An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen.

Property Value
dbo:abstract
  • Jedná se o čtyřrozměrné analogie trojrozměrných platónských těles. Tyto poprvé popsal švýcarský matematik Ludwig Schläfli v polovině 19. století. Zjistil, že jich existuje právě šest (5nadstěn, teserakt (8nadstěn), 16nadstěn, 24nadstěn, 120nadstěn a 600nadstěn). Pět z nich je možno chápat jako vícedimenzionální analogii konkrétních pěti platónských těles v trojrozměrném prostoru (5nadstěn, teserakt, 16nadstěn, 120nadstěn a 600nadstěn). Navíc ve čtyřrozměrném prostoru existuje ještě šesté těleso (24nadstěn), které nemá mezi trojrozměrnými platónskými tělesy ekvivalent. (cs)
  • En matematiko, konveksa regula plurĉelo estas 4-dimensia plurĉelo kiu estas samtempe regula kaj konveksa. Ĉi tiuj plurĉeloj estas la kvar-dimensiaj analogoj de la platonaj solidoj en tri dimensioj kaj la regulaj plurlateroj en du dimensioj. Ĉi tiuj plurĉeloj estis unue priskribitaj de la svisa matematikisto Ludwig Schläfli en mezo de la 19-a jarcento. Schläfli esploris ke estas precize ses ĉi tiaj figuroj. Kvin el ili povas esti konsiderataj kiel pli alte dimensiaj analogoj de la platonaj solidoj. Estas unu aldona figuro (la 24-ĉelo) kiu ne havas tri-dimensian ekvivalenton. Ĉiu konveksa regula plurĉelo estas barita per aro de 3-dimensiaj ĉeloj kiuj ĉiuj estas platonaj solidoj de la sama speco kaj amplekso. Ili estas kunigitaj laŭ iliaj edroj en regula maniero. (eo)
  • En matemáticas, un politopo regular convexo de 4 dimensiones (o polícoro) es un politopo tetradimensional que al mismo tiempo es regular y convexo. Son los análogos en cuatro dimensiones de los sólidos platónicos en tres dimensiones y los polígonos regulares en dos dimensiones. (es)
  • Un polytope régulier convexe à 4 dimensions (ou polychore) est un objet géométrique, analogue en 4 dimensions des solides de Platon de la géométrie en 3 dimensions et des polygones réguliers de la géométrie en 2 dimensions. Ces polytopes furent décrits la première fois par le mathématicien suisse Ludwig Schläfli au milieu du XIXe siècle. Schläfli découvrit qu'il y avait précisément six figures de ce type. Cinq d'entre elles sont considérées comme les analogues de dimension 4 des solides de Platon. Il y a une figure supplémentaire (l'icositétrachore) qui n'a aucun équivalent tri-dimensionnel. Chaque polytope régulier convexe à 4 dimensions est limité par des cellules tri-dimensionnelles qui sont toutes des solides de Platon du même type et de même taille. Ceux-ci sont organisés ensemble le long de leurs côtés de manière régulière. Ils sont tous homéomorphes à une hypersphère à la surface tri-dimensionnelle ; leur caractéristique d'Euler-Poincaré vaut donc 0. (fr)
  • In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. (en)
  • 4차원 정다포체란 정다면체를 4차원으로 확장한 것이다. (ko)
  • Правильные четырёхмерные многогранники являются четырёхмерными аналогами правильных многогранников в трёхмерном пространстве и правильных многоугольников на плоскости. Правильные 4-мерные многогранники впервые были описаны швейцарским математиком Людвигом Шлефли в середине 19-го века, хотя полное множество было открыто много позже. Существует шесть выпуклых и десять звёздчатых правильных 4-мерных многогранников, в общей сумме шестнадцать. (ru)
  • 在数学中,四维凸正多胞体(英語:convex regular polychoron)是指一类既是凸的又是正的的四维多胞体(4-多胞形)。它们是正多面体(三維)和正多边形(二维)的四维类比。它们最先在19世纪被数学家路德维希·施莱夫利所发现,其中五个与五个柏拉图立体一一对应,另外一个(正二十四胞体)没有好的三维类比。 每个四维凸正多胞体必须有同种的同样大小的凸正多面体胞面面相接构成,并且每个顶点周围必须有相同数量的胞。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 18801624 (xsd:integer)
dbo:wikiPageLength
  • 28508 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1107744391 (xsd:integer)
dbo:wikiPageWikiLink
dbp:title
  • Regular polychoron (en)
dbp:urlname
  • RegularPolychoron (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • Jedná se o čtyřrozměrné analogie trojrozměrných platónských těles. Tyto poprvé popsal švýcarský matematik Ludwig Schläfli v polovině 19. století. Zjistil, že jich existuje právě šest (5nadstěn, teserakt (8nadstěn), 16nadstěn, 24nadstěn, 120nadstěn a 600nadstěn). Pět z nich je možno chápat jako vícedimenzionální analogii konkrétních pěti platónských těles v trojrozměrném prostoru (5nadstěn, teserakt, 16nadstěn, 120nadstěn a 600nadstěn). Navíc ve čtyřrozměrném prostoru existuje ještě šesté těleso (24nadstěn), které nemá mezi trojrozměrnými platónskými tělesy ekvivalent. (cs)
  • En matemáticas, un politopo regular convexo de 4 dimensiones (o polícoro) es un politopo tetradimensional que al mismo tiempo es regular y convexo. Son los análogos en cuatro dimensiones de los sólidos platónicos en tres dimensiones y los polígonos regulares en dos dimensiones. (es)
  • In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. (en)
  • 4차원 정다포체란 정다면체를 4차원으로 확장한 것이다. (ko)
  • Правильные четырёхмерные многогранники являются четырёхмерными аналогами правильных многогранников в трёхмерном пространстве и правильных многоугольников на плоскости. Правильные 4-мерные многогранники впервые были описаны швейцарским математиком Людвигом Шлефли в середине 19-го века, хотя полное множество было открыто много позже. Существует шесть выпуклых и десять звёздчатых правильных 4-мерных многогранников, в общей сумме шестнадцать. (ru)
  • 在数学中,四维凸正多胞体(英語:convex regular polychoron)是指一类既是凸的又是正的的四维多胞体(4-多胞形)。它们是正多面体(三維)和正多边形(二维)的四维类比。它们最先在19世纪被数学家路德维希·施莱夫利所发现,其中五个与五个柏拉图立体一一对应,另外一个(正二十四胞体)没有好的三维类比。 每个四维凸正多胞体必须有同种的同样大小的凸正多面体胞面面相接构成,并且每个顶点周围必须有相同数量的胞。 (zh)
  • En matematiko, konveksa regula plurĉelo estas 4-dimensia plurĉelo kiu estas samtempe regula kaj konveksa. Ĉi tiuj plurĉeloj estas la kvar-dimensiaj analogoj de la platonaj solidoj en tri dimensioj kaj la regulaj plurlateroj en du dimensioj. Ĉi tiuj plurĉeloj estis unue priskribitaj de la svisa matematikisto Ludwig Schläfli en mezo de la 19-a jarcento. Schläfli esploris ke estas precize ses ĉi tiaj figuroj. Kvin el ili povas esti konsiderataj kiel pli alte dimensiaj analogoj de la platonaj solidoj. Estas unu aldona figuro (la 24-ĉelo) kiu ne havas tri-dimensian ekvivalenton. (eo)
  • Un polytope régulier convexe à 4 dimensions (ou polychore) est un objet géométrique, analogue en 4 dimensions des solides de Platon de la géométrie en 3 dimensions et des polygones réguliers de la géométrie en 2 dimensions. Ces polytopes furent décrits la première fois par le mathématicien suisse Ludwig Schläfli au milieu du XIXe siècle. Schläfli découvrit qu'il y avait précisément six figures de ce type. Cinq d'entre elles sont considérées comme les analogues de dimension 4 des solides de Platon. Il y a une figure supplémentaire (l'icositétrachore) qui n'a aucun équivalent tri-dimensionnel. (fr)
rdfs:label
  • Čtyřrozměrná platónská tělesa (cs)
  • Konveksa regula plurĉelo (eo)
  • Politopo regular convexo de 4 dimensiones (es)
  • 4-polytope régulier convexe (fr)
  • 4차원 정다포체 (ko)
  • Regular 4-polytope (en)
  • Правильный четырёхмерный многогранник (ru)
  • 四维凸正多胞体 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License
  NODES
Project 4