{ "http://dbpedia.org/resource/De_Sitter_universe" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/DS" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] , "http://dbpedia.org/ontology/wikiPageDisambiguates" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Causal_patch" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Coleman\u2013Mandula_theorem" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Erlangen_program" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Quasi-sphere" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Hyperbolic_geometry" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Representation_theory_of_the_Lorentz_group" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://en.wikipedia.org/wiki/De_Sitter_space" : { "http://xmlns.com/foaf/0.1/primaryTopic" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Hyperboloid" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Maximal_surface" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Static_spacetime" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Spacetime_symmetries" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/(2+1)-dimensional_topological_gravity" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Exotic_star" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Deformed_Hermitian_Yang\u2013Mills_equation" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Killing_vector_field" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Lambdavacuum_solution" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/DS/CFT_correspondence" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Chiara_Nappi" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Cosmological_horizon" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Whitehead's_theory_of_gravitation" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Geometrodynamics" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Unruh_effect" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Glossary_of_string_theory" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Symmetric_space" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/De_Sitter_metric" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] , "http://dbpedia.org/ontology/wikiPageRedirects" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Causal_structure" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Ellis_drainhole" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Anti-de_Sitter_space" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Lorentz_group" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Willem_de_Sitter" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Killing_horizon" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Sean_M._Carroll" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Poincar\u00E9_group" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Spherically_symmetric_spacetime" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Gravitational_wave" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Gravitational_instanton" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Eugenio_Calabi" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Alternatives_to_general_relativity" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Dual_graviton" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/False_vacuum_decay" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/List_of_contributors_to_general_relativity" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Boltzmann_brain" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Metric_tensor_(general_relativity)" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/De_Sitter\u2013Schwarzschild_metric" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/List_of_mathematical_topics_in_relativity" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/List_of_Dutch_discoveries" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Patrick_du_Val" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/De_Sitter_invariant_special_relativity" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Minkowski_space" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Inflation_(cosmology)" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Group_contraction" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/De_Sitter_space" : { "http://www.w3.org/1999/02/22-rdf-syntax-ns#type" : [ { "type" : "uri", "value" : "http://dbpedia.org/class/yago/Passage103895293" } , { "type" : "uri", "value" : "http://dbpedia.org/class/yago/Whole100003553" } , { "type" : "uri", "value" : "http://dbpedia.org/class/yago/WikicatLorentzianManifolds" } , { "type" : "uri", "value" : "http://dbpedia.org/class/yago/Object100002684" } , { "type" : "uri", "value" : "http://dbpedia.org/class/yago/Way104564698" } , { "type" : "uri", "value" : "http://dbpedia.org/class/yago/PhysicalEntity100001930" } , { "type" : "uri", "value" : "http://dbpedia.org/class/yago/Manifold103717750" } , { "type" : "uri", "value" : "http://dbpedia.org/class/yago/YagoGeoEntity" } , { "type" : "uri", "value" : "http://dbpedia.org/class/yago/Artifact100021939" } , { "type" : "uri", "value" : "http://dbpedia.org/class/yago/YagoPermanentlyLocatedEntity" } , { "type" : "uri", "value" : "http://dbpedia.org/class/yago/Pipe103944672" } , { "type" : "uri", "value" : "http://dbpedia.org/class/yago/Conduit103089014" } , { "type" : "uri", "value" : "http://dbpedia.org/class/yago/Tube104493505" } ] , "http://www.w3.org/2000/01/rdf-schema#label" : [ { "type" : "literal", "value" : "Espa\u00E7o de De Sitter" , "lang" : "pt" } , { "type" : "literal", "value" : "De Sitter-metriek" , "lang" : "nl" } , { "type" : "literal", "value" : "\u041C\u043E\u0434\u0435\u043B\u044C \u0434\u0435 \u0421\u0456\u0442\u0442\u0435\u0440\u0430" , "lang" : "uk" } , { "type" : "literal", "value" : "\u30C9\u30FB\u30B8\u30C3\u30BF\u30FC\u7A7A\u9593" , "lang" : "ja" } , { "type" : "literal", "value" : "Przestrze\u0144 de Sittera" , "lang" : "pl" } , { "type" : "literal", "value" : "De-Sitter-Raum" , "lang" : "de" } , { "type" : "literal", "value" : "M\u00E9trica de De Sitter" , "lang" : "es" } , { "type" : "literal", "value" : "De Sitter\u016Fv prostoro\u010Das" , "lang" : "cs" } , { "type" : "literal", "value" : "\u041C\u043E\u0434\u0435\u043B\u044C \u0434\u0435 \u0421\u0438\u0442\u0442\u0435\u0440\u0430" , "lang" : "ru" } , { "type" : "literal", "value" : "Espace de de Sitter" , "lang" : "fr" } , { "type" : "literal", "value" : "De Sitter space" , "lang" : "en" } , { "type" : "literal", "value" : "\uB354\uC2DC\uD130\uB974 \uACF5\uAC04" , "lang" : "ko" } , { "type" : "literal", "value" : "Spazio di de Sitter" , "lang" : "it" } ] , "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "type" : "literal", "value" : "\u041C\u043E\u0434\u0435\u043B\u044C \u0434\u0435 \u0421\u0438\u0442\u0442\u0435\u0440\u0430 (\u043C\u0438\u0440 \u0434\u0435 \u0421\u0438\u0442\u0442\u0435\u0440\u0430, \u0432\u0441\u0435\u043B\u0435\u043D\u043D\u0430\u044F \u0434\u0435 \u0421\u0438\u0442\u0442\u0435\u0440\u0430) \u2014 \u043A\u043B\u0430\u0441\u0441 \u043A\u043E\u0441\u043C\u043E\u043B\u043E\u0433\u0438\u0447\u0435\u0441\u043A\u0438\u0445 \u043C\u043E\u0434\u0435\u043B\u0435\u0439, \u0440\u0435\u0448\u0435\u043D\u0438\u044F \u0443\u0440\u0430\u0432\u043D\u0435\u043D\u0438\u0439 \u041E\u0422\u041E \u0441 \u043A\u043E\u0441\u043C\u043E\u043B\u043E\u0433\u0438\u0447\u0435\u0441\u043A\u043E\u0439 \u043F\u043E\u0441\u0442\u043E\u044F\u043D\u043D\u043E\u0439, \u043A\u043E\u0442\u043E\u0440\u044B\u0435 \u043E\u043F\u0438\u0441\u044B\u0432\u0430\u044E\u0442 \u0432\u0430\u043A\u0443\u0443\u043C\u043D\u043E\u0435 \u0441\u043E\u0441\u0442\u043E\u044F\u043D\u0438\u0435. \u0421\u0432\u043E\u0439\u0441\u0442\u0432\u0430 \u043F\u043E\u0441\u043B\u0435\u0434\u043D\u0435\u0433\u043E \u0437\u0430\u0432\u0438\u0441\u044F\u0442 \u043E\u0442 \u0437\u043D\u0430\u043A\u0430 \u044D\u0442\u043E\u0439 \u043F\u043E\u0441\u0442\u043E\u044F\u043D\u043D\u043E\u0439 \u0438 \u0441\u0438\u043B\u044C\u043D\u043E \u043E\u0442\u043B\u0438\u0447\u0430\u044E\u0442 \u0435\u0433\u043E \u043E\u0442 \u00AB\u043F\u0443\u0441\u0442\u043E\u0433\u043E \u0432\u0430\u043A\u0443\u0443\u043C\u0430\u00BB. \u041C\u043E\u0434\u0435\u043B\u0438 \u0441 \u043E\u0442\u0440\u0438\u0446\u0430\u0442\u0435\u043B\u044C\u043D\u043E\u0439 \u043A\u043E\u0441\u043C\u043E\u043B\u043E\u0433\u0438\u0447\u0435\u0441\u043A\u043E\u0439 \u043F\u043E\u0441\u0442\u043E\u044F\u043D\u043D\u043E\u0439 \u043F\u0440\u0438\u043D\u044F\u0442\u043E \u043D\u0430\u0437\u044B\u0432\u0430\u0442\u044C \u0430\u043D\u0442\u0438-\u0434\u0435-\u0441\u0438\u0442\u0442\u0435\u0440\u043E\u0432\u0441\u043A\u0438\u043C\u0438. \u0412 \u0434\u0435-\u0441\u0438\u0442\u0442\u0435\u0440\u043E\u0432\u0441\u043A\u0438\u0445 \u043C\u043E\u0434\u0435\u043B\u044F\u0445 \u0434\u0438\u043D\u0430\u043C\u0438\u043A\u0430 \u0432\u0441\u0435\u043B\u0435\u043D\u043D\u043E\u0439 \u043E\u043F\u0440\u0435\u0434\u0435\u043B\u044F\u0435\u0442\u0441\u044F \u043A\u043E\u0441\u043C\u043E\u043B\u043E\u0433\u0438\u0447\u0435\u0441\u043A\u043E\u0439 \u043F\u043E\u0441\u0442\u043E\u044F\u043D\u043D\u043E\u0439, \u0432\u043A\u043B\u0430\u0434\u043E\u043C \u0445\u043E\u043B\u043E\u0434\u043D\u043E\u0433\u043E \u0432\u0435\u0449\u0435\u0441\u0442\u0432\u0430 \u0438 \u0438\u0437\u043B\u0443\u0447\u0435\u043D\u0438\u044F \u043F\u0440\u0435\u043D\u0435\u0431\u0440\u0435\u0433\u0430\u044E\u0442." , "lang" : "ru" } , { "type" : "literal", "value" : "In Mathematik und Physik ist ein -dimensionaler De-Sitter-Raum (nach Willem de Sitter), notiert , die lorentzsche Mannigfaltigkeit analog zu einer n-Sph\u00E4re (mit ihrer kanonischen riemannschen Mannigfaltigkeit); er ist maximal symmetrisch, hat eine konstante positive Kr\u00FCmmung und ist einfach zusammenh\u00E4ngend f\u00FCr . Im vierdimensionalen Minkowski-Raum (3 Raumdimensionen plus die Zeit) bzw. in der Raumzeit ist der De-Sitter-Raum das Analogon zu einer Kugel im gew\u00F6hnlichen euklidischen Raum." , "lang" : "de" } , { "type" : "literal", "value" : "De Sitter\u016Fv prostoro\u010Das je obecn\u011B n-rozm\u011Brn\u00FD \u00FAtvar, kter\u00FD je obdobou hyperkoule v prostoru, a ve kter\u00E9m lze pou\u017E\u00EDt Lorentzovu transformaci. V obecn\u00E9 teorii relativity jde o maxim\u00E1ln\u011B symetrick\u00E9 vakuov\u00E9 \u0159e\u0161en\u00ED gravitace kladnou kosmologickou konstantou. Jde o model vesm\u00EDru, ve kter\u00E9m je zahrnut vliv kosmologick\u00E9 konstanty, ale neuva\u017Euje se jeho zapln\u011Bn\u00ED hmotou \u2013 naz\u00FDv\u00E1 se pak . De Sitter\u016Fv \u010Dasoprostor objevili nez\u00E1visle na sob\u011B Willem de Sitter a Tullio Levi-Civita roku 1917." , "lang" : "cs" } , { "type" : "literal", "value" : "In matematica e fisica, uno spazio di de Sitter \u00E8 l'analogo, nello spaziotempo di Minkowski, di una sfera nell'ordinario spazio euclideo. Uno spazio di de Sitter n-dimensionale, denotato dSn, \u00E8 la variet\u00E0 lorentziana analoga ad una n-sfera (con la sua metrica Riemanniana canonica); esso \u00E8 massimamente simmetrico, ha una curvatura scalare costante e positiva ed \u00E8 semplicemente connesso per n \u22653. Lo spazio de Sitter, cos\u00EC come lo spazio anti de Sitter prende il nome da Willem de Sitter (1872\u20131934), professore di astronomia alla Universit\u00E0 di Leida e direttore dell'Osservatorio di Leida. Willem de Sitter e Albert Einstein lavorarono insieme negli anni 20 del 900 a Leida sulla struttura spazio-temporale dell'universo." , "lang" : "it" } , { "type" : "literal", "value" : "De De Sitter-metriek of De Sitter-ruimte beschrijft op wiskundige manier hoe het universum eruitziet volgens het De Sittermodel. In het bijzonder geeft het de metriek van de ruimtetijd met een positieve kosmologische constante. Hoe de metriek van zo'n ruimte eruitziet, wordt opgelegd door de algemene relativiteitstheorie, meer bepaald de Einstein-vergelijkingen. De metriek is genoemd naar zijn ontdekker, de Nederlandse natuurkundige Willem de Sitter." , "lang" : "nl" } , { "type" : "literal", "value" : "Przestrze\u0144 de Sittera \u2013 rozmaito\u015B\u0107 lorentzowska wzgl\u0119dem n-sfery (kt\u00F3ra jest kanoniczn\u0105 metryk\u0105 riemannowsk\u0105); jest maksymalnie symetryczna, posiada sta\u0142\u0105 pozytywn\u0105 krzywizn\u0119. Jest przestrzeni\u0105 jednosp\u00F3jn\u0105 dla n wi\u0119kszego lub r\u00F3wnego 3. N-wymiarowa przestrze\u0144 de Sittera oznaczana jest symbolem" , "lang" : "pl" } , { "type" : "literal", "value" : "En math\u00E9matiques, l\u2019espace de de Sitter est un espace maximalement sym\u00E9trique en quatre dimensions de courbure positive en signature . Il g\u00E9n\u00E9ralise en ce sens la 4-sph\u00E8re au-del\u00E0 de la g\u00E9om\u00E9trie euclidienne. Le nom vient de Willem de Sitter. La dimension 4 est tr\u00E8s utilis\u00E9e car elle correspond \u00E0 la relativit\u00E9 g\u00E9n\u00E9rale. En fait, il existe[r\u00E9f. \u00E0 confirmer] en dimension enti\u00E8re ." , "lang" : "fr" } , { "type" : "literal", "value" : "El espacio de De Sitter (nombrado as\u00ED por Willem de Sitter\u200B) es una variedad lorentziana (un espacio-tiempo) an\u00E1logo a la esfera en geometr\u00EDa riemanniana. Posee curvatura constante y positiva y es maximalmente sim\u00E9trico. En dimensi\u00F3n se le denota por . En relatividad general, el espacio de De Sitter es la soluci\u00F3n de vac\u00EDo m\u00E1ximamente sim\u00E9trica de las ecuaciones de Einstein con constante cosmol\u00F3gica positiva (repulsiva). En el caso de que el n\u00FAmero de dimensiones sea , constituye un modelo cosmol\u00F3gico para un universo en expansi\u00F3n acelerada." , "lang" : "es" } , { "type" : "literal", "value" : "\u041C\u043E\u0434\u0435\u043B\u044C \u0434\u0435 \u0421\u0456\u0442\u0442\u0435\u0440\u0430 (\u0441\u0432\u0456\u0442 \u0434\u0435 \u0421\u0456\u0442\u0442\u0435\u0440\u0430, \u0432\u0441\u0435\u0441\u0432\u0456\u0442 \u0434\u0435 \u0421\u0456\u0442\u0442\u0435\u0440\u0430) \u2014 \u043A\u043B\u0430\u0441 \u043A\u043E\u0441\u043C\u043E\u043B\u043E\u0433\u0456\u0447\u043D\u0438\u0445 \u043C\u043E\u0434\u0435\u043B\u0435\u0439, \u0440\u043E\u0437\u0432'\u044F\u0437\u043A\u0438 \u0440\u0456\u0432\u043D\u044F\u043D\u044C \u0417\u0422\u0412 \u0437 \u043A\u043E\u0441\u043C\u043E\u043B\u043E\u0433\u0456\u0447\u043D\u043E\u044E \u0441\u0442\u0430\u043B\u043E\u044E, \u044F\u043A\u0456 \u043E\u043F\u0438\u0441\u0443\u044E\u0442\u044C \u0432\u0430\u043A\u0443\u0443\u043C\u043D\u0438\u0439 \u0441\u0442\u0430\u043D. \u0412\u043B\u0430\u0441\u0442\u0438\u0432\u043E\u0441\u0442\u0456 \u043E\u0441\u0442\u0430\u043D\u043D\u044C\u043E\u0433\u043E \u0437\u0430\u043B\u0435\u0436\u0430\u0442\u044C \u0432\u0456\u0434 \u0437\u043D\u0430\u043A\u0430 \u0446\u0456\u0454\u0457 \u0441\u0442\u0430\u043B\u043E\u0457 \u0456 \u0434\u0443\u0436\u0435 \u0432\u0456\u0434\u0440\u0456\u0437\u043D\u044F\u044E\u0442\u044C \u0439\u043E\u0433\u043E \u0432\u0456\u0434 \u00AB\u043F\u043E\u0440\u043E\u0436\u043D\u044C\u043E\u0433\u043E \u0432\u0430\u043A\u0443\u0443\u043C\u0443\u00BB. \u041C\u043E\u0434\u0435\u043B\u0456 \u0437 \u0432\u0456\u0434'\u0454\u043C\u043D\u043E\u044E \u043A\u043E\u0441\u043C\u043E\u043B\u043E\u0433\u0456\u0447\u043D\u043E\u044E \u0441\u0442\u0430\u043B\u043E\u044E \u043F\u0440\u0438\u0439\u043D\u044F\u0442\u043E \u043D\u0430\u0437\u0438\u0432\u0430\u0442\u0438 \u0430\u043D\u0442\u0438-\u0434\u0435-\u0441\u0456\u0442\u0442\u0435\u0440\u0456\u0432\u0441\u044C\u043A\u0438\u043C\u0438. \u0423 \u0434\u0435-\u0441\u0456\u0442\u0442\u0435\u0440\u0456\u0432\u0441\u044C\u043A\u0438\u0445 \u043C\u043E\u0434\u0435\u043B\u044F\u0445 \u0434\u0438\u043D\u0430\u043C\u0456\u043A\u0430 \u0432\u0441\u0435\u0441\u0432\u0456\u0442\u0443 \u0432\u0438\u0437\u043D\u0430\u0447\u0430\u0454\u0442\u044C\u0441\u044F \u043A\u043E\u0441\u043C\u043E\u043B\u043E\u0433\u0456\u0447\u043D\u043E\u044E \u0441\u0442\u0430\u043B\u043E\u044E, \u0430 \u0432\u043D\u0435\u0441\u043A\u043E\u043C \u0445\u043E\u043B\u043E\u0434\u043D\u043E\u0457 \u0440\u0435\u0447\u043E\u0432\u0438\u043D\u0438 \u0456 \u0432\u0438\u043F\u0440\u043E\u043C\u0456\u043D\u044E\u0432\u0430\u043D\u043D\u044F \u043D\u0435\u0445\u0442\u0443\u044E\u0442\u044C." , "lang" : "uk" } , { "type" : "literal", "value" : "Em matem\u00E1tica e f\u00EDsica, um espa\u00E7o de De Sitter \u00E9 o an\u00E1logo do espa\u00E7o de Minkowski, ou de uma variedade quadrimensional de espa\u00E7o-tempo, de uma esfera no comum espa\u00E7o euclidiano. Tamb\u00E9m do ponto de vista geom\u00E9trico, em certas classes de variedades lorentzianas, os espa\u00E7os de Sitter e s\u00E3o os seus parentes mais pr\u00F3ximos. Isto significa que o espa\u00E7o de de Sitter pode ser constru\u00EDdo independentemente de qualquer teoria gravitacional, sendo portanto mais fundamental do que a equa\u00E7\u00E3o de Einstein. Consequentemente, torna-se poss\u00EDvel construir uma relatividade especial baseada no grupo de de Sitter, que e o grupo cinem\u00E1tico do espa\u00E7o de de Sitter. O espa\u00E7o de De Sitter tem curvatura negativa constante -12/R2 (o sinal depende de conven\u00E7\u00F5es) e reproduz (ap\u00F3s uma renormaliza\u00E7\u00E3o) o espa\u00E7o-tempo de Min" , "lang" : "pt" } , { "type" : "literal", "value" : "\u6570\u5B66\u3084\u7269\u7406\u5B66\u306B\u304A\u3044\u3066\u3001\u30C9\u30FB\u30B8\u30C3\u30BF\u30FC\u7A7A\u9593 (de Sitter space) \u306F\u3001\u901A\u5E38\u306E\u30E6\u30FC\u30AF\u30EA\u30C3\u30C9\u7A7A\u9593\u306E\u7403\u9762\u306E\u3001\u30DF\u30F3\u30B3\u30D5\u30B9\u30AD\u30FC\u7A7A\u9593\u3042\u308B\u3044\u306F\u6642\u7A7A\u306B\u304A\u3051\u308B\u985E\u4F3C\u7269\u3067\u3042\u308B\u3002n \u6B21\u5143\u30C9\u30FB\u30B8\u30C3\u30BF\u30FC\u7A7A\u9593\u306F dSn \u3068\u66F8\u304D\u3001\uFF08\u6A19\u6E96\u306E\u30EA\u30FC\u30DE\u30F3\u8A08\u91CF\u3092\u6301\u3064\uFF09n \u6B21\u5143\u7403\u9762\u306E\u30ED\u30FC\u30EC\u30F3\u30C4\u591A\u69D8\u4F53\u3067\u306E\u985E\u4F3C\u3067\u3042\u308B\u3002\u3053\u306E\u7A7A\u9593\u306F\u3001\u6700\u5927\u306E\u5BFE\u79F0\u6027\u3092\u6301\u3061\u3001\u6B63\u306E\u5B9A\u66F2\u7387\u3092\u6301\u3061\u30013 \u4EE5\u4E0A\u306E n \u306B\u5BFE\u3057\u3001\u5358\u9023\u7D50\u3067\u3042\u308B\u3002" , "lang" : "ja" } , { "type" : "literal", "value" : "\uC77C\uBC18 \uC0C1\uB300\uC131 \uC774\uB860\uACFC \uBBF8\uBD84\uAE30\uD558\uD559\uC5D0\uC11C \uB354\uC2DC\uD130\uB974 \uACF5\uAC04(de Sitter\u7A7A\u9593, \uC601\uC5B4: de Sitter space)\uC740 \uB85C\uB7F0\uCE20 \uB2E4\uC591\uCCB4\uC758 \uD558\uB098\uB2E4. \uC591\uC758 \uC6B0\uC8FC \uC0C1\uC218\uB97C \uAC00\uC9C0\uB294 \uC544\uC778\uC288\uD0C0\uC778 \uBC29\uC815\uC2DD\uC758 \uC774\uBA70, \uC554\uD751 \uC5D0\uB108\uC9C0\uBC16\uC5D0 \uC5C6\uB294 \uC9C4\uACF5\uC744 \uB098\uD0C0\uB0B8\uB2E4. n\uCC28\uC6D0 \uB354\uC2DC\uD130\uB974 \uACF5\uAC04\uC758 \uAE30\uD638\uB294 dSn. \uC6B0\uB9AC\uAC00 \uC0B4\uACE0 \uC788\uB294 \uC6B0\uC8FC\uB294 \uD604\uC7AC \uB300\uBD80\uBD84(69%) \uC554\uD751 \uC5D0\uB108\uC9C0\uB85C \uCC28 \uC788\uB2E4 (\u039BCDM \uBAA8\uD615). \uB530\uB77C\uC11C, \uC6B0\uB9AC \uC6B0\uC8FC\uB294 \uB354\uC2DC\uD130\uB974 \uACF5\uAC04\uC73C\uB85C \uADFC\uC0AC\uD560 \uC218 \uC788\uB2E4. \uCD5C\uADFC\uC5D0\uB294, \uBCF8\uB798 \uD2B9\uC218 \uC0C1\uB300\uC131 \uC774\uB860\uC758 \uACE8\uC790\uB85C\uC11C \uBBFC\uCF54\uD504\uC2A4\uD0A4 \uACF5\uAC04\uC774 \uC774\uC6A9\uB41C \uAC83\uC744, \uC774 \uB354\uC2DC\uD130\uB974 \uACF5\uAC04\uC744 \uC0C8\uB85C\uC774 \uC774\uC6A9\uD574\uC11C \uC774\uB77C\uB294 \uD615\uC2DD\uC744 \uC138\uC6B0\uB294 \uAC83\uC774 \uC77C\uAC01\uC5D0\uC11C \uACE0\uB824\uB418\uACE0 \uC788\uB2E4." , "lang" : "ko" } , { "type" : "literal", "value" : "In mathematical physics, n-dimensional de Sitter space (often abbreviated to dSn) is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an n-sphere (with its canonical Riemannian metric)." , "lang" : "en" } ] , "http://purl.org/dc/terms/subject" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/Category:Minkowski_spacetime" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Category:Differential_geometry" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Category:Exact_solutions_in_general_relativity" } ] , "http://dbpedia.org/ontology/abstract" : [ { "type" : "literal", "value" : "De Sitter\u016Fv prostoro\u010Das je obecn\u011B n-rozm\u011Brn\u00FD \u00FAtvar, kter\u00FD je obdobou hyperkoule v prostoru, a ve kter\u00E9m lze pou\u017E\u00EDt Lorentzovu transformaci. V obecn\u00E9 teorii relativity jde o maxim\u00E1ln\u011B symetrick\u00E9 vakuov\u00E9 \u0159e\u0161en\u00ED gravitace kladnou kosmologickou konstantou. Jde o model vesm\u00EDru, ve kter\u00E9m je zahrnut vliv kosmologick\u00E9 konstanty, ale neuva\u017Euje se jeho zapln\u011Bn\u00ED hmotou \u2013 naz\u00FDv\u00E1 se pak . De Sitter\u016Fv \u010Dasoprostor objevili nez\u00E1visle na sob\u011B Willem de Sitter a Tullio Levi-Civita roku 1917." , "lang" : "cs" } , { "type" : "literal", "value" : "In matematica e fisica, uno spazio di de Sitter \u00E8 l'analogo, nello spaziotempo di Minkowski, di una sfera nell'ordinario spazio euclideo. Uno spazio di de Sitter n-dimensionale, denotato dSn, \u00E8 la variet\u00E0 lorentziana analoga ad una n-sfera (con la sua metrica Riemanniana canonica); esso \u00E8 massimamente simmetrico, ha una curvatura scalare costante e positiva ed \u00E8 semplicemente connesso per n \u22653. Lo spazio de Sitter, cos\u00EC come lo spazio anti de Sitter prende il nome da Willem de Sitter (1872\u20131934), professore di astronomia alla Universit\u00E0 di Leida e direttore dell'Osservatorio di Leida. Willem de Sitter e Albert Einstein lavorarono insieme negli anni 20 del 900 a Leida sulla struttura spazio-temporale dell'universo. Nel linguaggio della relativit\u00E0 generale, lo spazio di de Sitter \u00E8 una soluzione di vuoto massimamente simmetrica delle equazioni di campo di Einstein, avente una costante cosmologica positiva (repulsiva) (corrispondente ad una densit\u00E0 di energia del vuoto positiva e pressione negativa). Nel caso n = 4 (3 dimensioni spaziali pi\u00F9 tempo), esso \u00E8 il modello cosmologico dell'universo fisico, detto universo di de Sitter. Lo spazio di de Sitter fu formulato indipendentemente e contemporaneamente da Willem de Sitter e Tullio Levi-Civita." , "lang" : "it" } , { "type" : "literal", "value" : "\u041C\u043E\u0434\u0435\u043B\u044C \u0434\u0435 \u0421\u0456\u0442\u0442\u0435\u0440\u0430 (\u0441\u0432\u0456\u0442 \u0434\u0435 \u0421\u0456\u0442\u0442\u0435\u0440\u0430, \u0432\u0441\u0435\u0441\u0432\u0456\u0442 \u0434\u0435 \u0421\u0456\u0442\u0442\u0435\u0440\u0430) \u2014 \u043A\u043B\u0430\u0441 \u043A\u043E\u0441\u043C\u043E\u043B\u043E\u0433\u0456\u0447\u043D\u0438\u0445 \u043C\u043E\u0434\u0435\u043B\u0435\u0439, \u0440\u043E\u0437\u0432'\u044F\u0437\u043A\u0438 \u0440\u0456\u0432\u043D\u044F\u043D\u044C \u0417\u0422\u0412 \u0437 \u043A\u043E\u0441\u043C\u043E\u043B\u043E\u0433\u0456\u0447\u043D\u043E\u044E \u0441\u0442\u0430\u043B\u043E\u044E, \u044F\u043A\u0456 \u043E\u043F\u0438\u0441\u0443\u044E\u0442\u044C \u0432\u0430\u043A\u0443\u0443\u043C\u043D\u0438\u0439 \u0441\u0442\u0430\u043D. \u0412\u043B\u0430\u0441\u0442\u0438\u0432\u043E\u0441\u0442\u0456 \u043E\u0441\u0442\u0430\u043D\u043D\u044C\u043E\u0433\u043E \u0437\u0430\u043B\u0435\u0436\u0430\u0442\u044C \u0432\u0456\u0434 \u0437\u043D\u0430\u043A\u0430 \u0446\u0456\u0454\u0457 \u0441\u0442\u0430\u043B\u043E\u0457 \u0456 \u0434\u0443\u0436\u0435 \u0432\u0456\u0434\u0440\u0456\u0437\u043D\u044F\u044E\u0442\u044C \u0439\u043E\u0433\u043E \u0432\u0456\u0434 \u00AB\u043F\u043E\u0440\u043E\u0436\u043D\u044C\u043E\u0433\u043E \u0432\u0430\u043A\u0443\u0443\u043C\u0443\u00BB. \u041C\u043E\u0434\u0435\u043B\u0456 \u0437 \u0432\u0456\u0434'\u0454\u043C\u043D\u043E\u044E \u043A\u043E\u0441\u043C\u043E\u043B\u043E\u0433\u0456\u0447\u043D\u043E\u044E \u0441\u0442\u0430\u043B\u043E\u044E \u043F\u0440\u0438\u0439\u043D\u044F\u0442\u043E \u043D\u0430\u0437\u0438\u0432\u0430\u0442\u0438 \u0430\u043D\u0442\u0438-\u0434\u0435-\u0441\u0456\u0442\u0442\u0435\u0440\u0456\u0432\u0441\u044C\u043A\u0438\u043C\u0438. \u0423 \u0434\u0435-\u0441\u0456\u0442\u0442\u0435\u0440\u0456\u0432\u0441\u044C\u043A\u0438\u0445 \u043C\u043E\u0434\u0435\u043B\u044F\u0445 \u0434\u0438\u043D\u0430\u043C\u0456\u043A\u0430 \u0432\u0441\u0435\u0441\u0432\u0456\u0442\u0443 \u0432\u0438\u0437\u043D\u0430\u0447\u0430\u0454\u0442\u044C\u0441\u044F \u043A\u043E\u0441\u043C\u043E\u043B\u043E\u0433\u0456\u0447\u043D\u043E\u044E \u0441\u0442\u0430\u043B\u043E\u044E, \u0430 \u0432\u043D\u0435\u0441\u043A\u043E\u043C \u0445\u043E\u043B\u043E\u0434\u043D\u043E\u0457 \u0440\u0435\u0447\u043E\u0432\u0438\u043D\u0438 \u0456 \u0432\u0438\u043F\u0440\u043E\u043C\u0456\u043D\u044E\u0432\u0430\u043D\u043D\u044F \u043D\u0435\u0445\u0442\u0443\u044E\u0442\u044C. \u0412\u043F\u0435\u0440\u0448\u0435 \u043C\u043E\u0434\u0435\u043B\u044C \u0442\u0430\u043A\u043E\u0433\u043E \u0442\u0438\u043F\u0443 \u0432\u0432\u0456\u0432 \u0412\u0456\u043B\u043B\u0435\u043C \u0434\u0435 \u0421\u0456\u0442\u0442\u0435\u0440. \u0412\u0432\u0430\u0436\u0430\u0454\u0442\u044C\u0441\u044F, \u0449\u043E \u0440\u0435\u0430\u043B\u044C\u043D\u0438\u0439 \u0412\u0441\u0435\u0441\u0432\u0456\u0442 \u043E\u043F\u0438\u0441\u0443\u0432\u0430\u043B\u0430 \u043C\u043E\u0434\u0435\u043B\u044C \u0434\u0435 \u0421\u0456\u0442\u0442\u0435\u0440\u0430 \u043D\u0430 \u0434\u0443\u0436\u0435 \u0440\u0430\u043D\u043D\u0456\u0445 \u0441\u0442\u0430\u0434\u0456\u044F\u0445 \u0440\u043E\u0437\u0448\u0438\u0440\u0435\u043D\u043D\u044F (\u0456\u043D\u0444\u043B\u044F\u0446\u0456\u0439\u043D\u0430 \u043C\u043E\u0434\u0435\u043B\u044C \u0412\u0441\u0435\u0441\u0432\u0456\u0442\u0443). \u041D\u0438\u043D\u0456, \u043C\u043E\u0436\u043B\u0438\u0432\u043E, \u0437\u043D\u043E\u0432\u0443 \u0432\u0456\u0434\u0431\u0443\u0432\u0430\u0454\u0442\u044C\u0441\u044F \u043F\u0435\u0440\u0435\u0445\u0456\u0434 \u0434\u043E \u0434\u0435-\u0441\u0456\u0442\u0442\u0435\u0440\u0456\u0432\u0441\u044C\u043A\u043E\u0433\u043E \u0440\u0435\u0436\u0438\u043C\u0443 \u0440\u043E\u0437\u0448\u0438\u0440\u0435\u043D\u043D\u044F." , "lang" : "uk" } , { "type" : "literal", "value" : "Przestrze\u0144 de Sittera \u2013 rozmaito\u015B\u0107 lorentzowska wzgl\u0119dem n-sfery (kt\u00F3ra jest kanoniczn\u0105 metryk\u0105 riemannowsk\u0105); jest maksymalnie symetryczna, posiada sta\u0142\u0105 pozytywn\u0105 krzywizn\u0119. Jest przestrzeni\u0105 jednosp\u00F3jn\u0105 dla n wi\u0119kszego lub r\u00F3wnego 3. N-wymiarowa przestrze\u0144 de Sittera oznaczana jest symbolem W j\u0119zyku og\u00F3lnej teorii wzgl\u0119dno\u015Bci, przestrze\u0144 de Sittera jest maksymalnie symetrycznym rozwi\u0105zaniem r\u00F3wna\u0144 pola grawitacyjnego w pr\u00F3\u017Cni z dodatni\u0105 (odpychaj\u0105c\u0105) sta\u0142\u0105 kosmologiczn\u0105 (koresponduj\u0105c\u0105 do pozytywnej g\u0119sto\u015Bci energii pr\u00F3\u017Cni oraz negatywnego ci\u015Bnienia). Gdy (3 wymiary przestrzenne plus czas), to jest ona kosmologicznym modelem dla fizycznego wszech\u015Bwiata de Sittera." , "lang" : "pl" } , { "type" : "literal", "value" : "Em matem\u00E1tica e f\u00EDsica, um espa\u00E7o de De Sitter \u00E9 o an\u00E1logo do espa\u00E7o de Minkowski, ou de uma variedade quadrimensional de espa\u00E7o-tempo, de uma esfera no comum espa\u00E7o euclidiano. Tamb\u00E9m do ponto de vista geom\u00E9trico, em certas classes de variedades lorentzianas, os espa\u00E7os de Sitter e s\u00E3o os seus parentes mais pr\u00F3ximos. Isto significa que o espa\u00E7o de de Sitter pode ser constru\u00EDdo independentemente de qualquer teoria gravitacional, sendo portanto mais fundamental do que a equa\u00E7\u00E3o de Einstein. Consequentemente, torna-se poss\u00EDvel construir uma relatividade especial baseada no grupo de de Sitter, que e o grupo cinem\u00E1tico do espa\u00E7o de de Sitter. O espa\u00E7o de De Sitter tem curvatura negativa constante -12/R2 (o sinal depende de conven\u00E7\u00F5es) e reproduz (ap\u00F3s uma renormaliza\u00E7\u00E3o) o espa\u00E7o-tempo de Minkowski no limite da curvatura zero." , "lang" : "pt" } , { "type" : "literal", "value" : "In Mathematik und Physik ist ein -dimensionaler De-Sitter-Raum (nach Willem de Sitter), notiert , die lorentzsche Mannigfaltigkeit analog zu einer n-Sph\u00E4re (mit ihrer kanonischen riemannschen Mannigfaltigkeit); er ist maximal symmetrisch, hat eine konstante positive Kr\u00FCmmung und ist einfach zusammenh\u00E4ngend f\u00FCr . Im vierdimensionalen Minkowski-Raum (3 Raumdimensionen plus die Zeit) bzw. in der Raumzeit ist der De-Sitter-Raum das Analogon zu einer Kugel im gew\u00F6hnlichen euklidischen Raum. In der Sprache der allgemeinen Relativit\u00E4tstheorie ist der De-Sitter-Raum die maximal symmetrische Vakuuml\u00F6sung der einsteinschen Feldgleichungen mit einer positiven (repulsiven) kosmologischen Konstanten (entsprechend einer positiven Vakuumenergiedichte und negativem Druck) und damit ein kosmologisches Modell f\u00FCr das physikalische Universum; siehe De-Sitter-Modell. Der De-Sitter-Raum wurde 1917 von Willem de Sitter entdeckt und gleichzeitig \u2013 unabh\u00E4ngig von de Sitter \u2013 von Tullio Levi-Civita." , "lang" : "de" } , { "type" : "literal", "value" : "\u041C\u043E\u0434\u0435\u043B\u044C \u0434\u0435 \u0421\u0438\u0442\u0442\u0435\u0440\u0430 (\u043C\u0438\u0440 \u0434\u0435 \u0421\u0438\u0442\u0442\u0435\u0440\u0430, \u0432\u0441\u0435\u043B\u0435\u043D\u043D\u0430\u044F \u0434\u0435 \u0421\u0438\u0442\u0442\u0435\u0440\u0430) \u2014 \u043A\u043B\u0430\u0441\u0441 \u043A\u043E\u0441\u043C\u043E\u043B\u043E\u0433\u0438\u0447\u0435\u0441\u043A\u0438\u0445 \u043C\u043E\u0434\u0435\u043B\u0435\u0439, \u0440\u0435\u0448\u0435\u043D\u0438\u044F \u0443\u0440\u0430\u0432\u043D\u0435\u043D\u0438\u0439 \u041E\u0422\u041E \u0441 \u043A\u043E\u0441\u043C\u043E\u043B\u043E\u0433\u0438\u0447\u0435\u0441\u043A\u043E\u0439 \u043F\u043E\u0441\u0442\u043E\u044F\u043D\u043D\u043E\u0439, \u043A\u043E\u0442\u043E\u0440\u044B\u0435 \u043E\u043F\u0438\u0441\u044B\u0432\u0430\u044E\u0442 \u0432\u0430\u043A\u0443\u0443\u043C\u043D\u043E\u0435 \u0441\u043E\u0441\u0442\u043E\u044F\u043D\u0438\u0435. \u0421\u0432\u043E\u0439\u0441\u0442\u0432\u0430 \u043F\u043E\u0441\u043B\u0435\u0434\u043D\u0435\u0433\u043E \u0437\u0430\u0432\u0438\u0441\u044F\u0442 \u043E\u0442 \u0437\u043D\u0430\u043A\u0430 \u044D\u0442\u043E\u0439 \u043F\u043E\u0441\u0442\u043E\u044F\u043D\u043D\u043E\u0439 \u0438 \u0441\u0438\u043B\u044C\u043D\u043E \u043E\u0442\u043B\u0438\u0447\u0430\u044E\u0442 \u0435\u0433\u043E \u043E\u0442 \u00AB\u043F\u0443\u0441\u0442\u043E\u0433\u043E \u0432\u0430\u043A\u0443\u0443\u043C\u0430\u00BB. \u041C\u043E\u0434\u0435\u043B\u0438 \u0441 \u043E\u0442\u0440\u0438\u0446\u0430\u0442\u0435\u043B\u044C\u043D\u043E\u0439 \u043A\u043E\u0441\u043C\u043E\u043B\u043E\u0433\u0438\u0447\u0435\u0441\u043A\u043E\u0439 \u043F\u043E\u0441\u0442\u043E\u044F\u043D\u043D\u043E\u0439 \u043F\u0440\u0438\u043D\u044F\u0442\u043E \u043D\u0430\u0437\u044B\u0432\u0430\u0442\u044C \u0430\u043D\u0442\u0438-\u0434\u0435-\u0441\u0438\u0442\u0442\u0435\u0440\u043E\u0432\u0441\u043A\u0438\u043C\u0438. \u0412 \u0434\u0435-\u0441\u0438\u0442\u0442\u0435\u0440\u043E\u0432\u0441\u043A\u0438\u0445 \u043C\u043E\u0434\u0435\u043B\u044F\u0445 \u0434\u0438\u043D\u0430\u043C\u0438\u043A\u0430 \u0432\u0441\u0435\u043B\u0435\u043D\u043D\u043E\u0439 \u043E\u043F\u0440\u0435\u0434\u0435\u043B\u044F\u0435\u0442\u0441\u044F \u043A\u043E\u0441\u043C\u043E\u043B\u043E\u0433\u0438\u0447\u0435\u0441\u043A\u043E\u0439 \u043F\u043E\u0441\u0442\u043E\u044F\u043D\u043D\u043E\u0439, \u0432\u043A\u043B\u0430\u0434\u043E\u043C \u0445\u043E\u043B\u043E\u0434\u043D\u043E\u0433\u043E \u0432\u0435\u0449\u0435\u0441\u0442\u0432\u0430 \u0438 \u0438\u0437\u043B\u0443\u0447\u0435\u043D\u0438\u044F \u043F\u0440\u0435\u043D\u0435\u0431\u0440\u0435\u0433\u0430\u044E\u0442. \u0412\u043F\u0435\u0440\u0432\u044B\u0435 \u043C\u043E\u0434\u0435\u043B\u044C \u0442\u0430\u043A\u043E\u0433\u043E \u0442\u0438\u043F\u0430 \u0431\u044B\u043B\u0430 \u0432\u0432\u0435\u0434\u0435\u043D\u0430 \u0412\u0438\u043B\u043B\u0435\u043C\u043E\u043C \u0434\u0435 \u0421\u0438\u0442\u0442\u0435\u0440\u043E\u043C. \u0421\u0447\u0438\u0442\u0430\u0435\u0442\u0441\u044F, \u0447\u0442\u043E \u0440\u0435\u0430\u043B\u044C\u043D\u0430\u044F \u0412\u0441\u0435\u043B\u0435\u043D\u043D\u0430\u044F \u043E\u043F\u0438\u0441\u044B\u0432\u0430\u043B\u0430\u0441\u044C \u043C\u043E\u0434\u0435\u043B\u044C\u044E \u0434\u0435 \u0421\u0438\u0442\u0442\u0435\u0440\u0430 \u043D\u0430 \u043E\u0447\u0435\u043D\u044C \u0440\u0430\u043D\u043D\u0438\u0445 \u0441\u0442\u0430\u0434\u0438\u044F\u0445 \u0440\u0430\u0441\u0448\u0438\u0440\u0435\u043D\u0438\u044F (\u0438\u043D\u0444\u043B\u044F\u0446\u0438\u043E\u043D\u043D\u0430\u044F \u043C\u043E\u0434\u0435\u043B\u044C \u0412\u0441\u0435\u043B\u0435\u043D\u043D\u043E\u0439). \u0412 \u043D\u0430\u0441\u0442\u043E\u044F\u0449\u0435\u0435 \u0432\u0440\u0435\u043C\u044F, \u0432\u043E\u0437\u043C\u043E\u0436\u043D\u043E, \u0432\u043D\u043E\u0432\u044C \u043F\u0440\u043E\u0438\u0441\u0445\u043E\u0434\u0438\u0442 \u043F\u0435\u0440\u0435\u0445\u043E\u0434 \u043A \u0434\u0435-\u0441\u0438\u0442\u0442\u0435\u0440\u043E\u0432\u0441\u043A\u043E\u043C\u0443 \u0440\u0435\u0436\u0438\u043C\u0443 \u0440\u0430\u0441\u0448\u0438\u0440\u0435\u043D\u0438\u044F." , "lang" : "ru" } , { "type" : "literal", "value" : "De De Sitter-metriek of De Sitter-ruimte beschrijft op wiskundige manier hoe het universum eruitziet volgens het De Sittermodel. In het bijzonder geeft het de metriek van de ruimtetijd met een positieve kosmologische constante. Hoe de metriek van zo'n ruimte eruitziet, wordt opgelegd door de algemene relativiteitstheorie, meer bepaald de Einstein-vergelijkingen. De metriek is genoemd naar zijn ontdekker, de Nederlandse natuurkundige Willem de Sitter." , "lang" : "nl" } , { "type" : "literal", "value" : "En math\u00E9matiques, l\u2019espace de de Sitter est un espace maximalement sym\u00E9trique en quatre dimensions de courbure positive en signature . Il g\u00E9n\u00E9ralise en ce sens la 4-sph\u00E8re au-del\u00E0 de la g\u00E9om\u00E9trie euclidienne. Le nom vient de Willem de Sitter. La dimension 4 est tr\u00E8s utilis\u00E9e car elle correspond \u00E0 la relativit\u00E9 g\u00E9n\u00E9rale. En fait, il existe[r\u00E9f. \u00E0 confirmer] en dimension enti\u00E8re ." , "lang" : "fr" } , { "type" : "literal", "value" : "In mathematical physics, n-dimensional de Sitter space (often abbreviated to dSn) is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an n-sphere (with its canonical Riemannian metric). The main application of de Sitter space is its use in general relativity, where it serves as one of the simplest mathematical models of the universe consistent with the observed accelerating expansion of the universe. More specifically, de Sitter space is the maximally symmetric vacuum solution of Einstein's field equations with a positive cosmological constant (corresponding to a positive vacuum energy density and negative pressure). There is cosmological evidence that the universe itself is asymptotically de Sitter, i.e. it will evolve like the de Sitter universe in the far future when dark energy dominates. de Sitter space and anti-de Sitter space are named after Willem de Sitter (1872\u20131934), professor of astronomy at Leiden University and director of the Leiden Observatory. Willem de Sitter and Albert Einstein worked closely together in Leiden in the 1920s on the spacetime structure of our universe. de Sitter space was also discovered, independently, and about the same time, by Tullio Levi-Civita." , "lang" : "en" } , { "type" : "literal", "value" : "\uC77C\uBC18 \uC0C1\uB300\uC131 \uC774\uB860\uACFC \uBBF8\uBD84\uAE30\uD558\uD559\uC5D0\uC11C \uB354\uC2DC\uD130\uB974 \uACF5\uAC04(de Sitter\u7A7A\u9593, \uC601\uC5B4: de Sitter space)\uC740 \uB85C\uB7F0\uCE20 \uB2E4\uC591\uCCB4\uC758 \uD558\uB098\uB2E4. \uC591\uC758 \uC6B0\uC8FC \uC0C1\uC218\uB97C \uAC00\uC9C0\uB294 \uC544\uC778\uC288\uD0C0\uC778 \uBC29\uC815\uC2DD\uC758 \uC774\uBA70, \uC554\uD751 \uC5D0\uB108\uC9C0\uBC16\uC5D0 \uC5C6\uB294 \uC9C4\uACF5\uC744 \uB098\uD0C0\uB0B8\uB2E4. n\uCC28\uC6D0 \uB354\uC2DC\uD130\uB974 \uACF5\uAC04\uC758 \uAE30\uD638\uB294 dSn. \uC6B0\uB9AC\uAC00 \uC0B4\uACE0 \uC788\uB294 \uC6B0\uC8FC\uB294 \uD604\uC7AC \uB300\uBD80\uBD84(69%) \uC554\uD751 \uC5D0\uB108\uC9C0\uB85C \uCC28 \uC788\uB2E4 (\u039BCDM \uBAA8\uD615). \uB530\uB77C\uC11C, \uC6B0\uB9AC \uC6B0\uC8FC\uB294 \uB354\uC2DC\uD130\uB974 \uACF5\uAC04\uC73C\uB85C \uADFC\uC0AC\uD560 \uC218 \uC788\uB2E4. \uCD5C\uADFC\uC5D0\uB294, \uBCF8\uB798 \uD2B9\uC218 \uC0C1\uB300\uC131 \uC774\uB860\uC758 \uACE8\uC790\uB85C\uC11C \uBBFC\uCF54\uD504\uC2A4\uD0A4 \uACF5\uAC04\uC774 \uC774\uC6A9\uB41C \uAC83\uC744, \uC774 \uB354\uC2DC\uD130\uB974 \uACF5\uAC04\uC744 \uC0C8\uB85C\uC774 \uC774\uC6A9\uD574\uC11C \uC774\uB77C\uB294 \uD615\uC2DD\uC744 \uC138\uC6B0\uB294 \uAC83\uC774 \uC77C\uAC01\uC5D0\uC11C \uACE0\uB824\uB418\uACE0 \uC788\uB2E4." , "lang" : "ko" } , { "type" : "literal", "value" : "El espacio de De Sitter (nombrado as\u00ED por Willem de Sitter\u200B) es una variedad lorentziana (un espacio-tiempo) an\u00E1logo a la esfera en geometr\u00EDa riemanniana. Posee curvatura constante y positiva y es maximalmente sim\u00E9trico. En dimensi\u00F3n se le denota por . En relatividad general, el espacio de De Sitter es la soluci\u00F3n de vac\u00EDo m\u00E1ximamente sim\u00E9trica de las ecuaciones de Einstein con constante cosmol\u00F3gica positiva (repulsiva). En el caso de que el n\u00FAmero de dimensiones sea , constituye un modelo cosmol\u00F3gico para un universo en expansi\u00F3n acelerada." , "lang" : "es" } , { "type" : "literal", "value" : "\u6570\u5B66\u3084\u7269\u7406\u5B66\u306B\u304A\u3044\u3066\u3001\u30C9\u30FB\u30B8\u30C3\u30BF\u30FC\u7A7A\u9593 (de Sitter space) \u306F\u3001\u901A\u5E38\u306E\u30E6\u30FC\u30AF\u30EA\u30C3\u30C9\u7A7A\u9593\u306E\u7403\u9762\u306E\u3001\u30DF\u30F3\u30B3\u30D5\u30B9\u30AD\u30FC\u7A7A\u9593\u3042\u308B\u3044\u306F\u6642\u7A7A\u306B\u304A\u3051\u308B\u985E\u4F3C\u7269\u3067\u3042\u308B\u3002n \u6B21\u5143\u30C9\u30FB\u30B8\u30C3\u30BF\u30FC\u7A7A\u9593\u306F dSn \u3068\u66F8\u304D\u3001\uFF08\u6A19\u6E96\u306E\u30EA\u30FC\u30DE\u30F3\u8A08\u91CF\u3092\u6301\u3064\uFF09n \u6B21\u5143\u7403\u9762\u306E\u30ED\u30FC\u30EC\u30F3\u30C4\u591A\u69D8\u4F53\u3067\u306E\u985E\u4F3C\u3067\u3042\u308B\u3002\u3053\u306E\u7A7A\u9593\u306F\u3001\u6700\u5927\u306E\u5BFE\u79F0\u6027\u3092\u6301\u3061\u3001\u6B63\u306E\u5B9A\u66F2\u7387\u3092\u6301\u3061\u30013 \u4EE5\u4E0A\u306E n \u306B\u5BFE\u3057\u3001\u5358\u9023\u7D50\u3067\u3042\u308B\u3002" , "lang" : "ja" } ] , "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/General_relativity" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Category:Exact_solutions_in_general_relativity" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Einstein_manifold" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Metric_tensor" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Cosmological_horizon" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_universe" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Definite_quadratic_form" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter\u2013Schwarzschild_metric" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/American_Mathematical_Monthly" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Nondegenerate" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Lorentz_group" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Symmetric_space" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Leiden" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/N-sphere" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Mathematical_physics" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/AdS/CFT_correspondence" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Einstein's_field_equations" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Category:Minkowski_spacetime" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Penrose_diagram" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Submanifold" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Cosmological_constant" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Leiden_Observatory" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Killing_vector_field" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Scalar_curvature" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Albert_Einstein" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Willem_de_Sitter" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Dimension" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Leiden_University" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Tullio_Levi-Civita" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Minkowski_space" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Dark_energy" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Vacuum_solution" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Riemann_curvature_tensor" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Accelerating_expansion_of_the_universe" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Anti-de_Sitter_space" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Riemannian_metric" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Homogeneous_space" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Indefinite_orthogonal_group" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Topology" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Category:Differential_geometry" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Simply_connected" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Lorentzian_manifold" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Static_spacetime" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Hokkaido_Mathematical_Journal" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Hyperboloid" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Isometry_group" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Ricci_tensor" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Hyperbolic_space" } ] , "http://dbpedia.org/property/wikiPageUsesTemplate" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/Template:Technical" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Template:Portal_bar" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Template:Cite_book" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Template:Multiple_issues" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Template:Springer" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Template:Citation" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Template:Section_link" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Template:Reflist" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Template:Primary_sources" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/Template:Short_description" } ] , "http://dbpedia.org/ontology/wikiPageRevisionID" : [ { "type" : "literal", "value" : 1120256562 , "datatype" : "http://www.w3.org/2001/XMLSchema#integer" } ] , "http://dbpedia.org/ontology/wikiPageExternalLink" : [ { "type" : "uri", "value" : "http://www.quantumfieldtheory.info/dS_and_AdS_spaces.pdf" } ] , "http://dbpedia.org/ontology/wikiPageLength" : [ { "type" : "literal", "value" : "11770" , "datatype" : "http://www.w3.org/2001/XMLSchema#nonNegativeInteger" } ] , "http://dbpedia.org/ontology/wikiPageID" : [ { "type" : "literal", "value" : 301666 , "datatype" : "http://www.w3.org/2001/XMLSchema#integer" } ] , "http://dbpedia.org/property/id" : [ { "type" : "literal", "value" : "d/d110040" , "lang" : "en" } ] , "http://dbpedia.org/property/title" : [ { "type" : "literal", "value" : "De Sitter space" , "lang" : "en" } ] , "http://www.w3.org/2002/07/owl#sameAs" : [ { "type" : "uri", "value" : "https://global.dbpedia.org/id/EFx8" } , { "type" : "uri", "value" : "http://ko.dbpedia.org/resource/\uB354\uC2DC\uD130\uB974_\uACF5\uAC04" } , { "type" : "uri", "value" : "http://yago-knowledge.org/resource/De_Sitter_space" } , { "type" : "uri", "value" : "http://es.dbpedia.org/resource/M\u00E9trica_de_De_Sitter" } , { "type" : "uri", "value" : "http://rdf.freebase.com/ns/m.01rzd0" } , { "type" : "uri", "value" : "http://fr.dbpedia.org/resource/Espace_de_de_Sitter" } , { "type" : "uri", "value" : "http://it.dbpedia.org/resource/Spazio_di_de_Sitter" } , { "type" : "uri", "value" : "http://hy.dbpedia.org/resource/\u0534\u0565_\u054D\u056B\u057F\u0565\u0580\u056B_\u057F\u0561\u0580\u0561\u056E\u0578\u0582\u0569\u0575\u0578\u0582\u0576" } , { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } , { "type" : "uri", "value" : "http://uk.dbpedia.org/resource/\u041C\u043E\u0434\u0435\u043B\u044C_\u0434\u0435_\u0421\u0456\u0442\u0442\u0435\u0440\u0430" } , { "type" : "uri", "value" : "http://ru.dbpedia.org/resource/\u041C\u043E\u0434\u0435\u043B\u044C_\u0434\u0435_\u0421\u0438\u0442\u0442\u0435\u0440\u0430" } , { "type" : "uri", "value" : "http://www.wikidata.org/entity/Q1179448" } , { "type" : "uri", "value" : "http://nl.dbpedia.org/resource/De_Sitter-metriek" } , { "type" : "uri", "value" : "http://de.dbpedia.org/resource/De-Sitter-Raum" } , { "type" : "uri", "value" : "http://cs.dbpedia.org/resource/De_Sitter\u016Fv_prostoro\u010Das" } , { "type" : "uri", "value" : "http://pt.dbpedia.org/resource/Espa\u00E7o_de_De_Sitter" } , { "type" : "uri", "value" : "http://ja.dbpedia.org/resource/\u30C9\u30FB\u30B8\u30C3\u30BF\u30FC\u7A7A\u9593" } , { "type" : "uri", "value" : "http://pl.dbpedia.org/resource/Przestrze\u0144_de_Sittera" } ] , "http://www.w3.org/ns/prov#wasDerivedFrom" : [ { "type" : "uri", "value" : "http://en.wikipedia.org/wiki/De_Sitter_space?oldid=1120256562&ns=0" } ] , "http://xmlns.com/foaf/0.1/isPrimaryTopicOf" : [ { "type" : "uri", "value" : "http://en.wikipedia.org/wiki/De_Sitter_space" } ] , "http://dbpedia.org/property/author" : [ { "type" : "literal", "value" : "Qingming Cheng" , "lang" : "en" } ] } , "http://dbpedia.org/resource/Massive_gravity" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/De_Sitter_(disambiguation)" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] , "http://dbpedia.org/ontology/wikiPageDisambiguates" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Index_of_physics_articles_(D)" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/John_von_Neumann" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/AdS/CFT_correspondence" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Gibbons\u2013Hawking_effect" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Jean-Pierre_Gazeau" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Bunch\u2013Davies_vacuum" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Black_hole_stability_conjecture" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/De_sitter_space" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] , "http://dbpedia.org/ontology/wikiPageRedirects" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Ds_metric" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] , "http://dbpedia.org/ontology/wikiPageRedirects" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } , "http://dbpedia.org/resource/Ds_space" : { "http://dbpedia.org/ontology/wikiPageWikiLink" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] , "http://dbpedia.org/ontology/wikiPageRedirects" : [ { "type" : "uri", "value" : "http://dbpedia.org/resource/De_Sitter_space" } ] } }