An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In nonstandard analysis, a field of mathematics, the increment theorem states the following: Suppose a function y = f(x) is differentiable at x and that Δx is infinitesimal. Then for some infinitesimal ε, where If then we may write which implies that , or in other words that is infinitely close to , or is the standard part of . A similar theorem exists in standard Calculus. Again assume that y = f(x) is differentiable, but now let Δx be a nonzero standard real number. Then the same equation

Property Value
dbo:abstract
  • In nonstandard analysis, a field of mathematics, the increment theorem states the following: Suppose a function y = f(x) is differentiable at x and that Δx is infinitesimal. Then for some infinitesimal ε, where If then we may write which implies that , or in other words that is infinitely close to , or is the standard part of . A similar theorem exists in standard Calculus. Again assume that y = f(x) is differentiable, but now let Δx be a nonzero standard real number. Then the same equation holds with the same definition of Δy, but instead of ε being infinitesimal, we have(treating x and f as given so that ε is a function of Δx alone). (en)
  • 数学の一分野、超準解析における増分定理(ぞうぶんていり、英: increment theorem; 増分の定理)は、無限小に対する可微分函数の増分が微分係数に無限に近いことを述べるものである。これを通常の微分積分学(標準解析)において述べたものは実質的に平均値の定理(有限増分の定理、あるいは一次の場合のテイラーの定理)である。 (ja)
  • Em análise não padronizada, um campo da matemática, o teorema do incremento estabelece que: suponha que uma função y = f(x) é diferenciável em x e que Δx é infinitesimal. Então para um infinitesimal ε, sendo Se então podemos escrever implicando que , ou em outras palavras que é infinitamente perto de , ou é a de . (pt)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 12144610 (xsd:integer)
dbo:wikiPageLength
  • 2283 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1059983151 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • 数学の一分野、超準解析における増分定理(ぞうぶんていり、英: increment theorem; 増分の定理)は、無限小に対する可微分函数の増分が微分係数に無限に近いことを述べるものである。これを通常の微分積分学(標準解析)において述べたものは実質的に平均値の定理(有限増分の定理、あるいは一次の場合のテイラーの定理)である。 (ja)
  • Em análise não padronizada, um campo da matemática, o teorema do incremento estabelece que: suponha que uma função y = f(x) é diferenciável em x e que Δx é infinitesimal. Então para um infinitesimal ε, sendo Se então podemos escrever implicando que , ou em outras palavras que é infinitamente perto de , ou é a de . (pt)
  • In nonstandard analysis, a field of mathematics, the increment theorem states the following: Suppose a function y = f(x) is differentiable at x and that Δx is infinitesimal. Then for some infinitesimal ε, where If then we may write which implies that , or in other words that is infinitely close to , or is the standard part of . A similar theorem exists in standard Calculus. Again assume that y = f(x) is differentiable, but now let Δx be a nonzero standard real number. Then the same equation (en)
rdfs:label
  • Increment theorem (en)
  • 増分定理 (ja)
  • Teorema do incremento (pt)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License
  NODES