dbo:abstract
|
- A geodesic polyhedron is a convex polyhedron made from triangles. They usually have icosahedral symmetry, such that they have 6 triangles at a vertex, except 12 vertices which have 5 triangles. They are the dual of corresponding Goldberg polyhedra with mostly hexagonal faces. Geodesic polyhedra are a good approximation to a sphere for many purposes, and appear in many different contexts. The most well-known may be the geodesic domes designed by Buckminster Fuller, which geodesic polyhedra are named after. Geodesic grids used in geodesy also have the geometry of geodesic polyhedra. The capsids of some viruses have the shape of geodesic polyhedra, and fullerene molecules have the shape of Goldberg polyhedra. Geodesic polyhedra are available as geometric primitives in the Blender 3D modeling software package, which calls them icospheres: they are an alternative to the UV sphere, having a more regular distribution of vertices than the UV sphere. The Goldberg–Coxeter construction is an expansion of the concepts underlying geodesic polyhedra. (en)
- Een geodetische bol of geodetisch veelvlak is een veelvlak dat ongeveer bolvormig is en driehoeken als zijvlakken heeft, waarbij alle hoekpunten op een bol liggen. Een variant is de daadwerkelijk bolvormige versie, het overeenkomstige bolvormige veelvlak. De naam komt van de driehoeksmeting, die in de geodesie wordt gebruikt. (nl)
- 지오데식 다면체(geodesic polyhedron) 또는 지오데식 구체(geodesic sphere)는 삼각형으로 만들어진 여러 볼록한 꼭지점들과 분할된 면들을 가지는 다면체이다. 이것은 일반적으로 5개의 삼각형이 있는 12개의 꼭짓점을 제외하고 한 꼭짓점에 6개의 삼각형이 있는 20면체 대칭을 가지고 있다. 이것은 육각형(hexagon)면만을 가진 것에서 대응하는 (Goldberg polyhedron)의 쌍대로 알려져있다. (ko)
|