@prefix foaf: .
@prefix wikipedia-en: .
@prefix dbr: .
wikipedia-en:Equidigital_number foaf:primaryTopic dbr:Equidigital_number .
@prefix dbo: .
dbo:wikiPageWikiLink dbr:Equidigital_number .
dbr:List_of_integer_sequences dbo:wikiPageWikiLink dbr:Equidigital_number .
@prefix rdf: .
@prefix yago: .
dbr:Equidigital_number rdf:type yago:WikicatIntegerSequences ,
yago:Sequence108459252 ,
yago:Ordering108456993 ,
yago:Series108457976 ,
yago:Group100031264 ,
yago:WikicatBase-dependentIntegerSequences ,
yago:Arrangement107938773 ,
yago:Abstraction100002137 .
@prefix rdfs: .
dbr:Equidigital_number rdfs:label "Egalcifera nombro"@eo ,
"Equidigital number"@en ,
"Nombre equidigital"@ca ,
"Nombre \u00E9quidigital"@fr ,
"\u7B49\u6578\u4F4D\u6578"@zh ;
rdfs:comment "\u7B49\u6578\u4F4D\u6578\uFF08equidigital number\uFF09\u662F\u6307\u4E00\u6B63\u6574\u6578\u8CEA\u56E0\u6578\u5206\u89E3\uFF08\u5305\u62EC\u6307\u6578\uFF09\u7684\u7E3D\u4F4D\u6578\u548C\u6574\u6578\u672C\u8EAB\u7684\u4F4D\u6578\u76F8\u7B49\u3002\u4F8B\u5982\uFF1A\u572810\u9032\u5236\u4E2D\uFF0C10\u7684\u8CEA\u56E0\u6578\u5206\u89E3\u70BA2\u00D75\uFF0C\u7E3D\u4F4D\u6578\u662F2\u4F4D\uFF0C\u548C\u6574\u6578\u672C\u8EAB\u4F4D\u6578\u76F8\u7B49\uFF0C\u56E0\u6B64\u70BA\u7B49\u6578\u4F4D\u6578\u3002 \u524D\u5E7E\u500B\u7B49\u6578\u4F4D\u6578\u70BA\uFF1A1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41\u2026\u2026\uFF08OEIS\u6578\u5217\uFF09 \u8CEA\u6578\u7684\u8CEA\u56E0\u6578\u5206\u89E3\u5373\u70BA\u672C\u8EAB\uFF0C\u56E0\u6B64\u4E0D\u8AD6\u5728\u54EA\u4E00\u7A2E\u9032\u5236\u6642\uFF0C\u6240\u6709\u8CEA\u6578\u90FD\u662F\u7B49\u6578\u4F4D\u6578\uFF0C\u4F46\u7B49\u6578\u4F4D\u6578\u4E2D\u9664\u4E86\u8CEA\u6578\u5916\uFF0C\u4E5F\u5305\u62EC\u4E00\u4E9B\u5408\u6578\u3002"@zh ,
"In number theory, an equidigital number is a natural number in a given number base that has the same number of digits as the number of digits in its prime factorization in the given number base, including exponents but excluding exponents equal to 1. For example, in base 10, 1, 2, 3, 5, 7, and 10 (2 \u00B7 5) are equidigital numbers (sequence in the OEIS). All prime numbers are equidigital numbers in any base. A number that is either equidigital or frugal is said to be economical."@en ,
"Un nombre equidigital \u00E9s un nombre natural que t\u00E9 el mateix nombre de d\u00EDgits que el nombre de d\u00EDgits en la seva descomposici\u00F3 en factoritzaci\u00F3 en nombres primers, inclosos els exponents per\u00F2 excloent els exponents iguals a 1. Per exemple, en aritm\u00E8tica de base 10: 1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41... s\u00F3n nombres equidigitals (successi\u00F3 A046758 a l'OEIS). Per definici\u00F3, tots els nombres primers s\u00F3n n\u00FAmeros equidigitals en qualsevol base. Un nombre que sigui equidigital o frugal es diu \u00ABnombre econ\u00F2mic\u00BB."@ca ,
"En matematiko, egalcifera nombro estas natura nombro kiu havas la saman kvanton de ciferoj kiel \u011Dia prima faktorigo (inkluzivante eksponentojn). Ekzemple, en cifereca bazo 10, 1, 2, 3, 5, 7, kaj 10 (2\u00D75) estas egalciferaj nombroj. \u0108iuj estas egalciferaj nombroj en \u0109iu bazo. Nombro kiu estas egalcifera a\u016D malluksa estas ekonomika."@eo ,
"Un nombre \u00E9quidigital est un entier naturel qui a autant de chiffres dans son \u00E9criture que dans sa d\u00E9composition en facteurs premiers, exposants diff\u00E9rents de 1 inclus. Par exemple, en base 10, les nombres 1, 2, 3, 5, 7, 10 (10 = 2 \u00D7 5) sont des nombres \u00E9quidigitaux. Par d\u00E9finition, tous les nombres premiers sont \u00E9quidigitaux dans toute base. Un nombre soit frugal, soit \u00E9quidigital, est dit \u00AB \u00E9conomique \u00BB."@fr ;
foaf:depiction .
@prefix dct: .
@prefix dbc: .
dbr:Equidigital_number dct:subject dbc:Base-dependent_integer_sequences ,
dbc:Integer_sequences ;
dbo:abstract "Un nombre equidigital \u00E9s un nombre natural que t\u00E9 el mateix nombre de d\u00EDgits que el nombre de d\u00EDgits en la seva descomposici\u00F3 en factoritzaci\u00F3 en nombres primers, inclosos els exponents per\u00F2 excloent els exponents iguals a 1. Per exemple, en aritm\u00E8tica de base 10: 1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41... s\u00F3n nombres equidigitals (successi\u00F3 A046758 a l'OEIS). Per definici\u00F3, tots els nombres primers s\u00F3n n\u00FAmeros equidigitals en qualsevol base. Un nombre que sigui equidigital o frugal es diu \u00ABnombre econ\u00F2mic\u00BB."@ca ,
"En matematiko, egalcifera nombro estas natura nombro kiu havas la saman kvanton de ciferoj kiel \u011Dia prima faktorigo (inkluzivante eksponentojn). Ekzemple, en cifereca bazo 10, 1, 2, 3, 5, 7, kaj 10 (2\u00D75) estas egalciferaj nombroj. \u0108iuj estas egalciferaj nombroj en \u0109iu bazo. Nombro kiu estas egalcifera a\u016D malluksa estas ekonomika."@eo ,
"\u7B49\u6578\u4F4D\u6578\uFF08equidigital number\uFF09\u662F\u6307\u4E00\u6B63\u6574\u6578\u8CEA\u56E0\u6578\u5206\u89E3\uFF08\u5305\u62EC\u6307\u6578\uFF09\u7684\u7E3D\u4F4D\u6578\u548C\u6574\u6578\u672C\u8EAB\u7684\u4F4D\u6578\u76F8\u7B49\u3002\u4F8B\u5982\uFF1A\u572810\u9032\u5236\u4E2D\uFF0C10\u7684\u8CEA\u56E0\u6578\u5206\u89E3\u70BA2\u00D75\uFF0C\u7E3D\u4F4D\u6578\u662F2\u4F4D\uFF0C\u548C\u6574\u6578\u672C\u8EAB\u4F4D\u6578\u76F8\u7B49\uFF0C\u56E0\u6B64\u70BA\u7B49\u6578\u4F4D\u6578\u3002 \u524D\u5E7E\u500B\u7B49\u6578\u4F4D\u6578\u70BA\uFF1A1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41\u2026\u2026\uFF08OEIS\u6578\u5217\uFF09 \u8CEA\u6578\u7684\u8CEA\u56E0\u6578\u5206\u89E3\u5373\u70BA\u672C\u8EAB\uFF0C\u56E0\u6B64\u4E0D\u8AD6\u5728\u54EA\u4E00\u7A2E\u9032\u5236\u6642\uFF0C\u6240\u6709\u8CEA\u6578\u90FD\u662F\u7B49\u6578\u4F4D\u6578\uFF0C\u4F46\u7B49\u6578\u4F4D\u6578\u4E2D\u9664\u4E86\u8CEA\u6578\u5916\uFF0C\u4E5F\u5305\u62EC\u4E00\u4E9B\u5408\u6578\u3002"@zh ,
"Un nombre \u00E9quidigital est un entier naturel qui a autant de chiffres dans son \u00E9criture que dans sa d\u00E9composition en facteurs premiers, exposants diff\u00E9rents de 1 inclus. Par exemple, en base 10, les nombres 1, 2, 3, 5, 7, 10 (10 = 2 \u00D7 5) sont des nombres \u00E9quidigitaux. Par d\u00E9finition, tous les nombres premiers sont \u00E9quidigitaux dans toute base. Un nombre soit frugal, soit \u00E9quidigital, est dit \u00AB \u00E9conomique \u00BB."@fr ,
"In number theory, an equidigital number is a natural number in a given number base that has the same number of digits as the number of digits in its prime factorization in the given number base, including exponents but excluding exponents equal to 1. For example, in base 10, 1, 2, 3, 5, 7, and 10 (2 \u00B7 5) are equidigital numbers (sequence in the OEIS). All prime numbers are equidigital numbers in any base. A number that is either equidigital or frugal is said to be economical."@en ;
dbo:wikiPageWikiLink ,
dbc:Base-dependent_integer_sequences ,
dbr:Number_base ,
dbr:Base_10 ,
dbr:Exponentiation ,
dbr:Number_theory ,
dbr:Integer_factorization ,
dbr:Natural_number ,
dbc:Integer_sequences ,
dbr:Frugal_number ,
dbr:Prime_number ,
dbr:P-adic_valuation ,
dbr:Smith_number ,
dbr:Extravagant_number .
@prefix dbp: .
@prefix dbt: .
dbr:Equidigital_number dbp:wikiPageUsesTemplate dbt:Reflist ,
dbt:OEIS ,
dbt:Classes_of_natural_numbers ,
dbt:Divisor_classes ;
dbo:thumbnail ;
dbo:wikiPageRevisionID 1055205919 ;
dbo:wikiPageExternalLink .
@prefix xsd: .
dbr:Equidigital_number dbo:wikiPageLength "2137"^^xsd:nonNegativeInteger ;
dbo:wikiPageID 10396838 .
@prefix owl: .
dbr:Equidigital_number owl:sameAs ,
.
@prefix ns13: .
dbr:Equidigital_number owl:sameAs ns13:ZuaX .
@prefix dbpedia-eo: .
dbr:Equidigital_number owl:sameAs dbpedia-eo:Egalcifera_nombro ,
dbr:Equidigital_number .
@prefix yago-res: .
dbr:Equidigital_number owl:sameAs yago-res:Equidigital_number .
@prefix wikidata: .
dbr:Equidigital_number owl:sameAs wikidata:Q1577873 ,
.
@prefix dbpedia-ca: .
dbr:Equidigital_number owl:sameAs dbpedia-ca:Nombre_equidigital ,
.
@prefix gold: .
dbr:Equidigital_number gold:hypernym dbr:Number .
@prefix prov: .
dbr:Equidigital_number prov:wasDerivedFrom ;
foaf:isPrimaryTopicOf wikipedia-en:Equidigital_number .
dbr:Table_of_prime_factors dbo:wikiPageWikiLink dbr:Equidigital_number .
dbr:Extravagant_number dbo:wikiPageWikiLink dbr:Equidigital_number .
dbr:Frugal_number dbo:wikiPageWikiLink dbr:Equidigital_number .
dbr:Smith_number dbo:wikiPageWikiLink dbr:Equidigital_number .