@prefix dbo: . @prefix dbr: . dbr:Linear_least_squares dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Covariance_matrix dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Optimal_design dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Accuracy_and_precision dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Model_selection dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Coefficient_of_determination dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Correlation dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:High_frequency_data dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . @prefix foaf: . @prefix wikipedia-en: . wikipedia-en:Bias_of_an_estimator foaf:primaryTopic dbr:Bias_of_an_estimator . dbr:Randomized_controlled_trial dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Nonlinear_regression dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Polynomial_regression dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Ordinary_least_squares dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Consistent_estimator dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . @prefix rdf: . @prefix owl: . dbr:Bias_of_an_estimator rdf:type owl:Thing , dbo:Disease . @prefix rdfs: . dbr:Bias_of_an_estimator rdfs:label "\u4F30\u8BA1\u91CF\u7684\u504F\u5DEE"@zh , "Biais (statistique)"@fr , "Zuiverheid (statistiek)"@nl , "Biaix (estad\u00EDstica)"@ca , "Enviesamento amostral"@pt , "Bias of an estimator"@en , "Sesgo estad\u00EDstico"@es , "\uD3B8\uC758 \uCD94\uC815\uB7C9"@ko , "Verzerrung einer Sch\u00E4tzfunktion"@de , "\u062A\u062D\u064A\u0632 \u0627\u0644\u0645\u0642\u062F\u0631"@ar ; rdfs:comment "Enviesamento amostral ou excentricidade \u00E9 a diferen\u00E7a entre o valor esperado do estimador e o verdadeiro valor do par\u00E2metro a estimar. O valor esperado \u00E9 dado pelo ponto central da distribui\u00E7\u00E3o amostral do estimador, sendo esta distribui\u00E7\u00E3o a fun\u00E7\u00E3o probabil\u00EDstica de um estimador e podendo ser obtida mediante a repeti\u00E7\u00E3o infinita do processo amostral de modo a obter todos os valores que o estimador possa assumir e a respectiva frequ\u00EAncia. O enviesamento amostral pode ter v\u00E1rias causas, nomeadamente:"@pt , "Zuiverheid is in de statistiek een eigenschap die van toepassing kan zijn op schatters en op toetsen."@nl , "En estad\u00EDstica se llama sesgo de un estimador a la diferencia entre su esperanza matem\u00E1tica y el valor num\u00E9rico del par\u00E1metro que estima. Un estimador cuyo sesgo es nulo se llama insesgado o centrado. En notaci\u00F3n matem\u00E1tica, dada una muestra y un estimador del par\u00E1metro poblacional , el sesgo es:\u200B El no tener sesgo es una propiedad deseable de los estimadores. Una propiedad relacionada con esta es la de la consistencia: un estimador puede tener un sesgo pero el tama\u00F1o de este converge a cero conforme crece el tama\u00F1o muestral."@es , "En estad\u00EDstica, s'anomena biaix d'un estimador a la difer\u00E8ncia entre la seva esperan\u00E7a matem\u00E0tica i el valor del par\u00E0metre que estima. Un estimador amb un biaix nul es diu no esbiaixat, centrat o de tend\u00E8ncia central. En notaci\u00F3 matem\u00E0tica, donada una mostra i un estimador del par\u00E0metre mostral , el biaix \u00E9s El no tenir biaix \u00E9s una propietat desitjable en els estimadors. Una propietat relacionada amb aquesta \u00E9s la de la : un estimador pot tenir un biaix per\u00F2 la mida d'aquest pot convergir a zero conforme creix la grand\u00E0ria mostral."@ca , "En statistique ou en \u00E9pid\u00E9miologie, un biais est une d\u00E9marche ou un proc\u00E9d\u00E9 qui engendre des erreurs dans les r\u00E9sultats d'une \u00E9tude. Formellement, le biais de l'estimateur d'un param\u00E8tre est la diff\u00E9rence entre la valeur de l'esp\u00E9rance de cet estimateur (qui est une variable al\u00E9atoire) et la valeur qu'il est cens\u00E9 estimer (d\u00E9finie et fixe). D\u00E9finition \u2014 Si est l'estimateur de ,"@fr , "\u062A\u062D\u064A\u0632 \u0627\u0644\u0645\u0642\u062F\u0650\u0651\u0631 \u0623\u0648 \u0627\u0646\u062D\u064A\u0627\u0632 \u0627\u0644\u0645\u0642\u062F\u0650\u0651\u0631 \u0623\u0648 \u062F\u0627\u0644\u0629 \u062A\u062D\u064A\u0632 \u0627\u0644\u0645\u0642\u062F\u0650\u0651\u0631\u060C (\u0628\u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629: Bias of an estimator)\u200F \u0641\u064A \u0627\u0644\u0625\u062D\u0635\u0627\u0621 \u0639\u0645\u0648\u0645\u0627 \u0648\u0641\u064A \u0627\u0644\u0627\u0633\u062A\u062F\u0644\u0627\u0644 \u0627\u0644\u0625\u062D\u0635\u0627\u0626\u064A \u0628\u0635\u0641\u0629 \u062E\u0627\u0635\u0629 \u0647\u0648 \u0627\u0644\u0641\u0631\u0642 \u0628\u064A\u0646 \u0627\u0644\u0642\u064A\u0645\u0629 \u0627\u0644\u0645\u062A\u0648\u0642\u0639\u0629 \u0644\u0645\u0642\u062F\u0631 \u0645\u062A\u063A\u064A\u0631 \u0639\u0634\u0648\u0627\u0626\u064A (\u0623\u0648 \u0645\u0639\u0644\u0645\u0629 \u0625\u062D\u0635\u0627\u0626\u064A\u0629) \u0648\u0627\u0644\u0642\u064A\u0645\u0629 \u0627\u0644\u062D\u0642\u064A\u0642\u064A\u0629 \u0644\u0644\u0645\u062A\u063A\u064A\u0631 \u0627\u0644\u0645\u0631\u0627\u062F \u062A\u0642\u062F\u064A\u0631\u0647."@ar , "\u5728\u7EDF\u8BA1\u5B66\u4E2D\uFF0C\u4F30\u8BA1\u91CF\u7684\u504F\u5DEE\uFF08\u6216\u504F\u5DEE\u51FD\u6570\uFF09\u662F\u6B64\u4F30\u8BA1\u91CF\u7684\u671F\u671B\u503C\u4E0E\u4F30\u8BA1\u53C2\u6570\u7684\u771F\u503C\u4E4B\u5DEE\u3002\u504F\u5DEE\u4E3A\u96F6\u7684\u4F30\u8BA1\u91CF\u6216\u51B3\u7B56\u89C4\u5219\u79F0\u4E3A\u65E0\u504F\u7684\u3002\u5426\u5219\u8BE5\u4F30\u8BA1\u91CF\u662F\u6709\u504F\u7684\u3002\u5728\u7EDF\u8BA1\u4E2D\uFF0C\u201C\u504F\u5DEE\u201D\u662F\u4E00\u4E2A\u51FD\u6570\u7684\u5BA2\u89C2\u9648\u8FF0\u3002 \u504F\u5DEE\u4E5F\u53EF\u4EE5\u76F8\u5BF9\u4E8E\u4E2D\u4F4D\u6578\u6765\u8861\u91CF\uFF0C\u800C\u975E\u76F8\u5BF9\u4E8E\u5747\u503C\uFF08\u671F\u671B\u503C\uFF09\uFF0C\u5728\u8FD9\u79CD\u60C5\u51B5\u4E0B\u4E3A\u4E86\u4E0E\u901A\u5E38\u7684\u201C\u5747\u503C\u201D\u65E0\u504F\u6027\u533A\u522B\uFF0C\u79F0\u4F5C\u201C\u4E2D\u503C\u201D\u65E0\u504F\u3002\u504F\u5DEE\u4E0E\u4E00\u81F4\u6027\u76F8\u5173\u8054\uFF0C\u4E00\u81F4\u4F30\u8BA1\u91CF\u90FD\u662F\u6536\u655B\u5E76\u4E14\u6E10\u8FDB\u65E0\u504F\u7684\uFF08\u56E0\u6B64\u4F1A\u6536\u655B\u5230\u6B63\u786E\u7684\u503C\uFF09\uFF0C\u867D\u7136\u4E00\u81F4\u5E8F\u5217\u4E2D\u7684\u4E2A\u522B\u4F30\u8BA1\u91CF\u53EF\u80FD\u662F\u6709\u504F\u7684\uFF08\u53EA\u8981\u504F\u5DEE\u6536\u655B\u4E8E\u96F6\uFF09\uFF1B\u53C2\u89C1\u504F\u5DEE\u4E0E\u4E00\u81F4\u6027\u3002 \u5F53\u5176\u4ED6\u91CF\u76F8\u7B49\u65F6\uFF0C\u65E0\u504F\u4F30\u8BA1\u91CF\u6BD4\u6709\u504F\u4F30\u8BA1\u91CF\u66F4\u597D\u4E00\u4E9B\uFF0C\u4F46\u5728\u5B9E\u8DF5\u4E2D\uFF0C\u5E76\u4E0D\u662F\u6240\u6709\u5176\u4ED6\u7EDF\u8BA1\u91CF\u7684\u90FD\u76F8\u7B49\uFF0C\u4E8E\u662F\u4E5F\u7ECF\u5E38\u4F7F\u7528\u6709\u504F\u4F30\u8BA1\u91CF\uFF0C\u4E00\u822C\u504F\u5DEE\u8F83\u5C0F\u3002\u5F53\u4F7F\u7528\u4E00\u4E2A\u6709\u504F\u4F30\u8BA1\u91CF\u65F6\uFF0C\u4E5F\u4F1A\u4F30\u8BA1\u5B83\u7684\u504F\u5DEE\u3002\u6709\u504F\u4F30\u8BA1\u91CF\u53EF\u80FD\u7528\u4E8E\u4EE5\u4E0B\u539F\u56E0\uFF1A\u7531\u4E8E\u5982\u679C\u4E0D\u5BF9\u603B\u4F53\u8FDB\u4E00\u6B65\u5047\u8BBE\uFF0C\u65E0\u504F\u4F30\u8BA1\u91CF\u4E0D\u5B58\u5728\u6216\u5F88\u96BE\u8BA1\u7B97\uFF08\u5982\uFF09\uFF1B\u7531\u4E8E\u4F30\u8BA1\u91CF\u662F\u4E2D\u503C\u65E0\u504F\u7684\uFF0C\u5374\u4E0D\u662F\u5747\u503C\u65E0\u504F\u7684\uFF08\u6216\u53CD\u4E4B\uFF09\uFF1B\u7531\u4E8E\u4E00\u4E2A\u6709\u504F\u4F30\u8BA1\u91CF\u8F83\u4E4B\u65E0\u504F\u4F30\u8BA1\u91CF\uFF08\u7279\u522B\u662F\uFF09\u53EF\u4EE5\u51CF\u5C0F\u4E00\u4E9B\u635F\u5931\u51FD\u6570\uFF08\u5C24\u5176\u662F\u5747\u65B9\u5DEE\uFF09\uFF1B\u6216\u8005\u7531\u4E8E\u5728\u67D0\u4E9B\u60C5\u51B5\u4E0B\uFF0C\u65E0\u504F\u7684\u6761\u4EF6\u592A\u5F3A\uFF0C\u800C\u8FD9\u4E9B\u65E0\u504F\u4F30\u8BA1\u91CF\u6CA1\u6709\u592A\u5927\u7528\u5904\u3002\u6B64\u5916\uFF0C\u5728\u975E\u7EBF\u6027\u53D8\u6362\u4E0B\u5747\u503C\u65E0\u504F\u6027\u4E0D\u4F1A\u4FDD\u7559\uFF0C\u4E0D\u8FC7\u4E2D\u503C\u65E0\u504F\u6027\u4F1A\u4FDD\u7559\uFF08\u53C2\u89C1\uFF09\uFF1B\u4F8B\u5982\u6837\u672C\u65B9\u5DEE\u662F\u603B\u4F53\u65B9\u5DEE\u7684\u65E0\u504F\u4F30\u8BA1\u91CF\uFF0C\u4F46\u5B83\u7684\u5E73\u65B9\u6839\u6A19\u6E96\u5DEE\u5219\u662F\u603B\u4F53\u6807\u51C6\u5DEE\u7684\u6709\u504F\u4F30\u8BA1\u91CF\u3002\u4E0B\u9762\u4F1A\u8FDB\u884C\u8BF4\u660E\u3002"@zh , "\uD3B8\uC758\uCD94\uC815\uB7C9(\u504F\u501A\u63A8\u5B9A\u91CF, Bias of an estimator \uB610\uB294 biased estimator)\uC740 \uD1B5\uACC4\uD559\uC5D0\uC11C \uAE30\uB313\uAC12\uC774 \uBAA8\uC218\uC640 \uB2E4\uB978 \uCD94\uC815\uB7C9\uC774\uB2E4."@ko , "Die Verzerrung oder auch das Bias oder systematischer Fehler einer Sch\u00E4tzfunktion ist in der Sch\u00E4tztheorie, einem Teilgebiet der mathematischen Statistik, diejenige Kennzahl oder Eigenschaft einer Sch\u00E4tzfunktion, welche die systematische \u00DCber- oder Untersch\u00E4tzung der Sch\u00E4tzfunktion quantifiziert. Erwartungstreue Sch\u00E4tzfunktionen haben per Definition eine Verzerrung von . Sch\u00E4tzer k\u00F6nnen durch absichtlich verzerrt werden, um eine kleinere Varianz des Sch\u00E4tzers zu erreichen \u2013 es handelt sich dann um ."@de , "In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, \"bias\" is an objective property of an estimator. Bias is a distinct concept from consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more."@en ; rdfs:seeAlso , ; foaf:depiction . @prefix dcterms: . @prefix dbc: . dbr:Bias_of_an_estimator dcterms:subject dbc:Point_estimation_performance , dbc:Bias , dbc:Accuracy_and_precision ; dbo:abstract "Die Verzerrung oder auch das Bias oder systematischer Fehler einer Sch\u00E4tzfunktion ist in der Sch\u00E4tztheorie, einem Teilgebiet der mathematischen Statistik, diejenige Kennzahl oder Eigenschaft einer Sch\u00E4tzfunktion, welche die systematische \u00DCber- oder Untersch\u00E4tzung der Sch\u00E4tzfunktion quantifiziert. Erwartungstreue Sch\u00E4tzfunktionen haben per Definition eine Verzerrung von . Sch\u00E4tzer k\u00F6nnen durch absichtlich verzerrt werden, um eine kleinere Varianz des Sch\u00E4tzers zu erreichen \u2013 es handelt sich dann um ."@de , "In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, \"bias\" is an objective property of an estimator. Bias is a distinct concept from consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more. All else being equal, an unbiased estimator is preferable to a biased estimator, although in practice, biased estimators (with generally small bias) are frequently used. When a biased estimator is used, bounds of the bias are calculated. A biased estimator may be used for various reasons: because an unbiased estimator does not exist without further assumptions about a population; because an estimator is difficult to compute (as in unbiased estimation of standard deviation); because a biased estimator may be unbiased with respect to different measures of central tendency; because a biased estimator gives a lower value of some loss function (particularly mean squared error) compared with unbiased estimators (notably in shrinkage estimators); or because in some cases being unbiased is too strong a condition, and the only unbiased estimators are not useful. Bias can also be measured with respect to the median, rather than the mean (expected value), in which case one distinguishes median-unbiased from the usual mean-unbiasedness property. Mean-unbiasedness is not preserved under non-linear transformations, though median-unbiasedness is (see ); for example, the sample variance is a biased estimator for the population variance. These are all illustrated below."@en , "Enviesamento amostral ou excentricidade \u00E9 a diferen\u00E7a entre o valor esperado do estimador e o verdadeiro valor do par\u00E2metro a estimar. O valor esperado \u00E9 dado pelo ponto central da distribui\u00E7\u00E3o amostral do estimador, sendo esta distribui\u00E7\u00E3o a fun\u00E7\u00E3o probabil\u00EDstica de um estimador e podendo ser obtida mediante a repeti\u00E7\u00E3o infinita do processo amostral de modo a obter todos os valores que o estimador possa assumir e a respectiva frequ\u00EAncia. Se n\u00E3o existir enviesamento amostral, em m\u00E9dia, o valor do estimador coincide com o valor do par\u00E2metro que o estimador pretende estimar. Se existir o enviesamento amostral, o estimador produzir\u00E1 estimativas sistematicamente desviadas do verdadeiro valor do par\u00E2metro, quer por excesso quer por defeito. O enviesamento amostral \u00E9 um erro sistem\u00E1tico que desvia o ponto central da distribui\u00E7\u00E3o do estimador. Representa uma tend\u00EAncia para deslocar esse valor para a direita ou para a esquerda do valor do par\u00E2metro. Assim sendo, as estimativas concentram-se em torno de um valor central, mas este n\u00E3o \u00E9 coincidente com o valor do par\u00E2metro. O enviesamento amostral pode ter v\u00E1rias causas, nomeadamente: \n* T\u00E9cnica de amostragem - especialmente se for n\u00E3o aleat\u00F3ria, onde sucede com maior frequ\u00EAncia favorecer ou desfavorecer a sele\u00E7\u00E3o de alguns elementos da popula\u00E7\u00E3o sobre outros; tamb\u00E9m pode ser devida \u00E0 incorreta ou incompleta execu\u00E7\u00E3o pr\u00E1tica do processo de amostragem. \n* Base de sondagem inadequada para o estudo - por n\u00E3o cobrir de forma completa a popula\u00E7\u00E3o alvo, levando a omitir indiv\u00EDduos que deveriam ser considerados, a considerar outros que n\u00E3o deveriam ser considerados ou a cometer duplica\u00E7\u00F5es na enumera\u00E7\u00E3o de alguns elementos. \n* N\u00E3o-respostas - motivadas quer pela recusa ou pela impossibilidade de estabelecer contato com o indiv\u00EDduo; uma propor\u00E7\u00E3o substancial de n\u00E3o respondentes afeta a dimens\u00E3o da amostra, podendo comprometer a sua representatvidade e, portanto, a precis\u00E3o dos resultados. \n* Estimador - que, dependendo das propriedades estat\u00EDsticas que possua, pode ser um bom ou mau estimador."@pt , "En estad\u00EDstica se llama sesgo de un estimador a la diferencia entre su esperanza matem\u00E1tica y el valor num\u00E9rico del par\u00E1metro que estima. Un estimador cuyo sesgo es nulo se llama insesgado o centrado. En notaci\u00F3n matem\u00E1tica, dada una muestra y un estimador del par\u00E1metro poblacional , el sesgo es:\u200B El no tener sesgo es una propiedad deseable de los estimadores. Una propiedad relacionada con esta es la de la consistencia: un estimador puede tener un sesgo pero el tama\u00F1o de este converge a cero conforme crece el tama\u00F1o muestral. Dada la importancia de la falta de sesgo, en ocasiones, en lugar de estimadores naturales se utilizan otros corregidos para eliminar el sesgo. As\u00ED ocurre, por ejemplo, con la varianza muestral."@es , "En estad\u00EDstica, s'anomena biaix d'un estimador a la difer\u00E8ncia entre la seva esperan\u00E7a matem\u00E0tica i el valor del par\u00E0metre que estima. Un estimador amb un biaix nul es diu no esbiaixat, centrat o de tend\u00E8ncia central. En notaci\u00F3 matem\u00E0tica, donada una mostra i un estimador del par\u00E0metre mostral , el biaix \u00E9s El no tenir biaix \u00E9s una propietat desitjable en els estimadors. Una propietat relacionada amb aquesta \u00E9s la de la : un estimador pot tenir un biaix per\u00F2 la mida d'aquest pot convergir a zero conforme creix la grand\u00E0ria mostral. Donada la import\u00E0ncia de la falta de biaix, de vegades, en lloc d'estimadors naturals se n'utilitzen d'altres corregits per eliminar el biaix. Aix\u00ED passa, per exemple, amb la vari\u00E0ncia mostral."@ca , "\u5728\u7EDF\u8BA1\u5B66\u4E2D\uFF0C\u4F30\u8BA1\u91CF\u7684\u504F\u5DEE\uFF08\u6216\u504F\u5DEE\u51FD\u6570\uFF09\u662F\u6B64\u4F30\u8BA1\u91CF\u7684\u671F\u671B\u503C\u4E0E\u4F30\u8BA1\u53C2\u6570\u7684\u771F\u503C\u4E4B\u5DEE\u3002\u504F\u5DEE\u4E3A\u96F6\u7684\u4F30\u8BA1\u91CF\u6216\u51B3\u7B56\u89C4\u5219\u79F0\u4E3A\u65E0\u504F\u7684\u3002\u5426\u5219\u8BE5\u4F30\u8BA1\u91CF\u662F\u6709\u504F\u7684\u3002\u5728\u7EDF\u8BA1\u4E2D\uFF0C\u201C\u504F\u5DEE\u201D\u662F\u4E00\u4E2A\u51FD\u6570\u7684\u5BA2\u89C2\u9648\u8FF0\u3002 \u504F\u5DEE\u4E5F\u53EF\u4EE5\u76F8\u5BF9\u4E8E\u4E2D\u4F4D\u6578\u6765\u8861\u91CF\uFF0C\u800C\u975E\u76F8\u5BF9\u4E8E\u5747\u503C\uFF08\u671F\u671B\u503C\uFF09\uFF0C\u5728\u8FD9\u79CD\u60C5\u51B5\u4E0B\u4E3A\u4E86\u4E0E\u901A\u5E38\u7684\u201C\u5747\u503C\u201D\u65E0\u504F\u6027\u533A\u522B\uFF0C\u79F0\u4F5C\u201C\u4E2D\u503C\u201D\u65E0\u504F\u3002\u504F\u5DEE\u4E0E\u4E00\u81F4\u6027\u76F8\u5173\u8054\uFF0C\u4E00\u81F4\u4F30\u8BA1\u91CF\u90FD\u662F\u6536\u655B\u5E76\u4E14\u6E10\u8FDB\u65E0\u504F\u7684\uFF08\u56E0\u6B64\u4F1A\u6536\u655B\u5230\u6B63\u786E\u7684\u503C\uFF09\uFF0C\u867D\u7136\u4E00\u81F4\u5E8F\u5217\u4E2D\u7684\u4E2A\u522B\u4F30\u8BA1\u91CF\u53EF\u80FD\u662F\u6709\u504F\u7684\uFF08\u53EA\u8981\u504F\u5DEE\u6536\u655B\u4E8E\u96F6\uFF09\uFF1B\u53C2\u89C1\u504F\u5DEE\u4E0E\u4E00\u81F4\u6027\u3002 \u5F53\u5176\u4ED6\u91CF\u76F8\u7B49\u65F6\uFF0C\u65E0\u504F\u4F30\u8BA1\u91CF\u6BD4\u6709\u504F\u4F30\u8BA1\u91CF\u66F4\u597D\u4E00\u4E9B\uFF0C\u4F46\u5728\u5B9E\u8DF5\u4E2D\uFF0C\u5E76\u4E0D\u662F\u6240\u6709\u5176\u4ED6\u7EDF\u8BA1\u91CF\u7684\u90FD\u76F8\u7B49\uFF0C\u4E8E\u662F\u4E5F\u7ECF\u5E38\u4F7F\u7528\u6709\u504F\u4F30\u8BA1\u91CF\uFF0C\u4E00\u822C\u504F\u5DEE\u8F83\u5C0F\u3002\u5F53\u4F7F\u7528\u4E00\u4E2A\u6709\u504F\u4F30\u8BA1\u91CF\u65F6\uFF0C\u4E5F\u4F1A\u4F30\u8BA1\u5B83\u7684\u504F\u5DEE\u3002\u6709\u504F\u4F30\u8BA1\u91CF\u53EF\u80FD\u7528\u4E8E\u4EE5\u4E0B\u539F\u56E0\uFF1A\u7531\u4E8E\u5982\u679C\u4E0D\u5BF9\u603B\u4F53\u8FDB\u4E00\u6B65\u5047\u8BBE\uFF0C\u65E0\u504F\u4F30\u8BA1\u91CF\u4E0D\u5B58\u5728\u6216\u5F88\u96BE\u8BA1\u7B97\uFF08\u5982\uFF09\uFF1B\u7531\u4E8E\u4F30\u8BA1\u91CF\u662F\u4E2D\u503C\u65E0\u504F\u7684\uFF0C\u5374\u4E0D\u662F\u5747\u503C\u65E0\u504F\u7684\uFF08\u6216\u53CD\u4E4B\uFF09\uFF1B\u7531\u4E8E\u4E00\u4E2A\u6709\u504F\u4F30\u8BA1\u91CF\u8F83\u4E4B\u65E0\u504F\u4F30\u8BA1\u91CF\uFF08\u7279\u522B\u662F\uFF09\u53EF\u4EE5\u51CF\u5C0F\u4E00\u4E9B\u635F\u5931\u51FD\u6570\uFF08\u5C24\u5176\u662F\u5747\u65B9\u5DEE\uFF09\uFF1B\u6216\u8005\u7531\u4E8E\u5728\u67D0\u4E9B\u60C5\u51B5\u4E0B\uFF0C\u65E0\u504F\u7684\u6761\u4EF6\u592A\u5F3A\uFF0C\u800C\u8FD9\u4E9B\u65E0\u504F\u4F30\u8BA1\u91CF\u6CA1\u6709\u592A\u5927\u7528\u5904\u3002\u6B64\u5916\uFF0C\u5728\u975E\u7EBF\u6027\u53D8\u6362\u4E0B\u5747\u503C\u65E0\u504F\u6027\u4E0D\u4F1A\u4FDD\u7559\uFF0C\u4E0D\u8FC7\u4E2D\u503C\u65E0\u504F\u6027\u4F1A\u4FDD\u7559\uFF08\u53C2\u89C1\uFF09\uFF1B\u4F8B\u5982\u6837\u672C\u65B9\u5DEE\u662F\u603B\u4F53\u65B9\u5DEE\u7684\u65E0\u504F\u4F30\u8BA1\u91CF\uFF0C\u4F46\u5B83\u7684\u5E73\u65B9\u6839\u6A19\u6E96\u5DEE\u5219\u662F\u603B\u4F53\u6807\u51C6\u5DEE\u7684\u6709\u504F\u4F30\u8BA1\u91CF\u3002\u4E0B\u9762\u4F1A\u8FDB\u884C\u8BF4\u660E\u3002"@zh , "\u062A\u062D\u064A\u0632 \u0627\u0644\u0645\u0642\u062F\u0650\u0651\u0631 \u0623\u0648 \u0627\u0646\u062D\u064A\u0627\u0632 \u0627\u0644\u0645\u0642\u062F\u0650\u0651\u0631 \u0623\u0648 \u062F\u0627\u0644\u0629 \u062A\u062D\u064A\u0632 \u0627\u0644\u0645\u0642\u062F\u0650\u0651\u0631\u060C (\u0628\u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629: Bias of an estimator)\u200F \u0641\u064A \u0627\u0644\u0625\u062D\u0635\u0627\u0621 \u0639\u0645\u0648\u0645\u0627 \u0648\u0641\u064A \u0627\u0644\u0627\u0633\u062A\u062F\u0644\u0627\u0644 \u0627\u0644\u0625\u062D\u0635\u0627\u0626\u064A \u0628\u0635\u0641\u0629 \u062E\u0627\u0635\u0629 \u0647\u0648 \u0627\u0644\u0641\u0631\u0642 \u0628\u064A\u0646 \u0627\u0644\u0642\u064A\u0645\u0629 \u0627\u0644\u0645\u062A\u0648\u0642\u0639\u0629 \u0644\u0645\u0642\u062F\u0631 \u0645\u062A\u063A\u064A\u0631 \u0639\u0634\u0648\u0627\u0626\u064A (\u0623\u0648 \u0645\u0639\u0644\u0645\u0629 \u0625\u062D\u0635\u0627\u0626\u064A\u0629) \u0648\u0627\u0644\u0642\u064A\u0645\u0629 \u0627\u0644\u062D\u0642\u064A\u0642\u064A\u0629 \u0644\u0644\u0645\u062A\u063A\u064A\u0631 \u0627\u0644\u0645\u0631\u0627\u062F \u062A\u0642\u062F\u064A\u0631\u0647."@ar , "En statistique ou en \u00E9pid\u00E9miologie, un biais est une d\u00E9marche ou un proc\u00E9d\u00E9 qui engendre des erreurs dans les r\u00E9sultats d'une \u00E9tude. Formellement, le biais de l'estimateur d'un param\u00E8tre est la diff\u00E9rence entre la valeur de l'esp\u00E9rance de cet estimateur (qui est une variable al\u00E9atoire) et la valeur qu'il est cens\u00E9 estimer (d\u00E9finie et fixe). D\u00E9finition \u2014 Si est l'estimateur de ,"@fr , "Zuiverheid is in de statistiek een eigenschap die van toepassing kan zijn op schatters en op toetsen."@nl , "\uD3B8\uC758\uCD94\uC815\uB7C9(\u504F\u501A\u63A8\u5B9A\u91CF, Bias of an estimator \uB610\uB294 biased estimator)\uC740 \uD1B5\uACC4\uD559\uC5D0\uC11C \uAE30\uB313\uAC12\uC774 \uBAA8\uC218\uC640 \uB2E4\uB978 \uCD94\uC815\uB7C9\uC774\uB2E4."@ko ; dbo:wikiPageWikiLink , dbr:Vector_norm , , dbr:Average_absolute_deviation , dbr:Statistical_decision_theory , dbr:Minimum-variance_unbiased_estimator , dbr:Mean_squared_error , dbr:Central_tendency , dbr:Covariance_matrix , dbr:Expected_value , dbr:Convex_function , dbr:Jeffreys_prior , dbr:Sample_mean , dbr:Variance , dbr:Likelihood_function , dbr:Allan_Birnbaum , , dbr:Chi-squared_distribution , dbr:Efficient_estimator , dbr:Loss_function , dbr:Estimand , dbr:Poisson_distribution , dbr:Ratio_estimator , , , , dbc:Point_estimation_performance , dbr:Mean_signed_difference , dbr:Consistent_estimator , dbr:Taylor_series , dbr:Independent_and_identically_distributed , dbc:Accuracy_and_precision , dbc:Bias , dbr:Ordinary_least_squares , dbr:True_value , dbr:Sample_standard_deviation , dbr:Sample_variance , dbr:Mean_square_error , dbr:Optimism_bias , dbr:Characterizations_of_the_exponential_function , dbr:Median , dbr:Square_root , dbr:Bayesian_statistics , dbr:Shrinkage_estimator , dbr:Statistical_model , dbr:Concave_function , dbr:Expected_loss , dbr:Estimation_theory , dbr:Prior_probability , dbr:Absolute_value , dbr:Unbiased_estimation_of_standard_deviation , dbr:Estimator , dbr:Robust_statistics , dbr:Laplace , dbr:Standard_deviation , dbr:Maximum_likelihood , dbr:Omitted-variable_bias , , dbr:Erich_Leo_Lehmann , dbr:Monotone_likelihood_ratio , dbr:Statistics , dbr:Scaled_inverse_chi-squared_distribution , dbr:Pivotal_quantity , dbr:Injective_function , dbr:Gauss . @prefix dbp: . @prefix dbt: . dbr:Bias_of_an_estimator dbp:wikiPageUsesTemplate dbt:Biases , dbt:JSTOR , dbt:Statistics , dbt:Portal , dbt:Clarify , dbt:Section_link , dbt:Springer , dbt:Em , dbt:Broader , dbt:Short_description , dbt:Citation_needed , dbt:Blockquote , dbt:See_also , dbt:Cite_book , dbt:Main , dbt:Div_col , dbt:Div_col_end , dbt:Reflist ; dbo:thumbnail ; dbo:wikiPageRevisionID 1110965892 ; dbo:wikiPageExternalLink , . @prefix xsd: . dbr:Bias_of_an_estimator dbo:wikiPageLength "33056"^^xsd:nonNegativeInteger ; dbo:wikiPageID 8450479 ; dbp:id "p/u095070"@en ; dbp:title "Unbiased estimator"@en ; owl:sameAs , , , , , . @prefix dbpedia-pt: . dbr:Bias_of_an_estimator owl:sameAs dbpedia-pt:Enviesamento_amostral , . @prefix ns13: . dbr:Bias_of_an_estimator owl:sameAs ns13:B9au . @prefix dbpedia-da: . dbr:Bias_of_an_estimator owl:sameAs dbpedia-da:Bias_af_estimator , , . @prefix wikidata: . dbr:Bias_of_an_estimator owl:sameAs wikidata:Q11264527 , dbr:Bias_of_an_estimator , , . @prefix gold: . dbr:Bias_of_an_estimator gold:hypernym dbr:Difference . @prefix prov: . dbr:Bias_of_an_estimator prov:wasDerivedFrom ; foaf:isPrimaryTopicOf wikipedia-en:Bias_of_an_estimator . dbr:Binomial_distribution dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Principal_component_regression dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Generalized_least_squares dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Ridge_regression dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Unbiased_rendering dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Field_experiment dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Placebo-controlled_study dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Multivariate_statistics dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Estimation_of_covariance_matrices dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:List_of_statistics_articles dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:MinHash dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Statistic dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Monte_Carlo_integration dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Empirical_measure dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Further_Mathematics dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Walk-on-spheres_method dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Learning_rule dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Linear_regression dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Mean_squared_error dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Regression_analysis dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Invariant_estimator dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Estimator dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Global_illumination dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:German_tank_problem dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Estimator_bias dbo:wikiPageWikiLink dbr:Bias_of_an_estimator ; dbo:wikiPageRedirects dbr:Bias_of_an_estimator . dbr:Biased_estimator dbo:wikiPageWikiLink dbr:Bias_of_an_estimator ; dbo:wikiPageRedirects dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Polynomial_and_rational_function_modeling dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Fisher_consistency dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Unbiased_estimation_of_standard_deviation dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:List_of_important_publications_in_statistics dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Multivariate_kernel_density_estimation dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Negative_binomial_distribution dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Glossary_of_artificial_intelligence dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:John_Ioannidis dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Econometrics dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:White_noise dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Theodore_Wilbur_Anderson dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Propagation_of_uncertainty dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Rayleigh_distribution dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Statistics dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Pearson_correlation_coefficient dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Sample_space dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Seed-based_d_mapping dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Rasch_model_estimation dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Corporate_finance dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Propensity_score_matching dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Covariance dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Sufficient_statistic dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Jackknife_resampling dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Unbiased_estimator dbo:wikiPageWikiLink dbr:Bias_of_an_estimator ; dbo:wikiPageRedirects dbr:Bias_of_an_estimator . dbr:Probabilistic_classification dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Anscombe_transform dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Omitted-variable_bias dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Kernel_embedding_of_distributions dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Mean_signed_deviation dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Minimum-variance_unbiased_estimator dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Focused_information_criterion dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:V-statistic dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Gary_Charness dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Effect_size dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Kurtosis dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Skewness dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Truncated_mean dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Forecast_bias dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Phylogenetic_comparative_methods dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Spike-triggered_average dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Seemingly_unrelated_regressions dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Maximum_likelihood_estimation dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:List_of_mathematical_abbreviations dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Forensic_epidemiology dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Point_estimation dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Empirical_distribution_function dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Sample_mean_and_covariance dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Proofs_involving_ordinary_least_squares dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Median dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Valuation_using_discounted_cash_flows dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Correlogram dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:UE dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Control_variates dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Watterson_estimator dbo:wikiPageWikiLink dbr:Bias_of_an_estimator . dbr:Unbiasedness dbo:wikiPageWikiLink dbr:Bias_of_an_estimator ; dbo:wikiPageRedirects dbr:Bias_of_an_estimator . dbr:Unbiased_estimate dbo:wikiPageWikiLink dbr:Bias_of_an_estimator ; dbo:wikiPageRedirects dbr:Bias_of_an_estimator .
  NODES