@prefix dbo: .
@prefix dbr: .
dbr:Bitwise_operation dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Salva_veritate dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Logic_alphabet dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Second-order_propositional_logic dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Truth-functions dbo:wikiPageWikiLink dbr:Truth_function ;
dbo:wikiPageRedirects dbr:Truth_function .
dbr:Logical_conjunction dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Logical_connective dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Liar_paradox dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Logic dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Propositional_function dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Non-classical_logic dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Truth_value dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Propositional_calculus dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Negation dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Colossus_computer dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Logical_disjunction dbo:wikiPageWikiLink dbr:Truth_function .
dbo:wikiPageWikiLink dbr:Truth_function .
@prefix foaf: .
@prefix wikipedia-en: .
wikipedia-en:Truth_function foaf:primaryTopic dbr:Truth_function .
dbr:Temporal_logic dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Boolean_function dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Modal_operator dbo:wikiPageWikiLink dbr:Truth_function .
dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Many-valued_logic dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Truth_functions dbo:wikiPageWikiLink dbr:Truth_function ;
dbo:wikiPageRedirects dbr:Truth_function .
dbr:Truth-function dbo:wikiPageWikiLink dbr:Truth_function ;
dbo:wikiPageRedirects dbr:Truth_function .
dbr:Tractatus_Logico-Philosophicus dbo:wikiPageWikiLink dbr:Truth_function .
dbr:List_of_logic_symbols dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Outline_of_logic dbo:wikiPageWikiLink dbr:Truth_function .
@prefix rdf: .
dbr:Truth_function rdf:type dbo:Disease .
@prefix owl: .
dbr:Truth_function rdf:type owl:Thing .
@prefix rdfs: .
dbr:Truth_function rdfs:label "Sanningsfunktion"@sv ,
"\u771F\u7406\u95A2\u6570"@ja ,
"\u771F\u503C\u51FD\u6570"@zh ,
"Funci\u00F3n de verdad"@es ,
"Truth function"@en ,
"Funci\u00F3 de veritat"@ca ,
"Wahrheitswertefunktion"@de ,
"Funzione di verit\u00E0"@it ,
"Fun\u00E7\u00E3o de verdade"@pt ,
"Logick\u00E1 funkce"@cs ,
"Fonction de v\u00E9rit\u00E9"@fr ;
rdfs:comment "Uma fun\u00E7\u00E3o de verdade, tamb\u00E9m chamada de fun\u00E7\u00E3o veritativa, \u00E9 uma fun\u00E7\u00E3o que valores de verdade a listas de valores de verdade. Na l\u00F3gica cl\u00E1ssica, a cole\u00E7\u00E3o de valores de verdade reduz-se a dois elementos, a verdade e a falsidade, enquanto que, em outras l\u00F3gicas, a quantidade e natureza dos valores de verdade pode variar bastante. Um conectivo sentencial \u00E9 uma fun\u00E7\u00E3o de verdade se a ele for atribu\u00EDdo ou se ele denota uma fun\u00E7\u00E3o de verdade. Abaixo segue um exemplo de uma fun\u00E7\u00E3o l\u00F3gica (para melhor entendimento veja L\u00F3gica Proposicional). Por exemplo, a f\u00F3rmula l\u00F3gica: \n* Por exemplo, a senten\u00E7a:"@pt ,
"Eine Wahrheitswertefunktion, auch kurz Wahrheitsfunktion, ist eine mathematische Funktion, die Wahrheitswerte auf Wahrheitswerte abbildet. Der Definitionsbereich einer n-stelligen Wahrheitsfunktion ist die Menge aller n-Tupel von Wahrheitswerten, ihr Wertebereich die Menge der Wahrheitswerte. In der klassischen Logik umfasst die zugrunde liegende Wahrheitswertemenge {w, f} nur die beiden Werte \"wahr\" (w) und \"falsch\" (f); Wahrheitsfunktionen auf dieser Basis hei\u00DFen daher genauer n-stellige zweiwertige."@de ,
"En l\u00F2gica matem\u00E0tica, una funci\u00F3 de veritat \u00E9s una funci\u00F3 que pren un conjunt de valors de veritat i torna un valor de veritat. Cl\u00E0ssicament el domini i el rang d'una funci\u00F3 de veritat s\u00F3n{ veritable , fals }, per\u00F2 en general poden tenir qualsevol nombre de valors de veritat, fins i tot una infinitat d'ells. Una sent\u00E8ncia connectiva (vegeu a sota) s'anomena \"funcional de veritat\" si assigna o denota aquesta funci\u00F3. \n* \"Maria creu que Mariano Rajoy va guanyar les eleccions del 14 de mar\u00E7 de 2004\" \u00E9s vertadera mentre que \n* \"Maria creu que la lluna est\u00E0 feta de formatge verd\""@ca ,
"\u5728\u903B\u8F91\u4E2D\uFF0C\u771F\u503C\u51FD\u6570\u662F\u4ECE\u8BED\u8A00\u7684\u53E5\u5B50\u751F\u6210\u7684\u51FD\u6570\u3002\u5B83\u91C7\u7528\u6765\u81EA {T,F} (\u5C31\u662F\u771F\u5B9E\u548C\u865A\u5047)\u7684\u771F\u503C\u3002\u4F8B\u5982\u53E5\u5B50 A \u2192 B \u751F\u6210\u771F\u503C\u51FD\u6570 h(A,B)\uFF0C\u5B83\u7684\u771F\u503C\u662F F\uFF0C\u5F53\u4E14\u4EC5\u5F53 A \u7684\u503C\u662F T \u800C B \u7684\u503C\u662F F\u3002n \u4E2A\u53D8\u91CF\u7684\u547D\u9898\u53E5\u5B50\u751F\u6210 2^{2^n} \u4E2A\u771F\u503C\u51FD\u6570\u3002\u6BD4\u5982\uFF0C\u5982\u679C\u6709\u50CF A \u2192 (B \u2192 A) \u8FD9\u6837\u7684 2 \u4E2A\u53D8\u91CF\u7684\u547D\u9898\u5219\u6709 16 \u4E2A\u751F\u6210\u7684\u771F\u503C\u51FD\u6570\u3002 \u9673\u8FF0\u6216\u547D\u9898\u88AB\u79F0\u4E3A\u662F\u771F\u503C\u6CDB\u51FD\u7684\uFF0C\u5982\u679C\u5B83\u7684\u771F\u503C\u7531\u5B83\u7684\u90E8\u4EF6\u7684\u771F\u503C\u6765\u51B3\u5B9A\u3002 \u6BD4\u5982\uFF0C\u201C\u57282004\u5E744\u670820\u65E5\u4FDD\u7F57\u00B7\u9A6C\u4E01\u662F\u52A0\u62FF\u5927\u9996\u76F8\u201D\u662F\u771F\u7684\uFF0C\u201C\u57282004\u5E744\u670820\u65E5\u4E54\u6CBB\u00B7\u6C83\u514B\u00B7\u5E03\u4EC0\u662F\u7F8E\u56FD\u603B\u7EDF\u201D\u4E5F\u662F\u771F\u7684\uFF0C\u6240\u4EE5\u5408\u53D6\uFF1A \n* \u201C\u57282004\u5E744\u670820\u65E5\u4FDD\u7F57\u00B7\u9A6C\u4E01\u662F\u52A0\u62FF\u5927\u9996\u76F8 \u4E0E \u4E54\u6CBB\u00B7\u6C83\u514B\u00B7\u5E03\u4EC0\u662F\u7F8E\u56FD\u603B\u7EDF\u201D \u662F\u771F\u7684\u3002\u5728\u8FD9\u4E2A\u53E5\u5B50\u4E2D\uFF0C\u201C\u4E0E\u201D\u5145\u5F53\u771F\u503C\u51FD\u6570\u3002 \u76F8\u53CD\u7684\uFF0C\u5728\u201C\u57282004\u5E744\u670820\u65E5\u963F\u5C14\u00B7\u6208\u5C14\u662F\u7F8E\u56FD\u603B\u7EDF\u201D\u548C\u201C\u5E03\u862D\u59AE\u00B7\u65AF\u76AE\u723E\u65AF\u76F8\u4FE1\u57282004\u5E744\u670820\u65E5\u963F\u5C14\u00B7\u6208\u5C14\u662F\u7F8E\u56FD\u603B\u7EDF\u201D\u3002\u77E5\u9053\u524D\u8005\u4E0D\u662F\u771F\u7684\u548C\u540E\u8005\u7684\u771F\u503C\u4E4B\u95F4\u6CA1\u6709\u5173\u7CFB\uFF1A\u5E03\u862D\u59AE\u00B7\u65AF\u76AE\u723E\u65AF\u76F8\u4FE1\u963F\u5C14\u00B7\u6208\u5C14\u662F\u603B\u7EDF\u8FD9\u4E2A\u547D\u9898\u7684\u771F\u503C\uFF0C\u4E0D\u662F\u7531\u963F\u5C14\u00B7\u6208\u5C14\u5728\u90A3\u5929\u4E0D\u662F\u603B\u7EDF\u7684\u4E8B\u5B9E\u6765\u51B3\u5B9A\u7684\u3002 \u6240\u4EE5\uFF0C\u8BCD\u8BED\u201C\u76F8\u4FE1\u201D\u4E0D\u662F\u771F\u503C\u51FD\u6570\u3002 \u7528\u66F4\u52A0\u6570\u5B66\u5316\u7684\u672F\u8BED\uFF0C\u771F\u503C\u51FD\u6570\u662F\u4E00\u79CD\u5E03\u5C14\u51FD\u6570\uFF0C\u5E76\u4F7F\u7528\u5E03\u5C14\u53D8\u91CF\u6765\u6301\u6709\u771F\u503C\u51FD\u6570\u7684\u7ED3\u679C\u662F\u8BA1\u7B97\u673A\u79D1\u5B66\u7684\u666E\u904D\u5B9E\u8DF5\u3002\u786E\u5B9A\u53E5\u5B50\u7684\u771F\u503C\u662F\u903B\u8F91\u548C\u6570\u5B66\u4E8C\u8005\u7684\u57FA\u672C\u6D3B\u52A8\uFF1B\u4F5C\u4E3A\u7ED3\u679C\uFF0C\u771F\u503C\u51FD\u6570\u5728\u4E0E\u903B\u8F91\u548C\u6570\u5B66\u57FA\u7840\u6709\u5173\u7684\u8457\u4F5C\u4E2D\u7ECF\u5E38\u8BA8\u8BBA\u3002"@zh ,
"Logick\u00E1 funkce je funkce, kter\u00E1 pro kone\u010Dn\u00FD po\u010Det vstupn\u00EDch parametr\u016F vrac\u00ED logick\u00E9 hodnoty. Pou\u017E\u00EDv\u00E1 se v matematick\u00E9 logice, v oboru teorie \u0159\u00EDzen\u00ED a \u010D\u00EDslicov\u00E9 techniky, v praxi pak nap\u0159\u00EDklad v mikroprocesorov\u00E9 technice. Parametry logick\u00E9 funkce jsou logick\u00E9 prom\u011Bnn\u00E9. P\u0159i\u0159azuje-li logick\u00E1 funkce v\u00FDstupn\u00ED hodnoty v\u0161em kombinac\u00EDm vstupn\u00EDch logick\u00FDch prom\u011Bnn\u00FDch, pak se naz\u00FDv\u00E1 \u00FApln\u011B zadan\u00E1 logick\u00E1 funkce; v opa\u010Dn\u00E9m p\u0159\u00EDpad\u011B se naz\u00FDv\u00E1 ne\u00FApln\u011B zadan\u00E1 logick\u00E1 funkce. Kombinace vstupn\u00EDch logick\u00FDch prom\u011Bnn\u00FDch, k n\u00ED\u017E nen\u00ED ur\u010Dena hodnota v\u00FDstupn\u00ED logick\u00E9 funkce, se naz\u00FDv\u00E1 neur\u010Dit\u00FD stav."@cs ,
"En sanningsfunktion \u00E4r en funktion f(p, q) av tv\u00E5 argument p och q som antar sanningsv\u00E4rden och d\u00E4r resultatet \u00E4r ett sanningsv\u00E4rde. Denna artikel om logik saknar v\u00E4sentlig information. Du kan hj\u00E4lpa till genom att l\u00E4gga till den."@sv ,
"In logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: The input and output of a truth function are all truth values; a truth function will always output exactly one truth value; and inputting the same truth value(s) will always output the same truth value. The typical example is in propositional logic, wherein a compound statement is constructed using individual statements connected by logical connectives; if the truth value of the compound statement is entirely determined by the truth value(s) of the constituent statement(s), the compound statement is called a truth function, and any logical connectives used are said to be truth functional."@en ,
"En l\u00F3gica matem\u00E1tica, una funci\u00F3n de verdad es una funci\u00F3n que toma un conjunto de valores de verdad y devuelve un valor de verdad. Cl\u00E1sicamente el dominio y el rango de una funci\u00F3n de verdad son {verdadero,falso}, pero en general pueden tener cualquier n\u00FAmero de valores de verdad, incluso una infinidad de ellos. Una sentencia conectiva (v\u00E9ase abajo) se llama \"funcional de verdad\" si asigna o denota tal funci\u00F3n. \n* \"Mar\u00EDa cree que el Sol es m\u00E1s brillante que la Luna\" es verdadera mientras que \n* \"Mar\u00EDa cree que la Luna est\u00E1 hecha de queso verde\""@es ,
"\u771F\u7406\u95A2\u6570\uFF08\u3057\u3093\u308A\u304B\u3093\u3059\u3046\u3001\u82F1\uFF1ATruth function\uFF09 \u3068\u306F\u3001\u6570\u7406\u8AD6\u7406\u5B66\u306B\u304A\u3044\u3066\u3001\u771F\u7406\u5024\u306E\u5404\u5909\u6570\u306E\u5909\u57DF\u3068\u7D42\u96C6\u5408\u3068\u304C\u305D\u308C\u305E\u308C\u300E\u300C\u771F\u306A\u547D\u984C\u300D\u3068\u300C\u507D\u306A\u547D\u984C\u300D\u306E\u307F\u304B\u3089\u6210\u308B\u96C6\u5408\u300F\u306B\u7B49\u3057\u3044\u3088\u3046\u306A\u5199\u50CF\u3067\u3042\u308B\u3002\u771F\u7406\u95A2\u6570\u306F\u547D\u984C\u95A2\u6570\u3067\u3082\u3042\u308B\u3002"@ja ;
rdfs:seeAlso dbr:Functional_completeness ,
dbr:Arity ;
foaf:depiction ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
.
@prefix dct: .
@prefix dbc: .
dbr:Truth_function dct:subject dbc:Mathematical_logic ,
dbc:Truth ;
dbo:abstract "En l\u00F2gica matem\u00E0tica, una funci\u00F3 de veritat \u00E9s una funci\u00F3 que pren un conjunt de valors de veritat i torna un valor de veritat. Cl\u00E0ssicament el domini i el rang d'una funci\u00F3 de veritat s\u00F3n{ veritable , fals }, per\u00F2 en general poden tenir qualsevol nombre de valors de veritat, fins i tot una infinitat d'ells. Una sent\u00E8ncia connectiva (vegeu a sota) s'anomena \"funcional de veritat\" si assigna o denota aquesta funci\u00F3. Una sent\u00E8ncia es diu funci\u00F3 de veritat si el valor de veritat de la sent\u00E8ncia \u00E9s una funci\u00F3 del valor de veritat de les seves subsentencias. Una classe de sent\u00E8ncies s'anomena funcional de veritat si cada un dels seus membres ho \u00E9s. Per exemple, la sent\u00E8ncia \"Les illes s\u00F3n fruits i els enciams s\u00F3n verdures\" \u00E9s funcional de veritat, ja que \u00E9s veritable si ho s\u00F3n cadascuna de les seves subsentencias \"la pomes s\u00F3n fruites\" i \"els enciams s\u00F3n verdures\", i \u00E9s fals en cas contrari. No totes les sent\u00E8ncies d'un llenguatge natural, tal com l'espanyol, s\u00F3n funcionals de veritat. Sent\u00E8ncies de la forma \"x creu que ...\" s\u00F3n exemples t\u00EDpics de sent\u00E8ncies que no s\u00F3n funcions de veritat. Suposem per exemple que Maria creu err\u00F2niament que Mariano Rajoy va guanyar les eleccions del 14 mar\u00E7 2004 per\u00F2 no creu que la lluna estigui feta de formatge verd. Llavors la sent\u00E8ncia \n* \"Maria creu que Mariano Rajoy va guanyar les eleccions del 14 de mar\u00E7 de 2004\" \u00E9s vertadera mentre que \n* \"Maria creu que la lluna est\u00E0 feta de formatge verd\" \u00E9s falsa. En ambd\u00F3s casos, cada component de la sent\u00E8ncia (\u00E9s a dir \"Mariano Rajoy va guanyar les eleccions del 14 de mar\u00E7 de 2004\" i \"la lluna est\u00E0 feta de formatge verd\") \u00E9s falsa, per\u00F2 cada component de la sent\u00E8ncia formada antecedint la frase \" maria creu que \"difereix en el seu valor de veritat. \u00C9s a dir, el valor de veritat d'una sent\u00E8ncia de la forma \"Maria creu que ...\" no est\u00E0 determinat nom\u00E9s pel valor de veritat de les sent\u00E8ncies de qu\u00E8 es compon, i aix\u00ED doncs el connectiu (o simplement operador ) no \u00E9s una funci\u00F3 de veritat. En l\u00F2gica cl\u00E0ssica, la classe de les seves f\u00F3rmules (incloent les sent\u00E8ncies) \u00E9s una funci\u00F3 de veritat, ja que donada una connectiva sentencial (per exemple, i, \u2192, etc.) emprada en la construcci\u00F3 de f\u00F3rmules, \u00E9s una funci\u00F3 de veritat. Els seus valors per a diversos valors de veritat com a argument es donen normalment mitjan\u00E7ant taules de veritat. Quan es tracta d'una funci\u00F3 que pren un sol argument, hi ha quatre funcions de veritat possibles: En canvi, quan la funci\u00F3 pren dos arguments, hi ha 16 funcions de veritat possibles:"@ca ,
"En l\u00F3gica matem\u00E1tica, una funci\u00F3n de verdad es una funci\u00F3n que toma un conjunto de valores de verdad y devuelve un valor de verdad. Cl\u00E1sicamente el dominio y el rango de una funci\u00F3n de verdad son {verdadero,falso}, pero en general pueden tener cualquier n\u00FAmero de valores de verdad, incluso una infinidad de ellos. Una sentencia conectiva (v\u00E9ase abajo) se llama \"funcional de verdad\" si asigna o denota tal funci\u00F3n. Una sentencia se llama funci\u00F3n de verdad si el valor de verdad de la sentencia es una funci\u00F3n del valor de verdad de sus subsentencias. Una clase de sentencias se denomina funcional de verdad si cada uno de sus miembros lo es. Por ejemplo, la sentencia \"Las manzanas son frutos y las lechugas son verduras\" es funcional de verdad puesto que es verdadero si lo son cada una de sus subsentencias \"la manzanas son frutas\" y \"las lechugas son verduras\",y es falso en caso contrario. No todas las sentencias de un lenguaje natural, tal como el espa\u00F1ol, son funcionales de verdad. Sentencias de la forma \"x cree que...\" son ejemplos t\u00EDpicos de sentencias que no son funciones de verdad. Supongamos por ejemplo que Mar\u00EDa cree que el Sol es m\u00E1s brillante que la Luna pero no cree que la Luna est\u00E9 hecha de queso verde. Entonces la sentencia \n* \"Mar\u00EDa cree que el Sol es m\u00E1s brillante que la Luna\" es verdadera mientras que \n* \"Mar\u00EDa cree que la Luna est\u00E1 hecha de queso verde\" es falsa. En ambos casos, cada componente de la sentencia (es decir \"el Sol es m\u00E1s brillante que la Luna\" y \"la Luna est\u00E1 hecha de queso verde\") es verdadero el primero y falso el segundo, pero cada componente de la sentencia formada antecediendo la frase \"Mar\u00EDa cree que\" difiere en su valor de verdad. Esto es, el valor de verdad de una sentencia de la forma \"Mar\u00EDa cree que...\" no est\u00E1 determinado solamente por el valor de verdad de las sentencias de que se compone, y as\u00ED pues el conectivo (o simplemente operador) no es una funci\u00F3n de verdad. En l\u00F3gica cl\u00E1sica, la clase de sus f\u00F3rmulas (incluyendo las sentencias) es una funci\u00F3n de verdad puesto que cada conectivo sentencial (por ejemplo, y, \u2192, etc.) usado en la construcci\u00F3n de f\u00F3rmulas es funci\u00F3n de verdad. Sus valores para varios valores de verdad como argumento se dan usualmente mediante tablas de verdad. Una funci\u00F3n sin argumento, existen dos funciones de verdad posibles: Cuando se trata de una funci\u00F3n que toma un solo argumento, existen cuatro funciones de verdad posibles: En cambio, cuando la funci\u00F3n toma dos argumentos, existen 16 funciones de verdad posibles:"@es ,
"Eine Wahrheitswertefunktion, auch kurz Wahrheitsfunktion, ist eine mathematische Funktion, die Wahrheitswerte auf Wahrheitswerte abbildet. Der Definitionsbereich einer n-stelligen Wahrheitsfunktion ist die Menge aller n-Tupel von Wahrheitswerten, ihr Wertebereich die Menge der Wahrheitswerte. In der klassischen Logik umfasst die zugrunde liegende Wahrheitswertemenge {w, f} nur die beiden Werte \"wahr\" (w) und \"falsch\" (f); Wahrheitsfunktionen auf dieser Basis hei\u00DFen daher genauer n-stellige zweiwertige. Die Wahrheitswertefunktionen spielen in der formalen Logik eine zentrale Rolle, da sie die (extensionale) Form der logischen Verkn\u00FCpfung einer Zusammenstellung von Komponenten eindeutig bestimmt angeben, und k\u00F6nnen als Junktoren zusammengesetzter Aussagen wie auch als Gatter in Zusammensetzungen von Schaltelementen interpretiert werden."@de ,
"Uma fun\u00E7\u00E3o de verdade, tamb\u00E9m chamada de fun\u00E7\u00E3o veritativa, \u00E9 uma fun\u00E7\u00E3o que valores de verdade a listas de valores de verdade. Na l\u00F3gica cl\u00E1ssica, a cole\u00E7\u00E3o de valores de verdade reduz-se a dois elementos, a verdade e a falsidade, enquanto que, em outras l\u00F3gicas, a quantidade e natureza dos valores de verdade pode variar bastante. Um conectivo sentencial \u00E9 uma fun\u00E7\u00E3o de verdade se a ele for atribu\u00EDdo ou se ele denota uma fun\u00E7\u00E3o de verdade. Abaixo segue um exemplo de uma fun\u00E7\u00E3o l\u00F3gica (para melhor entendimento veja L\u00F3gica Proposicional). Por exemplo, a f\u00F3rmula l\u00F3gica: \n* \u00E9 uma fun\u00E7\u00E3o que para cada valor de p , q e s retorna o valor correspondente atribu\u00EDdo a \u03C6. A representa\u00E7\u00E3o dos valores de , , e o correspondente valor de \u03C6 s\u00E3o geralmente representados atrav\u00E9s de tabelas de verdade. Estas podem representar os valores de verdade de cada componente como V para verdadeiro e F para falso; geralmente na computa\u00E7\u00E3o utiliza-se 1 para verdadeiro e 0 para falso. Logo abaixo est\u00E3o exemplos de tabelas de verdade que utilizam os conectivos l\u00F3gicos E , OU e N\u00C3O. Uma senten\u00E7a \u00E9 verofuncional apenas se o valor de verdade da senten\u00E7a \u00E9 uma fun\u00E7\u00E3o dos valores de verdade de suas subsenten\u00E7as. Isto \u00E9, uma senten\u00E7a \u00E9 verofuncional apenas se o valor de verdade puder ser determinado funcionalmente a partir do valor de verdade das subsenten\u00E7as. Por exemplo, a senten\u00E7a: \u201CO ceu \u00E9 azul e as nuvens s\u00E3o brancas.\u201D \u00E9 uma fun\u00E7\u00E3o de verdade se o seu valor de verdade puder ser determinado funcionalmente a partir do valor de verdade das subsenten\u00E7as: \u201Co ceu \u00E9 azul\u201D e \u201Cas nuvens s\u00E3o brancas\u201D Assim, podemos introduzir a no\u00E7\u00E3o de . Tal no\u00E7\u00E3o trata da possibilidade de deduzir osignificado de uma seq\u00FC\u00EAncia a partir dos significados dos componentes. Deduzir quer dizer calcular por um processo que pode ser formalizado. No caso da composicionalidade das seq\u00FC\u00EAncias ling\u00FC\u00EDsticas, trata-se de um processo que pode ser associado a uma constru\u00E7\u00E3o sint\u00E1tica, e aplicado a exemplos variados, tal como no contexto do arquivo atual : uma consequ\u00EAncia do fato de que conectivos s\u00E3o interpretados como fun\u00E7\u00F5es de verdade. \u00C9 interessante notar que nem todas as senten\u00E7as da linguagem natural s\u00E3o fun\u00E7\u00F5es de verdade. Senten\u00E7as da forma \u201Csegundo fulano ...\u201D s\u00E3o contra-exemplos de fun\u00E7\u00E3o de verdade. Por exemplo, suponhamos que Galileu tenha dito que h\u00E1 montanhas de ouro e que a terra \u00E9 plana. Ent\u00E3o a senten\u00E7a \u201CSegundo Galileu h\u00E1 montanhas de ouro e a terra \u00E9 plana.\u201D assume o valor de verdade 'verdadeiro', apesar de sabermos que Galileu est\u00E1 errado nas duas afirma\u00E7\u00F5es \u201Ch\u00E1 montanhas de ouro\u201D e que \u201Ca terra \u00E9 plana\u201D Apesar das subsenten\u00E7as assumirem valores de verdade, a senten\u00E7a n\u00E3o pode ser entendida como fun\u00E7\u00E3o de verdade, pois o conectivo un\u00E1rio \u201Csegundo Galileu\u201D n\u00E3o depende apenas dos componentes da senten\u00E7a, logo a interpreta\u00E7\u00E3o de um tal conectivo n\u00E3o \u00E9 uma fun\u00E7\u00E3o de verdade. Todos os conectivos da l\u00F3gica cl\u00E1ssica representam fun\u00E7\u00F5es de verdade. Os seus valores para cada conjunto de argumentos de entrada s\u00E3o normalmente representados por ."@pt ,
"En sanningsfunktion \u00E4r en funktion f(p, q) av tv\u00E5 argument p och q som antar sanningsv\u00E4rden och d\u00E4r resultatet \u00E4r ett sanningsv\u00E4rde. Denna artikel om logik saknar v\u00E4sentlig information. Du kan hj\u00E4lpa till genom att l\u00E4gga till den."@sv ,
"In logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: The input and output of a truth function are all truth values; a truth function will always output exactly one truth value; and inputting the same truth value(s) will always output the same truth value. The typical example is in propositional logic, wherein a compound statement is constructed using individual statements connected by logical connectives; if the truth value of the compound statement is entirely determined by the truth value(s) of the constituent statement(s), the compound statement is called a truth function, and any logical connectives used are said to be truth functional. Classical propositional logic is a truth-functional logic, in that every statement has exactly one truth value which is either true or false, and every logical connective is truth functional (with a correspondent truth table), thus every compound statement is a truth function. On the other hand, modal logic is non-truth-functional."@en ,
"Logick\u00E1 funkce je funkce, kter\u00E1 pro kone\u010Dn\u00FD po\u010Det vstupn\u00EDch parametr\u016F vrac\u00ED logick\u00E9 hodnoty. Pou\u017E\u00EDv\u00E1 se v matematick\u00E9 logice, v oboru teorie \u0159\u00EDzen\u00ED a \u010D\u00EDslicov\u00E9 techniky, v praxi pak nap\u0159\u00EDklad v mikroprocesorov\u00E9 technice. Parametry logick\u00E9 funkce jsou logick\u00E9 prom\u011Bnn\u00E9. P\u0159i\u0159azuje-li logick\u00E1 funkce v\u00FDstupn\u00ED hodnoty v\u0161em kombinac\u00EDm vstupn\u00EDch logick\u00FDch prom\u011Bnn\u00FDch, pak se naz\u00FDv\u00E1 \u00FApln\u011B zadan\u00E1 logick\u00E1 funkce; v opa\u010Dn\u00E9m p\u0159\u00EDpad\u011B se naz\u00FDv\u00E1 ne\u00FApln\u011B zadan\u00E1 logick\u00E1 funkce. Kombinace vstupn\u00EDch logick\u00FDch prom\u011Bnn\u00FDch, k n\u00ED\u017E nen\u00ED ur\u010Dena hodnota v\u00FDstupn\u00ED logick\u00E9 funkce, se naz\u00FDv\u00E1 neur\u010Dit\u00FD stav. Pro n logick\u00FDch prom\u011Bnn\u00FDch lze definovat 22n logick\u00FDch funkc\u00ED.Pro n logick\u00FDch prom\u011Bnn\u00FDch obsahuje tabulka 2n \u0159\u00E1dk\u016F. Funkce jedn\u00E9 prom\u011Bnn\u00E9 f0 = 0 konstantaf1 = x p\u0159\u00EDm\u00E1 prom\u011Bnn\u00E1f2 = \u00ACx negovan\u00E1 prom\u011Bnn\u00E1f3 = 1 konstanta\u00AC = negaceFunkce dvou prom\u011Bnn\u00FDch osa = osa negace Za touto osou se nach\u00E1zej\u00ED tyt\u00E9\u017E funkce, ale v znegovan\u00E9m tvaru. f0 = 0 konstantaf1 = A*B (logick\u00FD sou\u010Din, AND)f2 = \u00AC(A implikuje B)f3 = A p\u0159\u00EDm\u00E1 prom\u011Bnn\u00E1f4 = \u00AC(B implikuje A)f5 = B p\u0159\u00EDm\u00E1 prom\u011Bnn\u00E1f6 = \u00ACA*B+A*\u00ACB nonekvivalencef7 = A+B (logick\u00FD sou\u010Det, OR) f13 = implikace\u00AC = negace"@cs ,
"\u5728\u903B\u8F91\u4E2D\uFF0C\u771F\u503C\u51FD\u6570\u662F\u4ECE\u8BED\u8A00\u7684\u53E5\u5B50\u751F\u6210\u7684\u51FD\u6570\u3002\u5B83\u91C7\u7528\u6765\u81EA {T,F} (\u5C31\u662F\u771F\u5B9E\u548C\u865A\u5047)\u7684\u771F\u503C\u3002\u4F8B\u5982\u53E5\u5B50 A \u2192 B \u751F\u6210\u771F\u503C\u51FD\u6570 h(A,B)\uFF0C\u5B83\u7684\u771F\u503C\u662F F\uFF0C\u5F53\u4E14\u4EC5\u5F53 A \u7684\u503C\u662F T \u800C B \u7684\u503C\u662F F\u3002n \u4E2A\u53D8\u91CF\u7684\u547D\u9898\u53E5\u5B50\u751F\u6210 2^{2^n} \u4E2A\u771F\u503C\u51FD\u6570\u3002\u6BD4\u5982\uFF0C\u5982\u679C\u6709\u50CF A \u2192 (B \u2192 A) \u8FD9\u6837\u7684 2 \u4E2A\u53D8\u91CF\u7684\u547D\u9898\u5219\u6709 16 \u4E2A\u751F\u6210\u7684\u771F\u503C\u51FD\u6570\u3002 \u9673\u8FF0\u6216\u547D\u9898\u88AB\u79F0\u4E3A\u662F\u771F\u503C\u6CDB\u51FD\u7684\uFF0C\u5982\u679C\u5B83\u7684\u771F\u503C\u7531\u5B83\u7684\u90E8\u4EF6\u7684\u771F\u503C\u6765\u51B3\u5B9A\u3002 \u6BD4\u5982\uFF0C\u201C\u57282004\u5E744\u670820\u65E5\u4FDD\u7F57\u00B7\u9A6C\u4E01\u662F\u52A0\u62FF\u5927\u9996\u76F8\u201D\u662F\u771F\u7684\uFF0C\u201C\u57282004\u5E744\u670820\u65E5\u4E54\u6CBB\u00B7\u6C83\u514B\u00B7\u5E03\u4EC0\u662F\u7F8E\u56FD\u603B\u7EDF\u201D\u4E5F\u662F\u771F\u7684\uFF0C\u6240\u4EE5\u5408\u53D6\uFF1A \n* \u201C\u57282004\u5E744\u670820\u65E5\u4FDD\u7F57\u00B7\u9A6C\u4E01\u662F\u52A0\u62FF\u5927\u9996\u76F8 \u4E0E \u4E54\u6CBB\u00B7\u6C83\u514B\u00B7\u5E03\u4EC0\u662F\u7F8E\u56FD\u603B\u7EDF\u201D \u662F\u771F\u7684\u3002\u5728\u8FD9\u4E2A\u53E5\u5B50\u4E2D\uFF0C\u201C\u4E0E\u201D\u5145\u5F53\u771F\u503C\u51FD\u6570\u3002 \u76F8\u53CD\u7684\uFF0C\u5728\u201C\u57282004\u5E744\u670820\u65E5\u963F\u5C14\u00B7\u6208\u5C14\u662F\u7F8E\u56FD\u603B\u7EDF\u201D\u548C\u201C\u5E03\u862D\u59AE\u00B7\u65AF\u76AE\u723E\u65AF\u76F8\u4FE1\u57282004\u5E744\u670820\u65E5\u963F\u5C14\u00B7\u6208\u5C14\u662F\u7F8E\u56FD\u603B\u7EDF\u201D\u3002\u77E5\u9053\u524D\u8005\u4E0D\u662F\u771F\u7684\u548C\u540E\u8005\u7684\u771F\u503C\u4E4B\u95F4\u6CA1\u6709\u5173\u7CFB\uFF1A\u5E03\u862D\u59AE\u00B7\u65AF\u76AE\u723E\u65AF\u76F8\u4FE1\u963F\u5C14\u00B7\u6208\u5C14\u662F\u603B\u7EDF\u8FD9\u4E2A\u547D\u9898\u7684\u771F\u503C\uFF0C\u4E0D\u662F\u7531\u963F\u5C14\u00B7\u6208\u5C14\u5728\u90A3\u5929\u4E0D\u662F\u603B\u7EDF\u7684\u4E8B\u5B9E\u6765\u51B3\u5B9A\u7684\u3002 \u6240\u4EE5\uFF0C\u8BCD\u8BED\u201C\u76F8\u4FE1\u201D\u4E0D\u662F\u771F\u503C\u51FD\u6570\u3002 \u7528\u66F4\u52A0\u6570\u5B66\u5316\u7684\u672F\u8BED\uFF0C\u771F\u503C\u51FD\u6570\u662F\u4E00\u79CD\u5E03\u5C14\u51FD\u6570\uFF0C\u5E76\u4F7F\u7528\u5E03\u5C14\u53D8\u91CF\u6765\u6301\u6709\u771F\u503C\u51FD\u6570\u7684\u7ED3\u679C\u662F\u8BA1\u7B97\u673A\u79D1\u5B66\u7684\u666E\u904D\u5B9E\u8DF5\u3002\u786E\u5B9A\u53E5\u5B50\u7684\u771F\u503C\u662F\u903B\u8F91\u548C\u6570\u5B66\u4E8C\u8005\u7684\u57FA\u672C\u6D3B\u52A8\uFF1B\u4F5C\u4E3A\u7ED3\u679C\uFF0C\u771F\u503C\u51FD\u6570\u5728\u4E0E\u903B\u8F91\u548C\u6570\u5B66\u57FA\u7840\u6709\u5173\u7684\u8457\u4F5C\u4E2D\u7ECF\u5E38\u8BA8\u8BBA\u3002 \u7B80\u5355\u771F\u503C\u51FD\u6570\u5982 AND\u3001NOT \u7B49\u53EF\u4EE5\u7528\u771F\u503C\u8868\u786E\u5B9A\u3002\u66F4\u590D\u6742\u7684\u771F\u503C\u51FD\u6570\u53EF\u80FD\u9700\u8981\u91CD\u8981\u7684\u8BA1\u7B97\u3002"@zh ,
"\u771F\u7406\u95A2\u6570\uFF08\u3057\u3093\u308A\u304B\u3093\u3059\u3046\u3001\u82F1\uFF1ATruth function\uFF09 \u3068\u306F\u3001\u6570\u7406\u8AD6\u7406\u5B66\u306B\u304A\u3044\u3066\u3001\u771F\u7406\u5024\u306E\u5404\u5909\u6570\u306E\u5909\u57DF\u3068\u7D42\u96C6\u5408\u3068\u304C\u305D\u308C\u305E\u308C\u300E\u300C\u771F\u306A\u547D\u984C\u300D\u3068\u300C\u507D\u306A\u547D\u984C\u300D\u306E\u307F\u304B\u3089\u6210\u308B\u96C6\u5408\u300F\u306B\u7B49\u3057\u3044\u3088\u3046\u306A\u5199\u50CF\u3067\u3042\u308B\u3002\u771F\u7406\u95A2\u6570\u306F\u547D\u984C\u95A2\u6570\u3067\u3082\u3042\u308B\u3002"@ja ;
dbo:wikiPageWikiLink dbr:Apollo_guidance_computer ,
dbr:Commutativity ,
dbr:Truth-functional_propositional_logic ,
dbr:Affine_transformation ,
dbr:Digital_circuit ,
dbr:Truth-functional_propositional_calculus ,
dbr:Distributivity ,
dbr:Truth_table ,
dbr:Bertrand_Russell ,
dbr:Boolean-valued_function ,
dbc:Truth ,
,
dbr:Logical_system ,
dbr:Formal_system ,
,
dbr:Tractatus_Logico-Philosophicus ,
dbr:If_and_only_if ,
dbr:Negation ,
dbr:Modal_logic ,
dbr:Propositional_calculus ,
dbr:Ternary_operation ,
dbc:Mathematical_logic ,
,
dbr:Arity ,
dbr:Logic_gate ,
dbr:Absorption_Law ,
dbr:Monotonic ,
,
dbr:Principia_Mathematica ,
dbr:Partition_of_a_set ,
dbr:Truth_value ,
dbr:Functional_completeness ,
dbr:Binary_operation ,
,
dbr:Minimal_element ,
dbr:Classical_logic ,
dbr:Logical_nand ,
dbr:Associativity ,
dbr:Boolean_logic ,
dbr:Modal_operator ,
dbr:Logical_constant ,
dbr:List_of_Boolean_algebra_topics ,
,
dbr:Logical_nor ,
dbr:Bitwise_operation ,
dbr:Material_conditional ,
dbr:Boolean_function ,
dbr:Boolean_domain ,
dbr:Principle_of_compositionality ,
dbr:Idempotence ,
dbr:Propositional_function ,
dbr:Unary_operation ,
dbr:Logical_equivalence ,
dbr:Logical_connective ,
dbr:Alfred_North_Whitehead ,
,
dbr:Binary_function ,
dbr:DRAM ,
dbr:Composition_of_functions ,
,
dbr:Ludwig_Wittgenstein ,
dbr:Logic ,
,
dbr:Alonzo_Church .
@prefix dbp: .
dbr:Truth_function dbp:wikiPageUsesTemplate .
@prefix dbt: .
dbr:Truth_function dbp:wikiPageUsesTemplate dbt:Div_col ,
dbt:Div_col_end ,
dbt:Portal ,
dbt:Tmath ,
dbt:PlanetMath_attribution ,
dbt:And ,
dbt:Or- ,
dbt:Eqv ,
dbt:Bulleted_list ,
dbt:Logicalconnective ,
dbt:See_also ,
dbt:Logical_truth ,
dbt:Classical_logic ,
dbt:Not ,
dbt:Short_description ,
dbt:Pipe ,
dbt:Mvar ,
dbt:Reflist ,
dbt:Math ;
dbo:thumbnail ;
dbo:wikiPageRevisionID 1121311413 .
@prefix xsd: .
dbr:Truth_function dbo:wikiPageLength "22586"^^xsd:nonNegativeInteger ;
dbo:wikiPageID 604707 ;
dbp:id 483 ;
dbp:title "Negation of P"@en ,
"Proposition P"@en ,
"Material implication"@en ,
"Exclusive disjunction"@en ,
"Material nonimplication"@en ,
"Alternative denial"@en ,
"TruthFunction"@en ,
"Converse implication"@en ,
"Conjunction"@en ,
"Tautology"@en ,
"Negation of Q"@en ,
"Proposition Q"@en ,
"Biconditional"@en ,
"Converse nonimplication"@en ,
"Joint denial"@en ,
"Disjunction"@en ;
dbp:main "Proposition"@en ,
"Logical conjunction"@en ,
"Sheffer stroke"@en ,
"Material nonimplication"@en ,
"Tautology"@en ,
"Converse nonimplication"@en ,
"Logical biconditional"@en ,
"Exclusive or"@en ,
"Material conditional"@en ,
"Converse implication"@en ,
"Logical NOR"@en ,
"Negation"@en ,
"Contradiction"@en ,
"Logical disjunction"@en .
@prefix dbpedia-sv: .
dbr:Truth_function owl:sameAs dbpedia-sv:Sanningsfunktion .
@prefix wikidata: .
dbr:Truth_function owl:sameAs wikidata:Q913874 ,
.
@prefix dbpedia-fi: .
dbr:Truth_function owl:sameAs dbpedia-fi:Totuusfunktio .
@prefix dbpedia-de: .
dbr:Truth_function owl:sameAs dbpedia-de:Wahrheitswertefunktion ,
,
,
,
,
,
.
@prefix dbpedia-no: .
dbr:Truth_function owl:sameAs dbpedia-no:Sannhetsfunksjon ,
,
,
dbr:Truth_function ,
.
@prefix gold: .
dbr:Truth_function gold:hypernym dbr:Function .
@prefix prov: .
dbr:Truth_function prov:wasDerivedFrom ;
foaf:isPrimaryTopicOf wikipedia-en:Truth_function ;
dbp:equivalents "\u00ACP \u219A Q"@en ,
"\u00ACP ∨ \u00ACQ"@en ,
"P ∨ \u00ACP"@en ,
"Fpq"@en ,
"\u00AC"@en ,
"\u00ACP \u2191 \u00ACQ"@en ,
"\u00ACP \u2190 \u00ACQ"@en ,
"\u00ACP \u21AE Q"@en ,
"q"@en ,
"p"@en ,
"\u00ACP \u219B \u00ACQ"@en ,
"\u00ACP Q"@en ,
"\u00ACP \u2192 \u00ACQ"@en ,
"P ∧ \u00ACP"@en ,
"P \u219A \u00ACQ"@en ,
"\u00ACP ∧ Q"@en ,
"Kpq"@en ,
"\u00ACP \u219B Q"@en ,
"Nq"@en ,
"Cpq"@en ,
"\u00ACP \u2193 \u00ACQ"@en ,
"P \u219B\u00ACQ"@en ,
"Opq"@en ,
"Bpq"@en ,
"\u00ACP ∨ Q"@en ,
"P \u2190 \u00ACQ"@en ,
"Jpq"@en ,
"\u00ACP \u2191 Q"@en ,
"\u00ACP \u219A \u00ACQ"@en ,
"P \u21AE \u00ACQ"@en ,
"Ipq"@en ,
"\u00ACP \u2190 Q"@en ,
"P ∨ \u00ACQ"@en ,
"Apq"@en ,
"Vpq"@en ,
"P \u2191 \u00ACQ"@en ,
"Epq"@en ,
"Mpq"@en ,
"\u00ACP \u2192 Q"@en ,
"P \u2193 \u00ACQ"@en ,
"\u00ACP \u21AE \u00ACQ"@en ,
"P \u2192 \u00ACQ"@en ,
"Dpq"@en ,
"\u00ACP \u00ACQ"@en ,
"P \u00ACQ"@en ,
"Gpq"@en ,
"\u00ACP \u2193 Q"@en ,
"Np"@en ,
"Lpq"@en ,
"P ∧ \u00ACQ"@en ,
"Hpq"@en ,
"\u00ACP ∧ \u00ACQ"@en ,
"Xpq"@en ;
dbp:notation "P \u2191 Q"@en ,
"P \u219B Q"@en ,
"\u00ACP"@en ,
"P \u2262 Q"@en ,
"P ⊃ Q"@en ,
"P IMPLY Q"@en ,
"P \u2190 Q"@en ,
"~P"@en ,
"P XOR Q"@en ,
"P \u2193 Q"@en ,
"\"bottom\""@en ,
"P NAND Q"@en ,
"P OR Q"@en ,
"\u00ACQ"@en ,
"P \u2192 Q"@en ,
"P \u21AE Q"@en ,
"P ∧ Q"@en ,
"P \u2261 Q"@en ,
"P IFF Q"@en ,
"P \u2A01 Q"@en ,
"\"top\""@en ,
"P \u00B7 Q"@en ,
"~Q"@en ,
"P AND Q"@en ,
"P \u219A Q"@en ,
"P XNOR Q"@en ,
"P"@en ,
"P ∨ Q"@en ,
"P ⊂ Q"@en ,
"Q"@en ,
"P NOR Q"@en ,
"P Q"@en ,
"P & Q"@en ,
"P NIMPLY Q"@en ;
dbp:truthtable 0 ,
1 ;
dbp:also "/False"@en ,
"/True"@en .
dbr:Truth_table dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Commutative_property dbo:wikiPageWikiLink dbr:Truth_function .
dbr:List_of_pioneers_in_computer_science dbo:wikiPageWikiLink dbr:Truth_function .
dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Material_conditional dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Logical_truth dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Index_of_logic_articles dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Artificial_intelligence dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Propositional_variable dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Truth-functional_logic dbo:wikiPageWikiLink dbr:Truth_function ;
dbo:wikiPageRedirects dbr:Truth_function .
dbr:Implicational_propositional_calculus dbo:wikiPageWikiLink dbr:Truth_function .
dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Fredkin_gate dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Lojban_grammar dbo:wikiPageWikiLink dbr:Truth_function .
dbr:Truth-functional dbo:wikiPageWikiLink dbr:Truth_function ;
dbo:wikiPageRedirects dbr:Truth_function .