dbo:abstract
|
- In mathematics, the permutoassociahedron is an -dimensional polytope whose vertices correspond to the bracketings of the permutations of terms and whose edges connect two bracketings that can be obtained from one another either by moving a pair of brackets using associativity or by transposing two consecutive terms that are not separated by a bracket. The permutoassociahedron was first defined as a CW complex by Mikhail Kapranov who noted that this structure appears implicitly in Mac Lane's coherence theorem for symmetric and braided categories as well as in Vladimir Drinfeld's work on the Knizhnik–Zamolodchikov equations. It was constructed as a convex polytope by Victor Reiner and Günter M. Ziegler. (en)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4615 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- In mathematics, the permutoassociahedron is an -dimensional polytope whose vertices correspond to the bracketings of the permutations of terms and whose edges connect two bracketings that can be obtained from one another either by moving a pair of brackets using associativity or by transposing two consecutive terms that are not separated by a bracket. (en)
|
rdfs:label
|
- Permutoassociahedron (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |