About: CuproBraze

An Entity of Type: company, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

CuproBraze is a copper-alloy heat exchanger technology for harsh temperature and pressure environments such as those in the latest generations of cleaner diesel engines mandated by global environmental regulations. The technology, developed by the International Copper Association (ICA), is licensed free of charge to heat exchanger manufacturers around the world. CuproBraze is replacing soldered copper/brass plate fin, soldered copper brass serpentine fin, and brazed aluminum serpentine fin in demanding applications.

Property Value
dbo:abstract
  • CuproBraze is a copper-alloy heat exchanger technology for harsh temperature and pressure environments such as those in the latest generations of cleaner diesel engines mandated by global environmental regulations. The technology, developed by the International Copper Association (ICA), is licensed free of charge to heat exchanger manufacturers around the world. Applications for CuproBraze include charge air coolers, radiators, oil coolers, climate control systems, and heat transfer cores. CuproBraze is particularly suited for charge air coolers and radiators in capital intensive industries where machinery must operate for long periods of time under harsh conditions without premature failures. For these reasons, CuproBraze is being specified for off-road vehicles, trucks, buses, industrial engines, generators, locomotives, and military equipment. The technology is also amenable for light trucks, SUVs and passenger cars with special needs. CuproBraze is replacing soldered copper/brass plate fin, soldered copper brass serpentine fin, and brazed aluminum serpentine fin in demanding applications. Aluminium heat exchangers are viable and economical for cars, light trucks, and other light-duty applications. However, they are not amenable for environments characterized by high operating temperatures, humidity, vibration, salty corrosive air, and air pollution. In these environments, the additional tensile strength, durability, and corrosion resistance that CuproBraze provides are useful. The CuproBraze technology uses brazing instead of soldering to join copper and brass radiator components. The heat exchangers are made with anneal-resistant copper and brass alloys. The tubes are fabricated from brass strip and coated with a brazing filler material in form of a powder based paste or an amorphous brazing foil is laid between the tube and fin. There is another method of coating the tube in-line on the tube mill. This is done using the twin wire-arc spray process where the wire is the braze alloy, deposited on the tube as it is being manufactured at 200-400 fpm. This saves one process step of coating the tube later. The coated tubes, along with copper fins, headers and side supports made of brass, are fitted together into a core assembly which is brazed in a furnace. The technology enables brazed serpentine fins to be used in copper-brass heat exchanger designs. They are stronger, lighter, more durable, and have tougher joints. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 37753134 (xsd:integer)
dbo:wikiPageLength
  • 22555 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1106215891 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • CuproBraze is a copper-alloy heat exchanger technology for harsh temperature and pressure environments such as those in the latest generations of cleaner diesel engines mandated by global environmental regulations. The technology, developed by the International Copper Association (ICA), is licensed free of charge to heat exchanger manufacturers around the world. CuproBraze is replacing soldered copper/brass plate fin, soldered copper brass serpentine fin, and brazed aluminum serpentine fin in demanding applications. (en)
rdfs:label
  • CuproBraze (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License
  NODES
Association 3
INTERN 3