A\u3051\u308B\u89D2\u5EA6\u3068\u3057\u3066\u5B9A\u7FA9\u3055\u308C\u308B\u3002\u95A2\u6570\u306F\u3082\u3057\u304F\u306F\u306E\u5F62\u3092\u3068\u308A\u3001\u5024\u306F\u30E9\u30B8\u30A2\u30F3\u3067\u8FD4\u3063\u3066\u304F\u308B\u3002 \u95A2\u6570\u306F\u3001\u30D7\u30ED\u30B0\u30E9\u30DF\u30F3\u30B0\u8A00\u8A9E\u306EFortran (IBM\u793E\u304C1961\u5E74\u306B\u5B9F\u88C5\u3057\u305FFORTRAN-IV)\u306B\u304A\u3044\u3066\u6700\u521D\u306B\u767B\u5834\u3057\u305F\u3002\u5143\u3005\u306F\u3001\u89D2\u5EA6\u03B8\u3092\u76F4\u4EA4\u5EA7\u6A19\u7CFB\u306E(x, y)\u304B\u3089\u6975\u5EA7\u6A19\u7CFB\u306E(r, \u03B8)\u306B\u5909\u63DB\u3059\u308B\u969B\u306B\u3001\u6B63\u78BA\u3067\u4E00\u610F\u306A\u5024\u304C\u8FD4\u3063\u3066\u304F\u308B\u3053\u3068\u3092\u610F\u56F3\u3057\u3066\u5C0E\u5165\u3055\u308C\u305F\u3002\u307E\u305F\u3001\u306F\u8907\u7D20\u6570\u306E\u504F\u89D2 (\u300C\u4F4D\u76F8\u300D\u3068\u3082\u8A00\u3046)\u3092\u6C42\u3081\u308B\u969B\u306B\u3082\u5229\u7528\u3055\u308C\u308B\u3002 \u95A2\u6570 \u306F\u3001\u2212\u03C0 < \u03B8 \u2264 \u03C0\u306E\u7BC4\u56F2\u3067\u3001 \uFF08\u305F\u3060\u3057\u3001r > 0\uFF09\u3068\u306A\u308B\u5358\u4E00\u306E\u5024\u03B8\u3092\u8FD4\u3059\u3002 \u306A\u304A\u3001arctan\u3092\u4F7F\u3063\u3066\u89D2\u5EA6\u03B8\u3092\u6C42\u3081\u308B\u969B\u306B\u6CE8\u610F\u3059\u3079\u304D\u3053\u3068\u3067\u3042\u308B\u304C\u3001\u304C\u771F\u3067\u3042\u308B\u304B\u3089\u3068\u8A00\u3063\u3066\u3001 \u3067\u3042\u308B\u3068\u3044\u3046\u3053\u3068\u304C\u5E38\u306B\u8A00\u3048\u308B\u3068\u306F\u9650\u3089\u306A\u3044\u3002"@ja ,
"In trigonometria l'arcotangente2 \u00E8 una funzione a due argomenti che rappresenta una variazione dell'arcotangente. Comunque presi gli argomenti reali e non entrambi nulli, indica l'angolo in radianti tra il semiasse positivo delle di un piano cartesiano e un punto di coordinate giacente su di esso. L'angolo \u00E8 positivo se antiorario (semipiano delle ordinate positive, ) e negativo se in verso orario (semipiano delle ordinate negative, ). Questa funzione quindi restituisce un valore compreso nell'intervallo . La funzione \u00E8 definita per tutte le coppie di valori reali eccetto la coppia ."@it ,
"\u062A\u064F\u0639\u0631\u064E\u0651\u0641 \u062F\u0627\u0644\u0629 \u0639\u0644\u0649 \u0623\u0646\u0647\u0627 \u0627\u0644\u0632\u0627\u0648\u064A\u0629 \u0641\u064A \u0627\u0644\u0645\u0633\u062A\u0648\u0649 \u0627\u0644\u0625\u0642\u0644\u064A\u062F\u064A\u060C \u0627\u0644\u0645\u0639\u0637\u0627\u0629 \u0628\u0627\u0644\u0631\u0627\u062F\u064A\u0627\u0646\u060C \u0628\u064A\u0646 \u0627\u0644\u0645\u062D\u0648\u0631 \u0627\u0644\u0645\u0648\u062C\u0628 \u0648\u0646\u0635\u0641 \u0627\u0644\u0645\u0633\u062A\u0642\u064A\u0645 \u0645\u0646 \u0627\u0644\u0623\u0635\u0644 \u0625\u0644\u0649 \u0627\u0644\u0646\u0642\u0637\u0629 . \u0638\u0647\u0631\u062A \u062F\u0627\u0644\u0629 \u0644\u0623\u0648\u0644 \u0645\u0631\u0629 \u0641\u064A \u0644\u063A\u0629 \u0627\u0644\u0628\u0631\u0645\u062C\u0629 \u0641\u0648\u0631\u062A\u0631\u0627\u0646 (\u0641\u064A \u062A\u0646\u0641\u064A\u0630 FORTRAN-IV \u0627\u0644\u062E\u0627\u0635 \u0628\u0640 IBM) \u0639\u0627\u0645 1961. \u0643\u0627\u0646 \u0645\u0646 \u0627\u0644\u0645\u0641\u062A\u0631\u0636 \u0641\u064A \u0627\u0644\u0623\u0635\u0644 \u0625\u0631\u062C\u0627\u0639 \u0642\u064A\u0645\u0629 \u0635\u062D\u064A\u062D\u0629 \u0644\u0627 \u0644\u0628\u0633 \u0641\u064A\u0647\u0627 \u0644\u0644\u0632\u0627\u0648\u064A\u0629 \u03B8 \u0641\u064A \u0627\u0644\u062A\u062D\u0648\u064A\u0644 \u0645\u0646 \u0627\u0644\u0625\u062D\u062F\u0627\u062B\u064A\u0627\u062A \u0627\u0644\u062F\u064A\u0643\u0627\u0631\u062A\u064A\u0629 (x, y) \u0625\u0644\u0649 \u0627\u0644\u0625\u062D\u062F\u0627\u062B\u064A\u0627\u062A \u0627\u0644\u0642\u0637\u0628\u064A\u0629 (r, \u03B8) . \u0639\u0644\u0649 \u0642\u062F\u0645 \u0627\u0644\u0645\u0633\u0627\u0648\u0627\u0629\u060C \u0647\u064A \u0639\u0645\u062F\u0629 (\u0648\u062A\u0633\u0645\u0649 \u0623\u064A\u0636\u064B\u0627 \u0627\u0644\u0645\u0631\u062D\u0644\u0629 \u0623\u0648 \u0627\u0644\u0632\u0627\u0648\u064A\u0629) \u0644\u0644\u0639\u062F\u062F \u0627\u0644\u0645\u0631\u0643\u0628 . \u062A\u064F\u0631\u062C\u0650\u0639 \u0642\u064A\u0645\u0629 \u0648\u0627\u062D\u062F\u0629 \u0628\u062D\u064A\u062B \u0648\u0645\u0646 \u0623\u062C\u0644 : \u0625\u0630\u0627 \u0643\u0627\u0646\u062A x > 0\u060C \u062A\u064F\u0639\u0637\u0649 \u0627\u0644\u0632\u0627\u0648\u064A\u0629 \u0645\u0646 \u062E\u0644\u0627\u0644:"@ar ,
"atan2 (n\u011Bkde arctg2) je funkce dostupn\u00E1 v mnoha programovac\u00EDch jazyc\u00EDch, numerick\u00FDch knihovn\u00E1ch a n\u00E1stroj\u00EDch pro v\u00FDpo\u010Dty, kterou lze pou\u017E\u00EDt m\u00EDsto funkce arkus tangens a kter\u00E1 v\u00FDznamn\u011B usnad\u0148uje p\u0159evod z pravo\u00FAhl\u00FDch sou\u0159adnic na pol\u00E1rn\u00ED a podobn\u00E9 \u00FAlohy. Funkce je definovan\u00E1 pro v\u0161echny re\u00E1ln\u00E9 hodnoty dvou parametr\u016F, a v p\u0159\u00EDpadech, kdy je v\u00FDraz na prav\u00E9 stran\u011B definov\u00E1n, plat\u00ED"@cs ,
"La funci\u00F3n arcotangente de dos par\u00E1metros (representada con la notaci\u00F3n o tambi\u00E9n ; el nombre procede de que el c\u00E1lculo de la arcotangente se hace a partir de dos argumentos) devuelve el \u00E1ngulo formado entre el eje x positivo y la recta que conecta el origen con un punto de coordenadas (x, y) \u2260 (0,0) del plano euclidiano, expresado en radianes. De manera equivalente, es el argumento (tambi\u00E9n llamado \"fase\" o \"\u00E1ngulo\") del n\u00FAmero complejo ."@es ;
foaf:depiction ,
,
,
,
,
,
,
.
@prefix dct: .
@prefix dbc: .
dbr:Atan2 dct:subject dbc:Inverse_trigonometric_functions ;
dbo:abstract "In computing and mathematics, the function atan2 is the 2-argument arctangent. By definition, is the angle measure (in radians, with ) between the positive -axis and the ray from the origin to the point in the Cartesian plane. Equivalently, is the argument (also called phase or angle) of the complex number The function first appeared in the programming language Fortran in 1961. It was originally intended to return a correct and unambiguous value for the angle \u03B8 in converting from Cartesian coordinates (x, y) to polar coordinates (r, \u03B8). If and , then and If x > 0, the desired angle measure is However, when x < 0, the angle is diametrically opposite the desired angle, and \u00B1\u03C0 (a half turn) must be added to place the point in the correct quadrant. Using the function does away with this correction, simplifying code and mathematical formulas."@en ,
"atan2 (n\u011Bkde arctg2) je funkce dostupn\u00E1 v mnoha programovac\u00EDch jazyc\u00EDch, numerick\u00FDch knihovn\u00E1ch a n\u00E1stroj\u00EDch pro v\u00FDpo\u010Dty, kterou lze pou\u017E\u00EDt m\u00EDsto funkce arkus tangens a kter\u00E1 v\u00FDznamn\u011B usnad\u0148uje p\u0159evod z pravo\u00FAhl\u00FDch sou\u0159adnic na pol\u00E1rn\u00ED a podobn\u00E9 \u00FAlohy. Funkce je definovan\u00E1 pro v\u0161echny re\u00E1ln\u00E9 hodnoty dvou parametr\u016F, a v p\u0159\u00EDpadech, kdy je v\u00FDraz na prav\u00E9 stran\u011B definov\u00E1n, plat\u00ED"@cs ,
"\u5728\u4E09\u89D2\u51FD\u6570\u4E2D\uFF0C\u4E24\u4E2A\u53C2\u6570\u7684\u51FD\u6570\u662F\u6B63\u5207\u51FD\u6570\u7684\u4E00\u4E2A\u53D8\u79CD\u3002\u5BF9\u4E8E\u4EFB\u610F\u4E0D\u540C\u65F6\u7B49\u4E8E0\u7684\u5B9E\u53C2\u6570\u548C\uFF0C\u6240\u8868\u8FBE\u7684\u610F\u601D\u662F\u5750\u6807\u539F\u70B9\u4E3A\u8D77\u70B9\uFF0C\u6307\u5411\u7684\u5C04\u7EBF\u5728\u5750\u6807\u5E73\u9762\u4E0A\u4E0Ex\u8F74\u6B63\u65B9\u5411\u4E4B\u95F4\u7684\u89D2\u7684\u89D2\u5EA6\u3002\u5F53\u65F6\uFF0C\u5C04\u7EBF\u4E0Ex\u8F74\u6B63\u65B9\u5411\u7684\u6240\u5F97\u7684\u89D2\u7684\u89D2\u5EA6\u6307\u7684\u662Fx\u8F74\u6B63\u65B9\u5411\u7ED5\u9006\u65F6\u9488\u65B9\u5411\u5230\u8FBE\u5C04\u7EBF\u65CB\u8F6C\u7684\u89D2\u7684\u89D2\u5EA6\uFF1B\u800C\u5F53\u65F6\uFF0C\u5C04\u7EBF\u4E0Ex\u8F74\u6B63\u65B9\u5411\u6240\u5F97\u7684\u89D2\u7684\u89D2\u5EA6\u6307\u7684\u662Fx\u8F74\u6B63\u65B9\u5411\u7ED5\u987A\u65F6\u9488\u65B9\u5411\u8FBE\u5230\u5C04\u7EBF\u65CB\u8F6C\u7684\u89D2\u7684\u89D2\u5EA6\u3002 \u5728\u51E0\u4F55\u610F\u4E49\u4E0A\uFF0C\u7B49\u4EF7\u4E8E\uFF0C\u4F46\u7684\u6700\u5927\u4F18\u52BF\u662F\u53EF\u4EE5\u6B63\u786E\u5904\u7406\u800C\u7684\u60C5\u51B5\uFF0C\u800C\u4E0D\u5FC5\u8FDB\u884C\u4F1A\u5F15\u53D1\u9664\u96F6\u5F02\u5E38\u7684\u64CD\u4F5C\u3002 \u51FD\u6570\u6700\u521D\u5728\u8BA1\u7B97\u673A\u7F16\u7A0B\u8BED\u8A00\u4E2D\u88AB\u5F15\u5165\uFF0C\u4F46\u662F\u73B0\u5728\u5B83\u7684\u5E94\u7528\u5728\u79D1\u5B66\u548C\u5DE5\u7A0B\u7B49\u5176\u4ED6\u591A\u4E2A\u9886\u57DF\u5341\u5206\u5E38\u89C1\u3002\u4ED6\u7684\u51FA\u73B0\u6700\u65E9\u53EF\u4EE5\u8FFD\u6EAF\u5230FORTRAN\u8BED\u8A00\uFF0C\u5E76\u4E14\u53EF\u4EE5\u5728C\u8BED\u8A00\u7684\u6570\u5B66\u6807\u51C6\u5E93\u7684math.h\u6587\u4EF6\u4E2D\u627E\u5230\uFF0C\u6B64\u5916\u5728Java\u6570\u5B66\u5E93\u3001.NET\u7684System.Math\uFF08\u53EF\u5E94\u7528\u4E8EC#\u3001VB.NET\u7B49\u8BED\u8A00\uFF09\u3001Python\u7684\u6570\u5B66\u6A21\u5757\u4EE5\u53CA\u5176\u4ED6\u5730\u65B9\u90FD\u53EF\u4EE5\u627E\u5230atan2\u7684\u8EAB\u5F71\u3002\u8BB8\u591A\u811A\u672C\u8BED\u8A00\uFF0C\u6BD4\u5982Perl\uFF0C\u4E5F\u5305\u542B\u4E86C\u8BED\u8A00\u98CE\u683C\u7684atan2\u51FD\u6570\u3002"@zh ,
"La funci\u00F3n arcotangente de dos par\u00E1metros (representada con la notaci\u00F3n o tambi\u00E9n ; el nombre procede de que el c\u00E1lculo de la arcotangente se hace a partir de dos argumentos) devuelve el \u00E1ngulo formado entre el eje x positivo y la recta que conecta el origen con un punto de coordenadas (x, y) \u2260 (0,0) del plano euclidiano, expresado en radianes. De manera equivalente, es el argumento (tambi\u00E9n llamado \"fase\" o \"\u00E1ngulo\") del n\u00FAmero complejo ."@es ,
"En trigonom\u00E9trie, la fonction atan2 \u00E0 deux arguments est une variante de la fonction arc tangente. Pour tous arguments r\u00E9els x et y non nuls, est l'angle en radians entre la partie positive de l'axe des abscisses d'un plan, et le point de ce plan de coordonn\u00E9es (x, y). Cet angle est positif pour les angles dans le sens anti-horaire dit sens trigonom\u00E9trique (demi-plan sup\u00E9rieur, y > 0) et n\u00E9gatif dans l'autre (demi-plan inf\u00E9rieur, y < 0). La fonction atan2 fut d'abord introduite dans les langages de programmation informatique, mais elle est d\u00E9sormais aussi couramment utilis\u00E9e dans d'autres domaines de la science et de l'ing\u00E9nierie. Elle est au moins aussi ancienne que le langage de programmation Fortran et on la trouve maintenant dans la plupart des autres langages. En termes math\u00E9matiques, atan2 retourne la valeur principale de la fonction argument appliqu\u00E9e au nombre complexe . Soit . Le r\u00E9sultat pourrait varier de 2\u03C0 sans aucun impact sur l'angle, mais pour garantir son unicit\u00E9, on utilise la valeur principale dans l'intervalle ]\u2013\u03C0 ,\u03C0], soit . La fonction atan2 est utilis\u00E9e dans beaucoup d'applications impliquant des vecteurs de l'espace euclidien, comme pour trouver la direction d'un point \u00E0 un autre. Une des utilisations principales est la conversion des matrices de rotation en angles d'Euler, pour faire pivoter des repr\u00E9sentations graphiques informatiques. Dans certains langages informatiques, l'ordre des param\u00E8tres est invers\u00E9, ou bien la fonction est d\u00E9nomm\u00E9e diff\u00E9remment. Sur les calculatrices scientifiques, le r\u00E9sultat de la fonction est souvent issu de la conversion des coordonn\u00E9es rectangulaires (x, y) en coordonn\u00E9es polaires."@fr ,
"\u062A\u064F\u0639\u0631\u064E\u0651\u0641 \u062F\u0627\u0644\u0629 \u0639\u0644\u0649 \u0623\u0646\u0647\u0627 \u0627\u0644\u0632\u0627\u0648\u064A\u0629 \u0641\u064A \u0627\u0644\u0645\u0633\u062A\u0648\u0649 \u0627\u0644\u0625\u0642\u0644\u064A\u062F\u064A\u060C \u0627\u0644\u0645\u0639\u0637\u0627\u0629 \u0628\u0627\u0644\u0631\u0627\u062F\u064A\u0627\u0646\u060C \u0628\u064A\u0646 \u0627\u0644\u0645\u062D\u0648\u0631 \u0627\u0644\u0645\u0648\u062C\u0628 \u0648\u0646\u0635\u0641 \u0627\u0644\u0645\u0633\u062A\u0642\u064A\u0645 \u0645\u0646 \u0627\u0644\u0623\u0635\u0644 \u0625\u0644\u0649 \u0627\u0644\u0646\u0642\u0637\u0629 . \u0638\u0647\u0631\u062A \u062F\u0627\u0644\u0629 \u0644\u0623\u0648\u0644 \u0645\u0631\u0629 \u0641\u064A \u0644\u063A\u0629 \u0627\u0644\u0628\u0631\u0645\u062C\u0629 \u0641\u0648\u0631\u062A\u0631\u0627\u0646 (\u0641\u064A \u062A\u0646\u0641\u064A\u0630 FORTRAN-IV \u0627\u0644\u062E\u0627\u0635 \u0628\u0640 IBM) \u0639\u0627\u0645 1961. \u0643\u0627\u0646 \u0645\u0646 \u0627\u0644\u0645\u0641\u062A\u0631\u0636 \u0641\u064A \u0627\u0644\u0623\u0635\u0644 \u0625\u0631\u062C\u0627\u0639 \u0642\u064A\u0645\u0629 \u0635\u062D\u064A\u062D\u0629 \u0644\u0627 \u0644\u0628\u0633 \u0641\u064A\u0647\u0627 \u0644\u0644\u0632\u0627\u0648\u064A\u0629 \u03B8 \u0641\u064A \u0627\u0644\u062A\u062D\u0648\u064A\u0644 \u0645\u0646 \u0627\u0644\u0625\u062D\u062F\u0627\u062B\u064A\u0627\u062A \u0627\u0644\u062F\u064A\u0643\u0627\u0631\u062A\u064A\u0629 (x, y) \u0625\u0644\u0649 \u0627\u0644\u0625\u062D\u062F\u0627\u062B\u064A\u0627\u062A \u0627\u0644\u0642\u0637\u0628\u064A\u0629 (r, \u03B8) . \u0639\u0644\u0649 \u0642\u062F\u0645 \u0627\u0644\u0645\u0633\u0627\u0648\u0627\u0629\u060C \u0647\u064A \u0639\u0645\u062F\u0629 (\u0648\u062A\u0633\u0645\u0649 \u0623\u064A\u0636\u064B\u0627 \u0627\u0644\u0645\u0631\u062D\u0644\u0629 \u0623\u0648 \u0627\u0644\u0632\u0627\u0648\u064A\u0629) \u0644\u0644\u0639\u062F\u062F \u0627\u0644\u0645\u0631\u0643\u0628 . \u062A\u064F\u0631\u062C\u0650\u0639 \u0642\u064A\u0645\u0629 \u0648\u0627\u062D\u062F\u0629 \u0628\u062D\u064A\u062B \u0648\u0645\u0646 \u0623\u062C\u0644 : \u0625\u0630\u0627 \u0643\u0627\u0646\u062A x > 0\u060C \u062A\u064F\u0639\u0637\u0649 \u0627\u0644\u0632\u0627\u0648\u064A\u0629 \u0645\u0646 \u062E\u0644\u0627\u0644: \u0648\u0645\u0639 \u0630\u0644\u0643\u060C \u0639\u0646\u062F\u0645\u0627 x < 0 \u060C \u0627\u0644\u0632\u0627\u0648\u064A\u0629 \u0627\u0644\u0645\u0639\u0637\u0627\u0629 \u0628\u0648\u0627\u0633\u0637\u0629 \u0627\u0644\u0646\u0642\u0627\u0637 \u0641\u064A \u0627\u0644\u0627\u062A\u062C\u0627\u0647 \u0627\u0644\u0645\u0639\u0627\u0643\u0633 \u0644\u0644\u0632\u0627\u0648\u064A\u0629 \u0627\u0644\u0635\u062D\u064A\u062D\u0629\u060C \u0648\u064A\u062C\u0628 \u0625\u0636\u0627\u0641\u0629 \u0642\u064A\u0645\u0629 (\u0623\u0648) \u0625\u0644\u0649 \u03B8 \u0644\u0648\u0636\u0639 \u0627\u0644\u0646\u0642\u0637\u0629 \u0641\u064A \u0627\u0644\u0631\u0628\u0639 \u0627\u0644\u0635\u062D\u064A\u062D \u0645\u0646 \u0627\u0644\u0645\u0633\u062A\u0648\u0649 \u0627\u0644\u0625\u0642\u0644\u064A\u062F\u064A. \u064A\u062A\u0637\u0644\u0628 \u0647\u0630\u0627 \u0645\u0639\u0631\u0641\u0629 \u0625\u0634\u0627\u0631\u062A\u064A x \u0648 y \u0628\u0634\u0643\u0644 \u0645\u0646\u0641\u0635\u0644\u060C \u0648\u0627\u0644\u062A\u064A \u062A\u064F\u0641\u0642\u062F \u0639\u0646\u062F \u0642\u0633\u0645\u0629 y \u0639\u0644\u0649 x \u060C \u0648\u0645\u0646 \u0647\u0646\u0627 \u062A\u0623\u062A\u064A \u0627\u0644\u062D\u0627\u062C\u0629 \u0625\u0644\u0649 \u0642\u0648\u0633 \u0638\u0644 \u0645\u062A\u063A\u064A\u0631\u064A\u0646. \u0646\u0638\u0631\u064B\u0627 \u0644\u0623\u0646\u0647 \u064A\u0645\u0643\u0646 \u0625\u0636\u0627\u0641\u0629 \u0623\u064A \u0639\u062F\u062F \u0635\u062D\u064A\u062D \u0645\u0636\u0627\u0639\u0641 \u0644\u0640 2\u03C0 \u0625\u0644\u0649 \u03B8 \u062F\u0648\u0646 \u062A\u063A\u064A\u064A\u0631 x \u0623\u0648 y \u060C \u0645\u0645\u0627 \u064A\u0642\u062A\u0636\u064A \u0642\u064A\u0645\u0629 \u0645\u0628\u0647\u0645\u0629 \u0644\u0644\u0642\u064A\u0645\u0629 \u0627\u0644\u062A\u064A \u062A\u0645 \u0625\u0631\u062C\u0627\u0639\u0647\u0627\u060C \u0627\u0644\u0642\u064A\u0645\u0629 \u0627\u0644\u0623\u0633\u0627\u0633\u064A\u0629 \u0644\u0644\u0632\u0627\u0648\u064A\u0629\u060C \u0641\u064A \u0627\u0644\u0641\u062A\u0631\u0629 . \u03B8 \u060C \u0628\u062D\u064A\u062B \u062A\u0643\u0648\u0646 \u0632\u0648\u0627\u064A\u0627 \u0639\u0643\u0633 \u0627\u062A\u062C\u0627\u0647 \u0639\u0642\u0627\u0631\u0628 \u0627\u0644\u0633\u0627\u0639\u0629 \u0645\u0648\u062C\u0628\u0629 \u0648\u062A\u0643\u0648\u0646 \u0633\u0627\u0644\u0628\u0629 \u0641\u064A \u0627\u062A\u062C\u0627\u0647 \u0639\u0642\u0627\u0631\u0628 \u0627\u0644\u0633\u0627\u0639\u0629. \u0628\u0639\u0628\u0627\u0631\u0629 \u0623\u062E\u0631\u0649\u060C \u062A\u0642\u0639 \u0641\u064A \u0627\u0644\u0641\u062A\u0631\u0629 \u0627\u0644\u0645\u063A\u0644\u0642\u0629 [0, \u03C0] \u0639\u0646\u062F\u0645\u0627 y \u2265 0 \u060C \u0648\u0641\u064A \u0627\u0644\u0641\u062A\u0631\u0629 \u0627\u0644\u0645\u0641\u062A\u0648\u062D\u0629 (\u2212\u03C0, 0) \u0639\u0646\u062F\u0645\u0627 y < 0 ."@ar ,
"In trigonometria l'arcotangente2 \u00E8 una funzione a due argomenti che rappresenta una variazione dell'arcotangente. Comunque presi gli argomenti reali e non entrambi nulli, indica l'angolo in radianti tra il semiasse positivo delle di un piano cartesiano e un punto di coordinate giacente su di esso. L'angolo \u00E8 positivo se antiorario (semipiano delle ordinate positive, ) e negativo se in verso orario (semipiano delle ordinate negative, ). Questa funzione quindi restituisce un valore compreso nell'intervallo . La funzione \u00E8 definita per tutte le coppie di valori reali eccetto la coppia ."@it ,
"atan2\uFF08\u30A2\u30FC\u30AF\u30BF\u30F3\u30B8\u30A7\u30F3\u30C82\uFF09\u306F\u3001\u95A2\u6570\u306E\u4E00\u7A2E\u3002\u300C2\u3064\u306E\u5F15\u6570\u3092\u53D6\u308Barctan\uFF08\u30A2\u30FC\u30AF\u30BF\u30F3\u30B8\u30A7\u30F3\u30C8\uFF09\u300D\u3068\u3044\u3046\u610F\u5473\u3067\u3042\u308B\u3002x\u8EF8\u306E\u6B63\u306E\u5411\u304D\u3068\u3001\u70B9(x, y) \uFF08\u305F\u3060\u3057\u3001(0, 0)\u3067\u306F\u306A\u3044\uFF09\u307E\u3067\u4F38\u3070\u3057\u305F\u534A\u76F4\u7DDA\uFF08\u30EC\u30A4\uFF09\u3068\u306E\u9593\u306E\u3001\u30E6\u30FC\u30AF\u30EA\u30C3\u30C9\u5E73\u9762\u4E0A\u306B\u304A\u3051\u308B\u89D2\u5EA6\u3068\u3057\u3066\u5B9A\u7FA9\u3055\u308C\u308B\u3002\u95A2\u6570\u306F\u3082\u3057\u304F\u306F\u306E\u5F62\u3092\u3068\u308A\u3001\u5024\u306F\u30E9\u30B8\u30A2\u30F3\u3067\u8FD4\u3063\u3066\u304F\u308B\u3002 \u95A2\u6570\u306F\u3001\u30D7\u30ED\u30B0\u30E9\u30DF\u30F3\u30B0\u8A00\u8A9E\u306EFortran (IBM\u793E\u304C1961\u5E74\u306B\u5B9F\u88C5\u3057\u305FFORTRAN-IV)\u306B\u304A\u3044\u3066\u6700\u521D\u306B\u767B\u5834\u3057\u305F\u3002\u5143\u3005\u306F\u3001\u89D2\u5EA6\u03B8\u3092\u76F4\u4EA4\u5EA7\u6A19\u7CFB\u306E(x, y)\u304B\u3089\u6975\u5EA7\u6A19\u7CFB\u306E(r, \u03B8)\u306B\u5909\u63DB\u3059\u308B\u969B\u306B\u3001\u6B63\u78BA\u3067\u4E00\u610F\u306A\u5024\u304C\u8FD4\u3063\u3066\u304F\u308B\u3053\u3068\u3092\u610F\u56F3\u3057\u3066\u5C0E\u5165\u3055\u308C\u305F\u3002\u307E\u305F\u3001\u306F\u8907\u7D20\u6570\u306E\u504F\u89D2 (\u300C\u4F4D\u76F8\u300D\u3068\u3082\u8A00\u3046)\u3092\u6C42\u3081\u308B\u969B\u306B\u3082\u5229\u7528\u3055\u308C\u308B\u3002 \u95A2\u6570 \u306F\u3001\u2212\u03C0 < \u03B8 \u2264 \u03C0\u306E\u7BC4\u56F2\u3067\u3001 \uFF08\u305F\u3060\u3057\u3001r > 0\uFF09\u3068\u306A\u308B\u5358\u4E00\u306E\u5024\u03B8\u3092\u8FD4\u3059\u3002 \u306A\u304A\u3001arctan\u3092\u4F7F\u3063\u3066\u89D2\u5EA6\u03B8\u3092\u6C42\u3081\u308B\u969B\u306B\u6CE8\u610F\u3059\u3079\u304D\u3053\u3068\u3067\u3042\u308B\u304C\u3001\u304C\u771F\u3067\u3042\u308B\u304B\u3089\u3068\u8A00\u3063\u3066\u3001 \u3067\u3042\u308B\u3068\u3044\u3046\u3053\u3068\u304C\u5E38\u306B\u8A00\u3048\u308B\u3068\u306F\u9650\u3089\u306A\u3044\u3002 \u3053\u308C\u306F\u3001x > 0\u3060\u3063\u305F\u5834\u5408\u306B\u306E\u307F\u5F53\u3066\u306F\u307E\u308B\u3002\u3082\u3057x < 0\u3060\u3063\u305F\u5834\u5408\u306F\u3001\u4E0A\u306E\u5F0F\u304B\u3089\u5C0E\u51FA\u3055\u308C\u305F\u89D2\u5EA6\u306F\u3001\u6B63\u3057\u3044\u89D2\u5EA6\u3068\u306F\u6B63\u53CD\u5BFE\u306E\u65B9\u5411\u3092\u6307\u3057\u793A\u3057\u3066\u3044\u308B\u3002\u305D\u3057\u3066\u3001\u30C7\u30AB\u30EB\u30C8\u70B9(x, y)\u3092\u30E6\u30FC\u30AF\u30EA\u30C3\u30C9\u5E73\u9762\u4E0A\u306E\u6B63\u3057\u3044\u8C61\u9650\u306B\u914D\u7F6E\u3059\u308B\u306B\u306F\u3001\uFF08\u5EA6\u6570\u6CD5\u3067\u8A00\u3046\u3068180\u00B0\uFF09\u306E\u5024\u3092\u03B8\u306B\u52A0\u7B97\u307E\u305F\u306F\u6E1B\u7B97\u3059\u308B\u5FC5\u8981\u304C\u3042\u308B\u3002\u3053\u308C\u306F\u3064\u307E\u308A\u3001\u6B63\u3057\u3044\u89D2\u5EA6\u3092\u51FA\u3059\u305F\u3081\u306B\u306Fx\u304A\u3088\u3073y\u306E\u7B26\u53F7\u306E\u60C5\u5831\u304C\u305D\u308C\u305E\u308C\u5225\u500B\u306B\u5FC5\u8981\u3068\u3055\u308C\u308B\u3068\u8A00\u3046\u3053\u3068\u3067\u3042\u308A\u3001\u3082\u3057\u5358\u306By\u3092x\u3067\u9664\u7B97\u3057\u305F\u5834\u5408\u306F\u3001\u305D\u306E\u60C5\u5831\u304C\u5931\u308F\u308C\u3066\u3057\u307E\u3046\u3068\u3044\u3046\u308F\u3051\u3067\u3042\u308B\u3002\u305D\u306E\u70B9\u3001atan2\u306F\u7D30\u304B\u3044\u3053\u3068\u3092\u6C17\u306B\u3057\u306A\u304F\u3066\u3082y\u3068x\u306B\u4EE3\u5165\u3059\u308C\u3070\u666E\u901A\u306B\u6B63\u3057\u3044\u89D2\u5EA6\u3092\u8FD4\u3057\u3066\u304F\u308C\u308B\u306E\u3067\u4FBF\u5229\u3067\u3042\u308B\u3002 \u95A2\u6570\u306E\u623B\u308A\u5024\u3067\u3042\u308B\u89D2\u5EA6\u03B8\u306B\u3064\u3044\u3066\u306F\u3001x\u3068y\u306E\u5024\u3092\u5909\u66F4\u3057\u306A\u3044\u307E\u307E\u3067\u3082\u89D2\u5EA6\u03B8\u306B2\u03C0\u306E\u4EFB\u610F\u306E\u6574\u6570\u500D\u3092\u52A0\u7B97\u3059\u308B\u3053\u3068\u304C\u53EF\u80FD\u3067\u3042\u308B\u305F\u3081\u3001\u3064\u307E\u308A\u533A\u9593\u3092\u3061\u3083\u3093\u3068\u8A2D\u5B9A\u3057\u306A\u3044\u3068\u623B\u308A\u5024\u306E\u5024\u304C\u66D6\u6627\u306B\u306A\u3063\u3066\u3057\u307E\u3046\u305F\u3081\u3001\u95A2\u6570atan2\u306F\u305D\u306E\u4E3B\u5024\u3068\u3057\u3066\u3001\u533A\u9593\u3092(\u2212\u03C0, \u03C0]\u3068\u3057\u305F\u3082\u306E\u304C\u623B\u308A\u5024\u3068\u3057\u3066\u8FD4\u3063\u3066\u304F\u308B\u3088\u3046\u306B\u306A\u3063\u3066\u3044\u308B\uFF08\u95A2\u6570arctan\u306E\u623B\u308A\u5024\u306E\u533A\u9593\u304C(\u2212\u03C0/2 , \u03C0/2)\u3067\u3042\u308B\u70B9\u3068\u306E\u9055\u3044\u306B\u6CE8\u610F\uFF09\u3002\u89D2\u5EA6\u03B8 \u306F\u3067\u3042\u308A\u3001\u53CD\u6642\u8A08\u56DE\u308A\u306E\u89D2\u5EA6\u306F\u6B63\u3001\u6642\u8A08\u56DE\u308A\u306F\u8CA0\u3068\u306A\u308B\u3002\u5177\u4F53\u7684\u306B\u8A00\u3046\u3068\u3001\u3082\u3057y \u2265 0\u3060\u3063\u305F\u5834\u5408\u306F[0, \u03C0] \u306E\u533A\u9593\u306B\u3042\u308A\u3001\u3082\u3057y < 0\u3060\u3063\u305F\u5834\u5408\u306B\u306F(\u2212\u03C0, 0)\u306E\u533A\u9593\u306B\u3042\u308B\u3001\u3068\u8A00\u3046\u611F\u3058\u306B\u306A\u308B\u3088\u3046\u306B\u95A2\u6570\u306E\u5185\u90E8\u3067\u5834\u5408\u5206\u3051\u3092\u3057\u3066\u3044\u308B\u3002"@ja ,
"Die mathematische Funktion arctan2, auch atan2, ist eine Erweiterung der inversen Winkelfunktion Arkustangens und wie diese eine Umkehrfunktion der Winkelfunktion Tangens. Sie nimmt zwei reelle Zahlen als Argumente, im Gegensatz zum normalen Arkustangens, welcher nur eine reelle Zahl zum Argument hat. Damit hat sie gen\u00FCgend Information, um den Funktionswert in einem Wertebereich von (also allen vier Quadranten) ausgeben zu k\u00F6nnen, und muss sich nicht (wie der normale Arkustangens) auf zwei Quadranten beschr\u00E4nken. Der volle Wertebereich wird h\u00E4ufig ben\u00F6tigt, beispielsweise bei der Umrechnung ebener kartesischer Koordinaten in Polarkoordinaten: wenn der Funktion die beiden kartesischen Koordinaten als Argumente gegeben werden, erh\u00E4lt man den Polarwinkel , der sich im richtigen Quadranten befindet, d. h. der die Beziehungen und mit erf\u00FCllt. Ein mathematisch n\u00FCtzlicher Zusatzeffekt ist, dass Winkel, bei denen der Tangens eine Polstelle hat, n\u00E4mlich die Winkel durch ganz normale reelle Koordinaten spezifiziert werden k\u00F6nnen, n\u00E4mlich durch anstatt Das kommt von der Definitionsmenge der Funktion der \u201Egelochten\u201C Ebene, welche mit einer Gruppenstruktur versehen werden kann, die isomorph ist zur multiplikativen Gruppe der komplexen Zahlen ohne die Null. Diese Gruppen sind direktes Produkt der Kreisgruppe der Drehungen und der Gruppe der Streckungen um einen Faktor gr\u00F6\u00DFer Null, der multiplikativen Gruppe Erstere Gruppe l\u00E4sst sich durch den Polarwinkel parametrisieren, zweitere durch den (positiven) Betrag"@de ;
dbo:wikiPageWikiLink dbr:Hypot ,
dbr:Tangent_half-angle_formula ,
dbr:LibreOffice_Calc ,
dbr:Google_Docs ,
dbr:Cartesian_coordinate_system ,
dbr:Differential_geometry ,
dbr:Floating-point ,
dbr:Infinity ,
dbr:Hewlett-Packard ,
dbr:Complex_number ,
dbr:Cardinal_direction ,
dbr:Exact_differential_form ,
dbr:NaN ,
dbr:Radian ,
,
dbr:Closed_differential_form ,
dbr:Positive_and_negative_numbers ,
dbr:Gradient ,
dbr:Mathematica ,
dbr:Intel ,
dbr:Computing ,
dbr:TI-85 ,
,
,
dbr:Arctangent ,
dbr:Wind_direction ,
dbr:Microsoft_Excel ,
dbr:Branch_cut ,
,
dbr:Fortran ,
dbr:Angle_measure ,
dbr:Iverson_bracket ,
dbr:Punctured_plane ,
dbr:Argument_of_a_function ,
dbr:Inverse_trigonometric_functions ,
,
,
dbr:Netlib ,
dbr:Euler_angle ,
,
dbr:Polar_coordinates ,
,
dbr:Total_differential ,
,
,
,
,
dbr:CORDIC ,
dbr:IEEE_floating_point ,
,
,
dbr:Principal_value ,
,
,
dbr:Clockwise ,
dbr:Polar_coordinate_system ,
dbr:Assembler_code ,
dbr:Winding_number ,
dbr:Complex_argument ,
,
dbr:Antipodal_point ,
dbr:Apache_OpenOffice ,
dbr:Signed_zero ,
dbr:Partial_derivative ,
,
dbr:Solar_azimuth_angle ,
dbr:Rotation_matrix ,
,
dbr:De_Rham_cohomology ,
dbr:TI-86 ,
dbr:Common_Lisp ,
dbr:One-form ,
dbr:Rectangular_coordinates ,
dbr:Multivalued_function ,
,
dbr:Euclidean_vector ,
,
dbr:Not_a_Number ,
dbr:Mathematics ,
,
dbc:Inverse_trigonometric_functions ,
dbr:Programming_language .
@prefix dbp: .
@prefix dbt: .
dbr:Atan2 dbp:wikiPageUsesTemplate dbt:Sqrt ,
dbt:Pi ,
dbt:Pb ,
dbt:Lowercase_title ,
dbt:Reflist ,
dbt:Math ,
dbt:Clear ,
dbt:Main ,
dbt:Anchor ,
,
dbt:Sfrac ,
dbt:Trigonometric_and_hyperbolic_functions ,
dbt:Open-closed ,
dbt:Details ,
dbt:Closed-closed ,
dbt:Cite_web ,
dbt:Short_description ,
dbt:Mvar ,
dbt:Sup ,
dbt:Small ;
dbo:thumbnail ;
dbo:wikiPageRevisionID 1117723779 ;
dbo:wikiPageExternalLink ,
,
,
,
,
,
,
,
,
.
@prefix xsd: .
dbr:Atan2 dbo:wikiPageLength "30013"^^xsd:nonNegativeInteger ;
dbo:wikiPageID 3856703 .
@prefix owl: .
@prefix dbpedia-de: .
dbr:Atan2 owl:sameAs dbpedia-de:Arctan2 .
@prefix dbpedia-zh: .
dbr:Atan2 owl:sameAs dbpedia-zh:Atan2 ,
dbr:Atan2 .
@prefix ns14: .
dbr:Atan2 owl:sameAs ns14:Atan2 .
@prefix dbpedia-fa: .
dbr:Atan2 owl:sameAs dbpedia-fa:Atan2 ,
.
@prefix wikidata: .
dbr:Atan2 owl:sameAs wikidata:Q776598 ,
.
@prefix dbpedia-hu: .
dbr:Atan2 owl:sameAs dbpedia-hu:Arctg2 .
@prefix dbpedia-cs: .
dbr:Atan2 owl:sameAs dbpedia-cs:Atan2 .
@prefix yago-res: .
dbr:Atan2 owl:sameAs yago-res:Atan2 ,
.
@prefix dbpedia-ja: .
dbr:Atan2 owl:sameAs dbpedia-ja:Atan2 .
@prefix dbpedia-it: .
dbr:Atan2 owl:sameAs dbpedia-it:Arcotangente2 .
@prefix dbpedia-fr: .
dbr:Atan2 owl:sameAs dbpedia-fr:Atan2 ,
.
@prefix gold: .
dbr:Atan2 gold:hypernym dbr:Function .
@prefix prov: .
dbr:Atan2 prov:wasDerivedFrom ;
foaf:isPrimaryTopicOf wikipedia-en:Atan2 .
dbr:Hypotenuse dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Universal_joint dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Rotation_matrix dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Rotation_formalisms_in_three_dimensions dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Principal_branch dbo:wikiPageWikiLink dbr:Atan2 .
dbo:wikiPageWikiLink dbr:Atan2 .
dbo:wikiPageWikiLink dbr:Atan2 .
dbr:CIELUV dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Additive_synthesis dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Cylindrical_coordinate_system dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Geographic_coordinate_conversion dbo:wikiPageWikiLink dbr:Atan2 .
dbo:wikiPageWikiLink dbr:Atan2 .
dbr:List_of_common_coordinate_transformations dbo:wikiPageWikiLink dbr:Atan2 .
dbo:wikiPageWikiLink dbr:Atan2 .
dbr:N-vector dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Del_in_cylindrical_and_spherical_coordinates dbo:wikiPageWikiLink dbr:Atan2 .
dbr:HSL_and_HSV dbo:wikiPageWikiLink dbr:Atan2 .
dbr:List_of_mathematical_abbreviations dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Cassini_projection dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Atan dbo:wikiPageWikiLink dbr:Atan2 ;
dbo:wikiPageDisambiguates dbr:Atan2 .
dbr:Azimuth dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Inverse_trigonometric_functions dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Gudermannian_function dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Spherical_coordinate_system dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Mean_anomaly dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Dihedral_angle dbo:wikiPageWikiLink dbr:Atan2 .
dbo:wikiPageWikiLink dbr:Atan2 .
dbo:wikiPageWikiLink dbr:Atan2 ;
dbo:wikiPageRedirects dbr:Atan2 .
dbo:wikiPageWikiLink dbr:Atan2 ;
dbo:wikiPageRedirects dbr:Atan2 .
dbr:C_mathematical_functions dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Eigenvector_slew dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Transmission_line dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Polar_coordinate_system dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Discrete_Fourier_transform dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Hue dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Reflection_lines dbo:wikiPageWikiLink dbr:Atan2 .
dbr:X86_instruction_listings dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Quaternions_and_spatial_rotation dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Complex_logarithm dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Earth_section_paths dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Ascendant dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Orbital_elements dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Position_angle dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Euler_angles dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Outline_of_trigonometry dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Differentiation_rules dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Tan-1 dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Pythagorean_addition dbo:wikiPageWikiLink dbr:Atan2 .
dbo:wikiPageWikiLink dbr:Atan2 .
dbr:List_of_logarithmic_identities dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Principal_value dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Circular_mean dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Conversion_between_quaternions_and_Euler_angles dbo:wikiPageWikiLink dbr:Atan2 .
dbr:Arctan2 dbo:wikiPageWikiLink dbr:Atan2 ;
dbo:wikiPageRedirects dbr:Atan2 .