dbo:abstract
|
- In mathematics, a Frobenius splitting, introduced by Mehta and Ramanathan, is a splitting of the injective morphism OX→F*OX from a structure sheaf OX of a characteristic p > 0 variety X to its image F*OX under the Frobenius endomorphism F*. give a detailed discussion of Frobenius splittings. A fundamental property of Frobenius-split projective schemes X is that the higher cohomology Hi(X,L) (i > 0) of ample line bundles L vanishes. (en)
- Inom matematiken är en Frobeniussplittring, introducerad av och, en splittring av den injektiva morfism OX→F*OX från ett OX av en varietet X av karakteristik p > 0 till dess bild F*OX under F*. ) ger en detaljerad diskussion av Frobeniussplittringar. (sv)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 1700 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:author1Link
|
- Vikram Bhagvandas Mehta (en)
|
dbp:author2Link
|
- Annamalai Ramanathan (en)
|
dbp:last
|
- Mehta (en)
- Ramanathan (en)
|
dbp:wikiPageUsesTemplate
| |
dbp:year
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- In mathematics, a Frobenius splitting, introduced by Mehta and Ramanathan, is a splitting of the injective morphism OX→F*OX from a structure sheaf OX of a characteristic p > 0 variety X to its image F*OX under the Frobenius endomorphism F*. give a detailed discussion of Frobenius splittings. A fundamental property of Frobenius-split projective schemes X is that the higher cohomology Hi(X,L) (i > 0) of ample line bundles L vanishes. (en)
- Inom matematiken är en Frobeniussplittring, introducerad av och, en splittring av den injektiva morfism OX→F*OX från ett OX av en varietet X av karakteristik p > 0 till dess bild F*OX under F*. ) ger en detaljerad diskussion av Frobeniussplittringar. (sv)
|
rdfs:label
|
- Frobenius splitting (en)
- Frobeniussplittring (sv)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |