dbo:abstract
|
- Una el·lipse és el lloc geomètric dels punts del pla per als quals és constant la suma de les distàncies a dos punts interiors fixos denominats focus, que regeixen l'excentricitat de l'el·lipse: L'equació d'una el·lipse centrada en el punt (0,0) és: on a és la semidistància de l'eix d'abscisses de l'el·lipse, mentre que b és la semidistància sobre l'eix d'ordenades. L'àrea que tanca aquesta el·lipse és: Si a=b, l'el·lipse és una circumferència, i llavors l'àrea que tanca (el cercle) és simplement π·a². La longitud o perímetre d'una el·lipse es pot aproximar de manera raonable amb la fórmula de Rivera, en ella s'utilitza el valor del "semieix major" (a) i el valor del "semieix menor" (b) de l'el·lipse. Expressió aproximada del perímetre o longitud d'una el·lipse: Fórmula de Rivera: En el cas límit on b = 0, la fórmula dona el valor exacte L = 4a. L'excentricitat de l'el·lipse (e) s'obté: on L'el·lipse és la corba cònica tancada que s'obté en la intersecció d'una superfície cònica amb un pla oblic a l'eix del con quan aquest pla no és paral·lel a cap generatriu del con. (ca)
- القطع الناقص أو الإهْلِيلَج (بالإنجليزية: Ellipse) هو المنحني المستوي الذي يحقق الخاصية التالية: مجموع بُعد أي نقطة على هذا المنحنى عن نقطتين ثابتين داخله (تسميان البؤرتان) يبقى ثابتا. البؤرتان هما النقطتان F1 و F2 في الشكل. أي يمكن رسم القطع الناقص بواسطة خيط مثبت من طرفيه في نقطتين f1 , f2 ورسم القطع الناقص بالقلم حولهما انطلاقا من النقطة x . القطع الناقص هو أيضا أحد أنواع القطوع المخروطية، فعند قطع مخروط بمستوى مائل على محور المخروط نحصل على قطع ناقص. يُهتم بالقطع الناقص بصفة خاصة بسبب أن الأجرام السماوية تسير في أفلاك حول الشمس في مدارات في شكل القطع الناقص، وتحتل الشمس أحد بؤرتيه. هذا ما توصلت إليه قوانين كيبلر. فعند مشاهدة مذنب يأتي من الجزء الخارجي للمجموعة الشمسية منجذبا إلى الشمس تزداد سرعته تدريجيا ثم يُجري منحنيا خلفها ثم يبتعد عنها ثانيا، وتنخفض سرعته اثناء ابتعاده عن الشمس. هذا المسار يكون في شكل قطع ناقص؛ وتكون الشمس في إحدى بؤرتيه. (ar)
- الشكل البيضوي (بالإنجليزية: Oval) مشتقة من اللغة اللاتينية: (Ovum)؛ منحنى مغلق على مستوى ثنائي قريب من شكل البيضة يستخدم دوما في (الهندسة الإسقاطية والرسم الصناعي) (يشبه القطع الناقص إلا أن القطع الناقص له محورين تماثل، أما الشكل البيضوي فله محور تماثل واحد [أنظر أسفله])), (ar)
- Elipsa je uzavřená křivka v rovině. Elipsu lze definovat jako množinu všech bodů v rovině, které mají stálý součet vzdáleností 2a od dvou pevně daných bodů, tzv. ohnisek (v obrázku označeny F1, F2; |F1F2| < 2a). Elipsa patří mezi kuželosečky, je to algebraická křivka 2. stupně. Velký praktický význam má v konstruktivní geometrii, protože vzniká jako průmět kružnice n, jiné kuželosečky anebo v astronomii, protože velmi přesně popisuje tvar dráhy těles v gravitačním poli centrálního tělesa. (cs)
- Un oval, en geometria, és una corba tancada plana que s'assembla a una forma ovoide o el·líptica. A diferència d'altres corbes, el terme oval no està definit clarament i hi ha diverses corbes que són anomenades ovals. Totes tenen en comú els trets següents:
* la seva forma no s'aparta gaire de la d'una circumferència o una el·lipse,
* solen tenir un o dos eixos de simetria i
* són corbes planes diferenciables (textura suau), simples (no s'intersequen), convexes i tancades. La paraula ovoïdal fa referència a la característica d'oval. Es mostren dos exemples d'ovals a la dreta: un semicercle vinculat a mitja el·lipse i dos semicercles connectats mitjançant dos segments. Hi ha altres corbes similars. (ca)
- V technickém výkresu je ovál (z latinského ovum, vejce) obrazec sestrojený ze dvou párů oblouků s dvěma různými poloměry. Oblouky různého poloměru se dotýkají v bodě, kde tečny obou těchto oblouků leží na stejné přímce. Každý bod na oválu leží na oblouku s konstantním poloměrem (kratším nebo delším) na rozdíl od elipsy, kde se poloměr neustále mění. (cs)
- Der Begriff Oval (lateinisch ovum ‚Ei‘) bezeichnet eine ebene rundliche konvexe Figur, die im weitesten Sinne dem Profil eines Vogeleis ähnelt. Sie umfasst Kreise und Ellipsen als Spezialfälle, wobei ein beliebiges Oval im Gegensatz zu diesen keine Symmetrieachse besitzen muss. Die Verwendung des Begriffs ist nicht immer ganz einheitlich, gelegentlich wird er auch rein beschreibend verwandt. In der Analysis lässt er sich jedoch formal mit Hilfe ebener Kurven definieren, in diesem Zusammenhang spricht man dann auch von Eikurven oder Eilinien. Ein dreidimensionaler rundlicher konvexer Körper (allgemeiner auch eine abgeschlossene konvexe Teilmenge des ) wird als Ovoid bezeichnet. In diesem Sinne ist ein Oval mit seinem Inneren dann ein zweidimensionales Ovoid. In der projektiven Geometrie werden die Begriffe Oval und Ovoid ohne Differenzierbarkeits- und Konvexitätsbedingungen ausschließlich mit Hilfe von Inzidenzbedingungen („Jede Gerade trifft ein Oval bzw. Ovoid in höchstens 2 Punkten“) als quadratische Mengen definiert. Ein Oval, wie es im vorliegenden Artikel erläutert wird, ist im projektiven Abschluss der reellen Ebene stets ein Oval im Sinne der projektiven Definition, falls man zusätzlich verlangt, dass die Krümmung des Ovals auf keinem Abschnitt verschwindet. Ein solches Oval ist dann der Rand einer streng konvexen Menge, d. h., es enthält keine Geradenstücke. (de)
- Η έλλειψη είναι μία κωνική τομή και προκύπτει από την τομή ενός κώνου με επίπεδο που τον τέμνει πλαγίως ως προς τον άξονά του. Μπορεί να θεωρηθεί ως γενίκευση του κύκλου, όπως προκύπτει στην ειδική περίπτωση που η τομή του κώνου με επίπεδο στον άξονά του είναι κύκλος με κέντρο επί του άξονα. Μια έλλειψη χαρακτηρίζεται από τον μεγάλο ημιάξονά της, και από την εκκεντρότητα της, . Συγκεκριμένα, ας είναι , δύο σημεία σε ένα με απόσταση μεταξύ τους και ένας θετικός αριθμός. Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων επιπέδου των οποίων το άθροισμα των αποστάσεων από τα δύο σταθερά σημεία είναι σταθερό και ισούται με . (el)
- Ellipsen sind in der Geometrie spezielle geschlossene ovale Kurven. Sie zählen neben den Parabeln und den Hyperbeln zu den Kegelschnitten. Eine anschauliche Definition verwendet die Eigenschaft, dass die Summe der Abstände eines Ellipsenpunktes von zwei vorgegebenen Punkten, den Brennpunkten, für alle Punkte gleich ist. Sind die Brennpunkte identisch, erhält man einen Kreis. Jede Ellipse lässt sich in einem geeigneten Koordinatensystem durch eine Gleichung oder Parameterdarstellung beschreiben. Hieran erkennt man, dass man eine Ellipse als einen an der x-Achse um und an der y-Achse um gestreckten Einheitskreis auffassen kann. Die Ellipse (von griechisch ἔλλειψις élleipsis ‚Mangel‘) wurde von Apollonios von Perge (etwa 262–190 v. Chr.) eingeführt und benannt, die Bezeichnung bezieht sich auf die Exzentrizität . Ellipsen treten nicht nur als ebene Schnitte eines Kegels auf. Auch auf Zylindern, Ellipsoiden, Hyperboloiden und elliptischen Paraboloiden gibt es Ellipsen. In der Natur treten Ellipsen in Form von ungestörten keplerschen Planetenbahnen um die Sonne auf. Auch beim Zeichnen von Schrägbildern werden häufig Ellipsen benötigt, da ein Kreis durch eine Parallelprojektion im Allgemeinen auf eine Ellipse abgebildet wird (siehe Ellipse (Darstellende Geometrie)). (de)
- Laŭ matematiko, elipso estas kurbo ĉirkaŭ du fiksataj punktoj (fokusoj), en kiu la sumo de la distancoj inter punkto en la kurbo kaj la du fokusoj estas konstanto. Elipso estas speco de koniko. Se konuso estas tranĉata kun ebeno kiu ne intersekcas la konusan bazon, la intersekcaĵo estas elipso. Se la du fokusoj samlokas, la figuro estas cirklo. Tial, cirklo estas speciala speco de elipso. Ekvacio de elipso: : kun:
* B2 - 4AC < 0 rezultiĝas aŭ malplena aro (ekzemple por x2 + y2 + 1 = 0),
* se ankaŭ A = C kaj B = 0 rezultiĝas cirklo. Elipso centrita en la punkto kun ĝiaj simetriaksoj paralelaj al la aksoj de kartezia koordinatsistemo sekvas la jenan ekvacion: kie a kaj b estas respektive la granda kaj la malgranda duonakso. Pri tia elipso la surfaco S estas: (eo)
- Etimologie, ovalo estas la formo de ovo. Geometrie, la termino ovalo nomas ebenan fermitan kurbon, kiu havas du ortajn aksojn de simetrio. Komunsence, ovalo estas konveksa kurbo, sen kuspo neksinsekco. Do, praktike, elipso aŭ . La pilko de iaj sportoj (kiel rugbeo aŭ usona piedpilko) estas dirita "ovala". Fakte ĝia formo estas kies naskanto estas ovalo.
* Kokina ovo
* desegnado de elipso
* Oblonga formo
* Usona piedpilka pilko (eo)
- Una elipse es una curva plana, simple y cerrada con dos ejes de simetría que resulta al cortar la superficie de un cono por un plano oblicuo al eje de simetría con ángulo mayor que el de la generatriz respecto del eje de revolución. Una elipse que gira alrededor de su eje menor genera un esferoide achatado, mientras que una elipse que gira alrededor de su eje principal genera un esferoide alargado. La elipse es también la imagen afín de una circunferencia. (es)
- El término óvalo (del latín ovum, huevo) hace referencia a una forma geométrica convexa y redondeada, que se asemeja al perfil de un huevo de ave en su sentido más amplio. Incluye a circunferencias y elipses como casos especiales, con dos ejes de simetría en lugar de solamente uno o ninguno. El uso del término no siempre es consistente, en ocasiones también se usa de manera puramente descriptiva. Sin embargo, en el análisis matemático se puede definir formalmente como un tipo de curvas planas. En este contexto, también se habla de curvas o líneas ovaladas. Un cuerpo convexo redondeado y tridimensional (generalmente un subconjunto convexo cerrado de ) se conoce como ovoide. En este sentido, un óvalo con los puntos de su interior es entonces un ovoide de dos dimensiones. En geometría proyectiva los términos curva ovalada y ovoide (sin atender a su diferenciabilidad) según sus condiciones de convexidad, se establecen utilizando exclusivamente condiciones de incidencia ("cada recta corta a un óvalo u ovoide en a lo sumo dos puntos"), en lo que se define como un . En sentido proyectivo, un óvalo en el plano real requiere además la condición de que ningún punto de su contorno tenga curvatura nula. Tal óvalo es entonces el borde de un conjunto estrictamente convexo, porque no contiene segmentos rectilíneos. (es)
- Geometrian, elipsea bi puntu finkoetarako distantzien batura konstantea duten planoko puntu guztien leku geometrikoa da. Aldi berean, kono bati ebakidura zeihar bat egitean agertzen den kurba da. Horrela, elipsea konika-mota bat da, parabola eta hiperbola bezala. Zirkunferentzia elipse berezi bat da, zeina konoari ebakidura zuzen bat eginez agertzen den. Errealitatean maiz agertzen den kurba bat da. Horrela, eguzki-sistemako planetek elipse motako orbita batean zehar egiten dute bira eguzkiaren inguruan. Zirkunferentzia bat proiektatuz sor daitekeen kurba ere bada elipsea. (eu)
- Obaloa, geometrian, arrautza edo elipse baten antza duen edozein kurba da. Beste kurba batzuk ez bezala, "obalo" hitza ez dago ondo definitua, eta kurba mota asko obalo deituak dira. Hauek, honako hau dute komunean:
* ezberdingarriak dira (ehundura leuna), sinpleak (ez dira autogurutzatzen), konbexuak, itxiak, kurba lauak
* beren formak ez dira elipsearen edo zirkuluaren oso ezberdinak, eta
* gutxienez bat dute. Irudietan bi adibide ikus daitezke. A adibidean, zirkuluerdi bat elipse baten erdiarekin batu da. B adibidean, berriz, bi zirkuluerdi lerro segmentu zuzenekin lotuak daude. Beste ad hoc eraikuntza batzuk ere badaude. Bigarren obalo mota, "laukiluze biribildua" izena duena da. Benetako obaloak ez diren arren, atletismo pistak eta beste kirol batzuetakoak obalo deitzen dira, laukiluze biribilduak diren arren. Beste toki batzuetan deskribatutako obalo adibideak honako hauek dira:
* Cassiniren obaloa
*
* Superelipsea
* Kartesiar obaloa (eu)
- En géométrie, une ellipse est une courbe plane fermée obtenue par l’intersection d’un cône de révolution avec un plan, à condition que celui-ci coupe l'axe de rotation du cône ou du cylindre : c'est une conique d'excentricité strictement comprise entre 0 et 1. On peut également la définir comme le lieu des points dont la somme des distances à deux points fixes, dits foyers, est constante (sa construction par la est très simple). Dans la vie courante, l’ellipse est la forme qu'on perçoit en regardant un cercle en perspective, ou la figure formée par l’ombre d'un disque sur une surface plane. On retrouve aussi, en première approximation, des ellipses dans les trajectoires des corps célestes (planètes, comètes ou satellites artificiels) en orbite autour d'une étoile ou d’une autre planète. La Terre parcourt approximativement une ellipse dont le Soleil est un foyer. Les différentes définitions de l'ellipse peuvent conduire, dans certains cas extrêmes à la construction d'un point, d'un segment ou d'un cercle, qui sont alors considérés comme des ellipses dégénérées n'en possédant pas toutes les propriétés géométriques. (fr)
- Is imchruth sínte nó maolcruth mar ubh é ubhchruth. (ga)
- An oval (from Latin ovum 'egg') is a closed curve in a plane which resembles the outline of an egg. The term is not very specific, but in some areas (projective geometry, technical drawing, etc.) it is given a more precise definition, which may include either one or two axes of symmetry of an ellipse. In common English, the term is used in a broader sense: any shape which reminds one of an egg. The three-dimensional version of an oval is called an ovoid. (en)
- Sa mhatamaitic, lócas pointe a ghluaiseann ionas go bhfanann suim an dá fhad ó dhá phointe fhosaithe (na fócais) tairiseach. Is féidir é a shainmhíniú freisin mar thrasghearradh cóin dhúbailte, nó lócas pointe a ghluaiseann ionas go bhfuil a fhad ón bhfócas i gcomhréir lena fhad ó líne fhosaithe (an treoirlíne), agus an tairiseach comhréire níos lú ná 1. Is í seo cothromóíd éilips i gcomhordanáidí Cairtéiseacha: x2/a2 + y2/b2 = 1. Is í cothromóid pholach éilips, agus an fócas mar phol is an phríomhais mar threoirlíne, ná r = 1/(1 + e cos θ). Gluaiseann na pláinéid timpeall na Gréine in éilipsí, agus is iomaí úsáid a bhaintear as an gcruth san ealaín is an ailtireacht. (ga)
- Lonjong atau dalam bahasa Inggris Oval (berasal dari bahasa Latin ovum, yang berarti "telur") adalah kurva tertutup pada sebuah bidang yang "longgar" menyerupai bentuk telur. Istilah ini tidak terlalu spesifik, kecuali dalam bidang (geometri projektif, gambar teknik, dan lainnya.), kata lonjong atau oval memberikan definisi yang lebih tepat, yang dapat mencakup satu atau dua sumbu simetri. Dalam bahasa Inggris yang umum, istilah ini digunakan dalam arti yang lebih luas: bentuk apa pun yang mengingatkan kepada bentuk telur. Versi tiga dimensi dari oval disebut ovoid (bujur). (in)
- Dalam matematika, sebuah elips atau oval yang beraturan adalah gambar yang menyerupai lingkaran yang telah dipanjangkan ke satu arah. Elips adalah salah satu contoh dari irisan kerucut dan dapat didefinisikan sebagai lokus dari semua titik, dalam satu bidang, yang memiliki jumlah jarak yang sama dari dua titik tetap yang telah ditentukan sebelumnya (disebut ). Dalam bahasa Indonesia, selain istilah elips atau oval yang beraturan, juga sering dikenal istilah sepadan, yakni bulat lonjong (atau lonjong saja), bulat bujur, dan bulat panjang. (in)
- In matematica, un ovale è una curva piana chiusa la cui forma ricorda quella di un uovo disegnato su un foglio. Non esiste una definizione univoca di questo concetto: generalmente un ovale è una curva che delimita una regione convessa, avente almeno un asse di simmetria (e spesso due). L'ellisse è un esempio di ovale. La forma di uno stadio o di un pallone da rugby sono altri esempi. Tutti questi hanno due assi di simmetria. (it)
- Dans le sens étymologique, un ovale est une forme d'œuf. En mathématiques, il n'y a pas de définition communément admise. La définition dépend de l'ouvrage consulté. La forme oblongue d'un stade de course à pied (un rectangle avec deux demi-cercles) et l'ellipse sont des ovales. L'adjectif est « ovale ». Dans le terme « ballon ovale » qui désigne le ballon de certains sports comme le rugby ou le football américain, ovale est à prendre dans son sens populaire et non mathématique puisque le ballon est un volume et non une figure plane (la section étant néanmoins une ellipse et donc un ovale).
* Œufs de Pâques
* Tracé d'une ellipse (animation)
* Trou oblong
* Ballon de rugby (fr)
- オーバル、オーヴァル(英語: oval、あるいは ovoid、いずれも卵を意味するラテン語: ovum から)は、幾何学で卵形や長円や、あるいは楕円に似た曲線のことを指す。また卵形・長円形・楕円形のことも指す。他の曲線と異なり、「オーバル」には明確な定義がなく、様々な曲線がオーバルと呼ばれる。学術論文などでは、オボイド型と呼ばれることもある。 長円形の競技場も「オーバル」と呼ばれる。クリケット競技場は楕円形をなしており「オーバル」と呼ばれる。オーストラリアの都市では、クリケットおよびオージーフットボールに使われるスタジアムに「オーヴァル」の名がつけられている。モータースポーツでは長円形のコースを持つサーキットのことを指し(詳細はオーバルトラックを参照)、日本ではツインリンクもてぎが該当する。また競輪では京王閣競輪場(東京オーヴァル京王閣)など、一部の競輪場の愛称に使われる。 (ja)
- 楕円(だえん、橢円ともいう。英: ellipse)とは、平面上のある2定点からの距離の和が一定となるような点の集合から作られる曲線である。 基準となる2定点を焦点という。円錐曲線の一種である。 (ja)
- 알모양곡선(-模樣曲線, 영어: oval 오벌[*], 달걀의 뜻을 가진 라틴어: ovum에서 유래) 또는 난형선(卵形線)은 각각 다른 반지름을 가진 두개의 원호쌍으로 제도해서 만든다. 원호는 한 점에서 만나는데, 이 접점에서 원호의 수직선은 같아서 부드럽게 이어진다. 알모양곡선은 어느 점에서도 일정한 반지름을 가진 원호에 속하는 반면에, 타원의 반지름은 계속 변한다. (ko)
- 타원(楕圓)은 평면 위의 두 정점에서 거리의 합이 일정한 점들의 집합으로 만들어지는 곡선, 혹은 원의 정사영이다. 타원을 정의하는 기준이 되는 두 정점을 타원의 초점이라고 한다. 타원 상에서 두 초점으로부터의 거리가 같은 점 둘을 잇는 선분, 즉 두 개의 초점을 연결한 선분의 수직이등분선을 단축(짧은 축)이라고 하며, 두 초점으로부터의 거리의 차가 최대인 두 점을 잇는 선분을 타원의 장축(긴 축)이라고 한다. 또한, 단축의 반을 짧은반지름, 장축의 반은 긴반지름이라고 한다. 두 초점이 가까울수록 타원은 원에 가까워지며, 두개의 초점이 일치했을 때의 타원은 원이 된다. 따라서 원은 타원의 특수한 경우라고 생각할 수 있다. 타원은 원뿔을 잘라 만들 수 있는 원뿔 곡선 가운데 하나인 폐곡선이다. 오른쪽의 그림과 같이 원뿔을 평면으로 자르면 타원이 생긴다. 천문학에서는 행성의 공전 궤도가 태양을 두 초점 가운데 하나로 하는 타원이라는 것을 발견하였다. (ko)
- Het woord ovaal is afgeleid van het Latijnse ovum, oftewel ei. Onder het begrip ovaal verstaan verschillende mensen verschillende dingen. De aanduiding uitgerekte cirkel omschrijft min of meer wat ermee bedoeld wordt. Het ovaal is een kromme die eruitziet als een ei of een ellips, of als een rechthoek waarvan twee tegenoverliggende zijden zijn vervangen door cirkelhelften. Anders dan bij een ellips is er geen precieze wiskundige definitie van een ovaal. (nl)
- Een ellips (Grieks ἔλλειψις, het tekortschieten) is in de wiskunde een vlakke kromme waarbij de som van de afstanden van alle punten op de kromme tot twee brandpunten constant is. De ellips is een nauwkeurig gedefinieerd speciaal geval van het ruime begrip ovaal. Een cirkel is een speciaal geval van een ellips, zoals een vierkant een speciaal geval is van een rechthoek. Een ellips is ook een kegelsnede, gevormd door de snijlijn van een kegel of een cilinder met een plat vlak. Het platte vlak moet hierbij de kegelas respectievelijk de cilinderas snijden. Bij het snijden met de kegel moet de hoek tussen de kegelas en het platte vlak groter zijn dan de helft van de openingshoek van de kegel. (nl)
- In geometria, l'ellisse (dal greco ἔλλειψις, 'mancanza') è una curva piana ottenuta intersecando un cono con un piano in modo da produrre una curva chiusa. Affinché la sezione conica produca una curva chiusa l'inclinazione del piano deve essere superiore a quella della generatrice del cono rispetto al suo asse. Per contro, le due sezioni coniche ottenute con piani aventi inclinazione uguale o inferiore a quella della retta generatrice rispetto all'asse del cono danno vita ad altri due tipi di curve che sono aperte e illimitate: la parabola e l'iperbole. La circonferenza è un caso speciale di ellisse che si ottiene quando l'intersezione viene fatta con un piano ortogonale all'asse del cono. Un'ellisse è anche il luogo geometrico dei punti del piano per i quali la somma delle distanze da due punti fissi detti "fuochi" rimane costante. L'ellisse può essere anche la proiezione verticale su un piano orizzontale di una circonferenza appartenente a un piano inclinato: se il piano inclinato forma un angolo con il piano orizzontale, la proiezione verticale della circonferenza è un'ellisse di eccentricità . Dopo la circonferenza, si tratta della più semplice tra le figure di Lissajous ottenuta dalla composizione dei due moti verticale e orizzontale di tipo sinusoidale della stessa frequenza. In base alle leggi di Keplero, l'orbita di un pianeta è un'ellisse con il Sole che ne occupa uno dei due fuochi. (it)
- Elipsa (gr. ἔλλειψις, elleipsis – „brak, opuszczenie, pominięcie”, zob. ) – przypadek ograniczonej krzywej stożkowej, czyli krzywej będącej częścią wspólną powierzchni stożkowej oraz przecinającej ją płaszczyzny. Jest to również miejsce geometryczne wszystkich tych punktów płaszczyzny, dla których suma odległości od dwóch ustalonych punktów jest stałą. Elipsy powstają także jako obrazy okręgu lub sfery w rzucie równoległym i pewnych przypadkach rzutu perspektywicznego. W istocie okręgi są przypadkami szczególnymi elips. Elipsa jest również domkniętym i ograniczonym przypadkiem krzywej stopnia drugiego danej wzorem uwikłanym lub drugiego stopnia. Jest to zarazem najprostsza figura Lissajous powstająca, gdy drgania poziome i pionowe mają tę samą częstotliwość. (pl)
- En ellips är den geometriska orten för en punkt, vars avstånd till två givna punkter, brännpunkterna, har en konstant summa. Ett mått på ellipsens form är dess excentricitet, e = c/a där c är halva avståndet mellan brännpunkterna och a halva tranversalaxelns längd. Ju större excentriciteten är, desto mer tillplattad är ellipsen. Ellipsen kan även fås som ett diagonalt snitt genom en kon. (sv)
- Em geometria, uma elipse é um tipo de seção cônica: se uma superfície cônica é cortada com um plano que não passe pela base e que não intersete as duas folhas do cone, a interseção entre o cone e o plano é uma elipse. Para uma prova elementar disto, veja esferas de Dandelin. Em alguns contextos, pode-se considerar o círculo e o segmento de reta como casos especiais de elipses; no caso do círculo, o plano que corta o cone é paralelo à sua base. A elipse tem dois focos, que no caso do círculo são sobrepostos. O segmento de reta que passa pelos dois focos chama-se eixo maior, e o segmento de reta que passa pelo ponto médio do eixo maior e é perpendicular a ele chama-se eixo menor. Fixando o comprimento do eixo maior e diminuindo o comprimento do eixo menor, obtêm-se elipses cada vez mais próximas de um segmento de reta. A elipse é também a intersecção de uma superfície cilíndrica com um plano que a corta numa curva fechada. As medidas da elipse são dadas pela metade dos eixos maior e menor sendo chamadas, respetivamente, de semieixo maior e semieixo menor. (pt)
- Owal (z łac. ovum – jajko) – figura posiadająca dwie osie symetrii, wykreślona przez odpowiednie połączenie czterech wycinków łuków o dwóch promieniach. Wycinki łuków są tak dobrane, że zachodzi płynne przejście z jednego promienia krzywizny w drugi. Punkt poruszający się po obwodzie owalu zawsze znajduje się na jednym z dwóch stałych promieni krzywizny – w przeciwieństwie do elipsy, gdzie promień krzywizny ulega ciągłej zmianie. W języku potocznym „owal” najczęściej oznacza kształt elipsy. (pl)
- En oval (av latin: ovum, 'ägg') är en figur som konstruerats från två par bågar med olika radier (se figuren). Bågarna förenas i punkter där tangenterna till bågarna sammanfaller, vilket ger en slät övergång. Utom vid dessa föreningspunkter har alla punkter i en oval en konstant , medan krökningsradien för punkterna i en ellips förändras kontinuerligt. (sv)
- Овал (фр. ovale, от лат. ovum — яйцо) ― плоская замкнутая строго выпуклая гладкая кривая; следовательно имеющая с любой прямой не более двух общих точек. Простейшим примером овала является эллипс (в частности, окружность). (ru)
- 在数学中,椭圆是平面上到两个相異固定点的距离之和为常数的点之轨迹。 根據該定義,可以用手繪橢圓:先準備一條線,將這條線的兩端各綁在固定的點上(這兩個點就當作是橢圓的兩個焦點,且距離小於線長);取一支筆,用筆尖将線繃緊,這時候兩個點和筆就形成一個三角形(的兩邊);然後左右移動筆尖拉著線開始作圖,持續地使線繃緊,最後就可以完成一個橢圓圖形。 由於兩個固定點之間的距離也是一定的,所以可以省去綁在點上這一步驟而改將線綁成環狀,然後以筆尖和這兩個焦點將線繃直即可。下同。 (zh)
- В геометрії, еліпс — крива на площині, що проходить довкола двох точок фокусів, таким чином, що сума відстаней до двох точок фокусів залишається сталою для кожної точки кривої. Окремим випадком еліпса є коло, що є еліпсом в якого обидві точки фокусу суміщені в одну. Форма еліпса (величина його «витягнутості») задається ексцентриситетом, який у випадку для еліпса може приймати будь-яке значення від 0 (граничний випадок для кола) до значення якомога близького до 1, не включаючи саме значення 1. Еліпс — крива другого порядку. Еліпс це замкнений тип конічного перетину: двовимірна крива, що утворюються від перетину конуса площиною (див. малюнок праворуч). Еліпси мають дуже багато спільного із іншими формами конічних перерізів: параболою і гіперболою, обидві з яких є відкритими і необмеженими кривими. Перетином циліндра також є еліпс, доки переріз не є паралельним осі обертання циліндра. Еліпси широко використовуються в фізиці, астрономії та інженерії. Наприклад, орбіти планет нашої сонячної системи є дуже близькими до еліпсів, де однією із фокусних точок буде спільний барицентр планети і Сонця. Те саме є справедливим і для супутників, що обертаються довкола планет, і для інших систем, що складаються з двох астрономічних тіл. Форми планет і зірок часто добре описуються за допомогою еліпсоїдів. Термін походить від грец. ἔλλειψις — нестача, пропуск, випадіння (мається на увазі «неповнота» або «дефектність» еліпса порівняно з «повним» колом або кругом). (uk)
- Овал (лат. ovum — яйце) — замкнена опукла пласка лінія. При цьому під опуклістю розуміють властивість кривої мати з будь-якою прямою не більше двох (дійсних) спільних точок. (uk)
- 鵝蛋形,又簡單稱作蛋形,是一種近似橢圓形的形像,其外貌就像是拉長了的圓形,但又沒有雞蛋那種一邊較尖但另一邊較圓的外貌。 「鵝蛋形」這個描述其實在三維立體方面的描述比較多,用以描述一些蛋殼形構造的縱切面形狀。由於其曲率跟一般橢圓形或長圓形的曲率有所不同,才會有這樣的區分。 卵形线,又称蛋形线,是鸟类、禽类和爬行动物的卵的纵截面形状. 卵形线描述性定义 卵形线是类似于椭圆,但是一头大,一头小,有一条对称轴且光滑封闭的平面曲线.卵形线的对称轴与大、小头的两个交点称为卵形线的大端点和小端点,记为Q,P.卵形线上到其对称轴距离最大的两点称为卵形线的对称端点,记为S,T.线段QP,ST,分别称为卵形线的直径和对称直径.卵形线的直径与对称直径的交点称为卵形线的卵心,记为O,线段OP,OQ,OS(或OT)分别称为卵形线的长半径、短半径、对称半径,其长度分别记为a,b,c.长半径、短半径、对称半径称为卵形线的三个特征参数. 已知卵形线的长、短、对称半径a,b,c这三个特征参数,在平面直角坐标系中,以卵形线的对称轴作为x轴,x轴正向与卵形线小头方向一致,卵形线的卵心作为坐标系原点.以正数a,b,c(a>b)为长、短、对称半径的卵形线在直角坐标系中示意图如图所示.
* 卵形线及其在直角坐标系中示意图 三次卵形线方程: (zh)
- Э́ллипс (др.-греч. ἔλλειψις «опущение; нехватка, недостаток (эксцентриситета до 1)») — замкнутая кривая на плоскости, которая может быть получена как пересечение плоскости и кругового цилиндра или как ортогональная проекция окружности на плоскость. Окружность является частным случаем эллипса. Наряду с гиперболой и параболой, эллипс является коническим сечением и квадрикой. (ru)
|
rdfs:comment
|
- الشكل البيضوي (بالإنجليزية: Oval) مشتقة من اللغة اللاتينية: (Ovum)؛ منحنى مغلق على مستوى ثنائي قريب من شكل البيضة يستخدم دوما في (الهندسة الإسقاطية والرسم الصناعي) (يشبه القطع الناقص إلا أن القطع الناقص له محورين تماثل، أما الشكل البيضوي فله محور تماثل واحد [أنظر أسفله])), (ar)
- Elipsa je uzavřená křivka v rovině. Elipsu lze definovat jako množinu všech bodů v rovině, které mají stálý součet vzdáleností 2a od dvou pevně daných bodů, tzv. ohnisek (v obrázku označeny F1, F2; |F1F2| < 2a). Elipsa patří mezi kuželosečky, je to algebraická křivka 2. stupně. Velký praktický význam má v konstruktivní geometrii, protože vzniká jako průmět kružnice n, jiné kuželosečky anebo v astronomii, protože velmi přesně popisuje tvar dráhy těles v gravitačním poli centrálního tělesa. (cs)
- V technickém výkresu je ovál (z latinského ovum, vejce) obrazec sestrojený ze dvou párů oblouků s dvěma různými poloměry. Oblouky různého poloměru se dotýkají v bodě, kde tečny obou těchto oblouků leží na stejné přímce. Každý bod na oválu leží na oblouku s konstantním poloměrem (kratším nebo delším) na rozdíl od elipsy, kde se poloměr neustále mění. (cs)
- Etimologie, ovalo estas la formo de ovo. Geometrie, la termino ovalo nomas ebenan fermitan kurbon, kiu havas du ortajn aksojn de simetrio. Komunsence, ovalo estas konveksa kurbo, sen kuspo neksinsekco. Do, praktike, elipso aŭ . La pilko de iaj sportoj (kiel rugbeo aŭ usona piedpilko) estas dirita "ovala". Fakte ĝia formo estas kies naskanto estas ovalo.
* Kokina ovo
* desegnado de elipso
* Oblonga formo
* Usona piedpilka pilko (eo)
- Una elipse es una curva plana, simple y cerrada con dos ejes de simetría que resulta al cortar la superficie de un cono por un plano oblicuo al eje de simetría con ángulo mayor que el de la generatriz respecto del eje de revolución. Una elipse que gira alrededor de su eje menor genera un esferoide achatado, mientras que una elipse que gira alrededor de su eje principal genera un esferoide alargado. La elipse es también la imagen afín de una circunferencia. (es)
- Geometrian, elipsea bi puntu finkoetarako distantzien batura konstantea duten planoko puntu guztien leku geometrikoa da. Aldi berean, kono bati ebakidura zeihar bat egitean agertzen den kurba da. Horrela, elipsea konika-mota bat da, parabola eta hiperbola bezala. Zirkunferentzia elipse berezi bat da, zeina konoari ebakidura zuzen bat eginez agertzen den. Errealitatean maiz agertzen den kurba bat da. Horrela, eguzki-sistemako planetek elipse motako orbita batean zehar egiten dute bira eguzkiaren inguruan. Zirkunferentzia bat proiektatuz sor daitekeen kurba ere bada elipsea. (eu)
- Is imchruth sínte nó maolcruth mar ubh é ubhchruth. (ga)
- An oval (from Latin ovum 'egg') is a closed curve in a plane which resembles the outline of an egg. The term is not very specific, but in some areas (projective geometry, technical drawing, etc.) it is given a more precise definition, which may include either one or two axes of symmetry of an ellipse. In common English, the term is used in a broader sense: any shape which reminds one of an egg. The three-dimensional version of an oval is called an ovoid. (en)
- Sa mhatamaitic, lócas pointe a ghluaiseann ionas go bhfanann suim an dá fhad ó dhá phointe fhosaithe (na fócais) tairiseach. Is féidir é a shainmhíniú freisin mar thrasghearradh cóin dhúbailte, nó lócas pointe a ghluaiseann ionas go bhfuil a fhad ón bhfócas i gcomhréir lena fhad ó líne fhosaithe (an treoirlíne), agus an tairiseach comhréire níos lú ná 1. Is í seo cothromóíd éilips i gcomhordanáidí Cairtéiseacha: x2/a2 + y2/b2 = 1. Is í cothromóid pholach éilips, agus an fócas mar phol is an phríomhais mar threoirlíne, ná r = 1/(1 + e cos θ). Gluaiseann na pláinéid timpeall na Gréine in éilipsí, agus is iomaí úsáid a bhaintear as an gcruth san ealaín is an ailtireacht. (ga)
- Lonjong atau dalam bahasa Inggris Oval (berasal dari bahasa Latin ovum, yang berarti "telur") adalah kurva tertutup pada sebuah bidang yang "longgar" menyerupai bentuk telur. Istilah ini tidak terlalu spesifik, kecuali dalam bidang (geometri projektif, gambar teknik, dan lainnya.), kata lonjong atau oval memberikan definisi yang lebih tepat, yang dapat mencakup satu atau dua sumbu simetri. Dalam bahasa Inggris yang umum, istilah ini digunakan dalam arti yang lebih luas: bentuk apa pun yang mengingatkan kepada bentuk telur. Versi tiga dimensi dari oval disebut ovoid (bujur). (in)
- Dalam matematika, sebuah elips atau oval yang beraturan adalah gambar yang menyerupai lingkaran yang telah dipanjangkan ke satu arah. Elips adalah salah satu contoh dari irisan kerucut dan dapat didefinisikan sebagai lokus dari semua titik, dalam satu bidang, yang memiliki jumlah jarak yang sama dari dua titik tetap yang telah ditentukan sebelumnya (disebut ). Dalam bahasa Indonesia, selain istilah elips atau oval yang beraturan, juga sering dikenal istilah sepadan, yakni bulat lonjong (atau lonjong saja), bulat bujur, dan bulat panjang. (in)
- In matematica, un ovale è una curva piana chiusa la cui forma ricorda quella di un uovo disegnato su un foglio. Non esiste una definizione univoca di questo concetto: generalmente un ovale è una curva che delimita una regione convessa, avente almeno un asse di simmetria (e spesso due). L'ellisse è un esempio di ovale. La forma di uno stadio o di un pallone da rugby sono altri esempi. Tutti questi hanno due assi di simmetria. (it)
- オーバル、オーヴァル(英語: oval、あるいは ovoid、いずれも卵を意味するラテン語: ovum から)は、幾何学で卵形や長円や、あるいは楕円に似た曲線のことを指す。また卵形・長円形・楕円形のことも指す。他の曲線と異なり、「オーバル」には明確な定義がなく、様々な曲線がオーバルと呼ばれる。学術論文などでは、オボイド型と呼ばれることもある。 長円形の競技場も「オーバル」と呼ばれる。クリケット競技場は楕円形をなしており「オーバル」と呼ばれる。オーストラリアの都市では、クリケットおよびオージーフットボールに使われるスタジアムに「オーヴァル」の名がつけられている。モータースポーツでは長円形のコースを持つサーキットのことを指し(詳細はオーバルトラックを参照)、日本ではツインリンクもてぎが該当する。また競輪では京王閣競輪場(東京オーヴァル京王閣)など、一部の競輪場の愛称に使われる。 (ja)
- 楕円(だえん、橢円ともいう。英: ellipse)とは、平面上のある2定点からの距離の和が一定となるような点の集合から作られる曲線である。 基準となる2定点を焦点という。円錐曲線の一種である。 (ja)
- 알모양곡선(-模樣曲線, 영어: oval 오벌[*], 달걀의 뜻을 가진 라틴어: ovum에서 유래) 또는 난형선(卵形線)은 각각 다른 반지름을 가진 두개의 원호쌍으로 제도해서 만든다. 원호는 한 점에서 만나는데, 이 접점에서 원호의 수직선은 같아서 부드럽게 이어진다. 알모양곡선은 어느 점에서도 일정한 반지름을 가진 원호에 속하는 반면에, 타원의 반지름은 계속 변한다. (ko)
- 타원(楕圓)은 평면 위의 두 정점에서 거리의 합이 일정한 점들의 집합으로 만들어지는 곡선, 혹은 원의 정사영이다. 타원을 정의하는 기준이 되는 두 정점을 타원의 초점이라고 한다. 타원 상에서 두 초점으로부터의 거리가 같은 점 둘을 잇는 선분, 즉 두 개의 초점을 연결한 선분의 수직이등분선을 단축(짧은 축)이라고 하며, 두 초점으로부터의 거리의 차가 최대인 두 점을 잇는 선분을 타원의 장축(긴 축)이라고 한다. 또한, 단축의 반을 짧은반지름, 장축의 반은 긴반지름이라고 한다. 두 초점이 가까울수록 타원은 원에 가까워지며, 두개의 초점이 일치했을 때의 타원은 원이 된다. 따라서 원은 타원의 특수한 경우라고 생각할 수 있다. 타원은 원뿔을 잘라 만들 수 있는 원뿔 곡선 가운데 하나인 폐곡선이다. 오른쪽의 그림과 같이 원뿔을 평면으로 자르면 타원이 생긴다. 천문학에서는 행성의 공전 궤도가 태양을 두 초점 가운데 하나로 하는 타원이라는 것을 발견하였다. (ko)
- Het woord ovaal is afgeleid van het Latijnse ovum, oftewel ei. Onder het begrip ovaal verstaan verschillende mensen verschillende dingen. De aanduiding uitgerekte cirkel omschrijft min of meer wat ermee bedoeld wordt. Het ovaal is een kromme die eruitziet als een ei of een ellips, of als een rechthoek waarvan twee tegenoverliggende zijden zijn vervangen door cirkelhelften. Anders dan bij een ellips is er geen precieze wiskundige definitie van een ovaal. (nl)
- En ellips är den geometriska orten för en punkt, vars avstånd till två givna punkter, brännpunkterna, har en konstant summa. Ett mått på ellipsens form är dess excentricitet, e = c/a där c är halva avståndet mellan brännpunkterna och a halva tranversalaxelns längd. Ju större excentriciteten är, desto mer tillplattad är ellipsen. Ellipsen kan även fås som ett diagonalt snitt genom en kon. (sv)
- Owal (z łac. ovum – jajko) – figura posiadająca dwie osie symetrii, wykreślona przez odpowiednie połączenie czterech wycinków łuków o dwóch promieniach. Wycinki łuków są tak dobrane, że zachodzi płynne przejście z jednego promienia krzywizny w drugi. Punkt poruszający się po obwodzie owalu zawsze znajduje się na jednym z dwóch stałych promieni krzywizny – w przeciwieństwie do elipsy, gdzie promień krzywizny ulega ciągłej zmianie. W języku potocznym „owal” najczęściej oznacza kształt elipsy. (pl)
- En oval (av latin: ovum, 'ägg') är en figur som konstruerats från två par bågar med olika radier (se figuren). Bågarna förenas i punkter där tangenterna till bågarna sammanfaller, vilket ger en slät övergång. Utom vid dessa föreningspunkter har alla punkter i en oval en konstant , medan krökningsradien för punkterna i en ellips förändras kontinuerligt. (sv)
- Овал (фр. ovale, от лат. ovum — яйцо) ― плоская замкнутая строго выпуклая гладкая кривая; следовательно имеющая с любой прямой не более двух общих точек. Простейшим примером овала является эллипс (в частности, окружность). (ru)
- 在数学中,椭圆是平面上到两个相異固定点的距离之和为常数的点之轨迹。 根據該定義,可以用手繪橢圓:先準備一條線,將這條線的兩端各綁在固定的點上(這兩個點就當作是橢圓的兩個焦點,且距離小於線長);取一支筆,用筆尖将線繃緊,這時候兩個點和筆就形成一個三角形(的兩邊);然後左右移動筆尖拉著線開始作圖,持續地使線繃緊,最後就可以完成一個橢圓圖形。 由於兩個固定點之間的距離也是一定的,所以可以省去綁在點上這一步驟而改將線綁成環狀,然後以筆尖和這兩個焦點將線繃直即可。下同。 (zh)
- Овал (лат. ovum — яйце) — замкнена опукла пласка лінія. При цьому під опуклістю розуміють властивість кривої мати з будь-якою прямою не більше двох (дійсних) спільних точок. (uk)
- 鵝蛋形,又簡單稱作蛋形,是一種近似橢圓形的形像,其外貌就像是拉長了的圓形,但又沒有雞蛋那種一邊較尖但另一邊較圓的外貌。 「鵝蛋形」這個描述其實在三維立體方面的描述比較多,用以描述一些蛋殼形構造的縱切面形狀。由於其曲率跟一般橢圓形或長圓形的曲率有所不同,才會有這樣的區分。 卵形线,又称蛋形线,是鸟类、禽类和爬行动物的卵的纵截面形状. 卵形线描述性定义 卵形线是类似于椭圆,但是一头大,一头小,有一条对称轴且光滑封闭的平面曲线.卵形线的对称轴与大、小头的两个交点称为卵形线的大端点和小端点,记为Q,P.卵形线上到其对称轴距离最大的两点称为卵形线的对称端点,记为S,T.线段QP,ST,分别称为卵形线的直径和对称直径.卵形线的直径与对称直径的交点称为卵形线的卵心,记为O,线段OP,OQ,OS(或OT)分别称为卵形线的长半径、短半径、对称半径,其长度分别记为a,b,c.长半径、短半径、对称半径称为卵形线的三个特征参数. 已知卵形线的长、短、对称半径a,b,c这三个特征参数,在平面直角坐标系中,以卵形线的对称轴作为x轴,x轴正向与卵形线小头方向一致,卵形线的卵心作为坐标系原点.以正数a,b,c(a>b)为长、短、对称半径的卵形线在直角坐标系中示意图如图所示.
* 卵形线及其在直角坐标系中示意图 三次卵形线方程: (zh)
- Э́ллипс (др.-греч. ἔλλειψις «опущение; нехватка, недостаток (эксцентриситета до 1)») — замкнутая кривая на плоскости, которая может быть получена как пересечение плоскости и кругового цилиндра или как ортогональная проекция окружности на плоскость. Окружность является частным случаем эллипса. Наряду с гиперболой и параболой, эллипс является коническим сечением и квадрикой. (ru)
- القطع الناقص أو الإهْلِيلَج (بالإنجليزية: Ellipse) هو المنحني المستوي الذي يحقق الخاصية التالية: مجموع بُعد أي نقطة على هذا المنحنى عن نقطتين ثابتين داخله (تسميان البؤرتان) يبقى ثابتا. البؤرتان هما النقطتان F1 و F2 في الشكل. أي يمكن رسم القطع الناقص بواسطة خيط مثبت من طرفيه في نقطتين f1 , f2 ورسم القطع الناقص بالقلم حولهما انطلاقا من النقطة x . القطع الناقص هو أيضا أحد أنواع القطوع المخروطية، فعند قطع مخروط بمستوى مائل على محور المخروط نحصل على قطع ناقص. (ar)
- Un oval, en geometria, és una corba tancada plana que s'assembla a una forma ovoide o el·líptica. A diferència d'altres corbes, el terme oval no està definit clarament i hi ha diverses corbes que són anomenades ovals. Totes tenen en comú els trets següents:
* la seva forma no s'aparta gaire de la d'una circumferència o una el·lipse,
* solen tenir un o dos eixos de simetria i
* són corbes planes diferenciables (textura suau), simples (no s'intersequen), convexes i tancades. La paraula ovoïdal fa referència a la característica d'oval. (ca)
- Una el·lipse és el lloc geomètric dels punts del pla per als quals és constant la suma de les distàncies a dos punts interiors fixos denominats focus, que regeixen l'excentricitat de l'el·lipse: L'equació d'una el·lipse centrada en el punt (0,0) és: on a és la semidistància de l'eix d'abscisses de l'el·lipse, mentre que b és la semidistància sobre l'eix d'ordenades. L'àrea que tanca aquesta el·lipse és: Si a=b, l'el·lipse és una circumferència, i llavors l'àrea que tanca (el cercle) és simplement π·a². Fórmula de Rivera: En el cas límit on b = 0, la fórmula dona el valor exacte L = 4a. on (ca)
- Η έλλειψη είναι μία κωνική τομή και προκύπτει από την τομή ενός κώνου με επίπεδο που τον τέμνει πλαγίως ως προς τον άξονά του. Μπορεί να θεωρηθεί ως γενίκευση του κύκλου, όπως προκύπτει στην ειδική περίπτωση που η τομή του κώνου με επίπεδο στον άξονά του είναι κύκλος με κέντρο επί του άξονα. Μια έλλειψη χαρακτηρίζεται από τον μεγάλο ημιάξονά της, και από την εκκεντρότητα της, . (el)
- Der Begriff Oval (lateinisch ovum ‚Ei‘) bezeichnet eine ebene rundliche konvexe Figur, die im weitesten Sinne dem Profil eines Vogeleis ähnelt. Sie umfasst Kreise und Ellipsen als Spezialfälle, wobei ein beliebiges Oval im Gegensatz zu diesen keine Symmetrieachse besitzen muss. Die Verwendung des Begriffs ist nicht immer ganz einheitlich, gelegentlich wird er auch rein beschreibend verwandt. In der Analysis lässt er sich jedoch formal mit Hilfe ebener Kurven definieren, in diesem Zusammenhang spricht man dann auch von Eikurven oder Eilinien. (de)
- Laŭ matematiko, elipso estas kurbo ĉirkaŭ du fiksataj punktoj (fokusoj), en kiu la sumo de la distancoj inter punkto en la kurbo kaj la du fokusoj estas konstanto. Elipso estas speco de koniko. Se konuso estas tranĉata kun ebeno kiu ne intersekcas la konusan bazon, la intersekcaĵo estas elipso. Se la du fokusoj samlokas, la figuro estas cirklo. Tial, cirklo estas speciala speco de elipso. Ekvacio de elipso: : kun:
* B2 - 4AC < 0 rezultiĝas aŭ malplena aro (ekzemple por x2 + y2 + 1 = 0),
* se ankaŭ A = C kaj B = 0 rezultiĝas cirklo. (eo)
- Ellipsen sind in der Geometrie spezielle geschlossene ovale Kurven. Sie zählen neben den Parabeln und den Hyperbeln zu den Kegelschnitten. Eine anschauliche Definition verwendet die Eigenschaft, dass die Summe der Abstände eines Ellipsenpunktes von zwei vorgegebenen Punkten, den Brennpunkten, für alle Punkte gleich ist. Sind die Brennpunkte identisch, erhält man einen Kreis. Jede Ellipse lässt sich in einem geeigneten Koordinatensystem durch eine Gleichung oder Parameterdarstellung (de)
- Obaloa, geometrian, arrautza edo elipse baten antza duen edozein kurba da. Beste kurba batzuk ez bezala, "obalo" hitza ez dago ondo definitua, eta kurba mota asko obalo deituak dira. Hauek, honako hau dute komunean:
* ezberdingarriak dira (ehundura leuna), sinpleak (ez dira autogurutzatzen), konbexuak, itxiak, kurba lauak
* beren formak ez dira elipsearen edo zirkuluaren oso ezberdinak, eta
* gutxienez bat dute. Beste toki batzuetan deskribatutako obalo adibideak honako hauek dira:
* Cassiniren obaloa
*
* Superelipsea
* Kartesiar obaloa (eu)
- El término óvalo (del latín ovum, huevo) hace referencia a una forma geométrica convexa y redondeada, que se asemeja al perfil de un huevo de ave en su sentido más amplio. Incluye a circunferencias y elipses como casos especiales, con dos ejes de simetría en lugar de solamente uno o ninguno. El uso del término no siempre es consistente, en ocasiones también se usa de manera puramente descriptiva. Sin embargo, en el análisis matemático se puede definir formalmente como un tipo de curvas planas. En este contexto, también se habla de curvas o líneas ovaladas. (es)
- Dans le sens étymologique, un ovale est une forme d'œuf. En mathématiques, il n'y a pas de définition communément admise. La définition dépend de l'ouvrage consulté. La forme oblongue d'un stade de course à pied (un rectangle avec deux demi-cercles) et l'ellipse sont des ovales. L'adjectif est « ovale ». Dans le terme « ballon ovale » qui désigne le ballon de certains sports comme le rugby ou le football américain, ovale est à prendre dans son sens populaire et non mathématique puisque le ballon est un volume et non une figure plane (la section étant néanmoins une ellipse et donc un ovale). (fr)
- En géométrie, une ellipse est une courbe plane fermée obtenue par l’intersection d’un cône de révolution avec un plan, à condition que celui-ci coupe l'axe de rotation du cône ou du cylindre : c'est une conique d'excentricité strictement comprise entre 0 et 1. On peut également la définir comme le lieu des points dont la somme des distances à deux points fixes, dits foyers, est constante (sa construction par la est très simple). Dans la vie courante, l’ellipse est la forme qu'on perçoit en regardant un cercle en perspective, ou la figure formée par l’ombre d'un disque sur une surface plane. (fr)
- In geometria, l'ellisse (dal greco ἔλλειψις, 'mancanza') è una curva piana ottenuta intersecando un cono con un piano in modo da produrre una curva chiusa. Affinché la sezione conica produca una curva chiusa l'inclinazione del piano deve essere superiore a quella della generatrice del cono rispetto al suo asse. Per contro, le due sezioni coniche ottenute con piani aventi inclinazione uguale o inferiore a quella della retta generatrice rispetto all'asse del cono danno vita ad altri due tipi di curve che sono aperte e illimitate: la parabola e l'iperbole. (it)
- Elipsa (gr. ἔλλειψις, elleipsis – „brak, opuszczenie, pominięcie”, zob. ) – przypadek ograniczonej krzywej stożkowej, czyli krzywej będącej częścią wspólną powierzchni stożkowej oraz przecinającej ją płaszczyzny. Jest to również miejsce geometryczne wszystkich tych punktów płaszczyzny, dla których suma odległości od dwóch ustalonych punktów jest stałą. (pl)
- Een ellips (Grieks ἔλλειψις, het tekortschieten) is in de wiskunde een vlakke kromme waarbij de som van de afstanden van alle punten op de kromme tot twee brandpunten constant is. De ellips is een nauwkeurig gedefinieerd speciaal geval van het ruime begrip ovaal. Een cirkel is een speciaal geval van een ellips, zoals een vierkant een speciaal geval is van een rechthoek. (nl)
- Em geometria, uma elipse é um tipo de seção cônica: se uma superfície cônica é cortada com um plano que não passe pela base e que não intersete as duas folhas do cone, a interseção entre o cone e o plano é uma elipse. Para uma prova elementar disto, veja esferas de Dandelin. Em alguns contextos, pode-se considerar o círculo e o segmento de reta como casos especiais de elipses; no caso do círculo, o plano que corta o cone é paralelo à sua base. As medidas da elipse são dadas pela metade dos eixos maior e menor sendo chamadas, respetivamente, de semieixo maior e semieixo menor. (pt)
- В геометрії, еліпс — крива на площині, що проходить довкола двох точок фокусів, таким чином, що сума відстаней до двох точок фокусів залишається сталою для кожної точки кривої. Окремим випадком еліпса є коло, що є еліпсом в якого обидві точки фокусу суміщені в одну. Форма еліпса (величина його «витягнутості») задається ексцентриситетом, який у випадку для еліпса може приймати будь-яке значення від 0 (граничний випадок для кола) до значення якомога близького до 1, не включаючи саме значення 1. Еліпс — крива другого порядку. (uk)
|