An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Permutational multivariate analysis of variance (PERMANOVA), is a non-parametric multivariate statistical permutation test. PERMANOVA is used to compare groups of objects and test the null hypothesis that the centroids and dispersion of the groups as defined by measure space are equivalent for all groups. A rejection of the null hypothesis means that either the centroid and/or the spread of the objects is different between the groups. Hence the test is based on the prior calculation of the distance between any two objects included in the experiment.PERMANOVA shares some resemblance to ANOVA where they both measure the sum-of-squares within and between group and make use of F test to compare within-group to between-group variance. However, while ANOVA bases the significance of the result on

Property Value
dbo:abstract
  • Permutational multivariate analysis of variance (PERMANOVA), is a non-parametric multivariate statistical permutation test. PERMANOVA is used to compare groups of objects and test the null hypothesis that the centroids and dispersion of the groups as defined by measure space are equivalent for all groups. A rejection of the null hypothesis means that either the centroid and/or the spread of the objects is different between the groups. Hence the test is based on the prior calculation of the distance between any two objects included in the experiment.PERMANOVA shares some resemblance to ANOVA where they both measure the sum-of-squares within and between group and make use of F test to compare within-group to between-group variance. However, while ANOVA bases the significance of the result on assumption of normality, PERMANOVA draws tests for significance by comparing the actual F test result to that gained from random permutations of the objects between the groups. Moreover, whilst PERMANOVA tests for similarity based on a chosen distance measure, ANOVA tests for similarity of the group averages. (en)
dbo:wikiPageID
  • 52197659 (xsd:integer)
dbo:wikiPageLength
  • 3863 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1075455152 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Permutational multivariate analysis of variance (PERMANOVA), is a non-parametric multivariate statistical permutation test. PERMANOVA is used to compare groups of objects and test the null hypothesis that the centroids and dispersion of the groups as defined by measure space are equivalent for all groups. A rejection of the null hypothesis means that either the centroid and/or the spread of the objects is different between the groups. Hence the test is based on the prior calculation of the distance between any two objects included in the experiment.PERMANOVA shares some resemblance to ANOVA where they both measure the sum-of-squares within and between group and make use of F test to compare within-group to between-group variance. However, while ANOVA bases the significance of the result on (en)
rdfs:label
  • Permutational analysis of variance (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License
  NODES