dbo:abstract
|
- IP networks are divided logically into subnetworks. Computers in the same subnetwork have the same address prefix. For example, in a typical home network with legacy Internet Protocol version 4, the network prefix would be something like 192.168.1.0/24, as expressed in CIDR notation. With IPv4, commonly home networks use private addresses (defined in RFC 1918) that are non-routable on the public Internet and use address translation to convert to routable addresses when connecting to hosts outside the local network. Business networks typically had manually provisioned subnetwork prefixes. In IPv6 global addresses are used end-to-end, so even home networks may need to distribute public, routable IP addresses to hosts. Since it would not be practical to manually provision networks at scale, in IPv6 networking, DHCPv6 prefix delegation is used to assign a network address prefix and automate configuration and provisioning of the public routable addresses for the network. The way this works for example in case of a home network is that the home router uses DHCPv6 protocol to request a network prefix from the ISP's DHCPv6 server. Once assigned, the ISP routes this network to the customer's home router and the home router starts advertising the new addresses to hosts on the network, either via SLAAC or using DHCPv6. DHCPv6 Prefix Delegation is supported by most ISPs who provide native IPv6 for consumers on fixed networks. Prefix delegation is generally not supported on cellular networks, for example LTE or 5G. Most cellular networks route a fixed /64 prefix to the subscriber. Personal hotspots may still provide IPv6 access to hosts on the network by using a different technique called Proxy Neighbor Discovery or using the technique described in RFC 7278. One of the reasons why cellular networks may not yet support prefix delegation is that the operators want to use prefixes they can aggregate to a single route. To solve this, RFC 6603 defines an optional mechanism and the related DHCPv6 option to allow exclusion of one specific prefix from a delegated prefix set. (en)
- IP网络通常被划分为多个子网,在同一子网的计算机具有相同的地址的前缀。例如,在典型的家庭网络中,使用IPv4协议的话,该子网用CIDR符号可能表示192.168.1.0/24。 在IPv4环境下,通常在家庭网络中使用的专用网络地址,是无法在广域网路由的。其在连接到广域网时,需要使用网络地址转换技术。企业网络通常需要手动设置的子网前缀。而在IPv6环境下,由于自始至终使用全局唯一地址,因此,即使家庭网络也需要下发可路由的公网IP地址给主机。 显而易见,大规模地手工配置网络不切实际。所以在IPv6环境下,DHCPv6前缀代理(Prefix delegation,PD)被用于从上游网络获得网络地址前缀,并允许其向下游继续自动分配可路由的地址。这种工作模式的典型案例是,在一个家庭网络中,主路由器通过DHCPv6协议从运营商请求一个网络前缀,成功之后,通过DHCPv6或SLAAC协议在家庭网络上进行。 大多数运营商的固网宽带服务都支持通过DHCPv6前缀代理为用户原生IPv6服务。然而,3G或LTE等蜂窝网络却没有广泛支持。通常情况下,蜂窝网络将一个固定的/64子网路由到用户侧。即便如此,个人热点仍然可以通过如等其他技术使用IPv6。这里不支持DHCPv6前缀代理的原因之一是,运营商希望能将使用的地址聚合成单一一条路由。为了解决这个问题,RFC6603定义了一个可选的机制和相关DHCPv6选项,以允许分配前缀代理时,从地址池中排除指定的一段。 (zh)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 3633 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- IP networks are divided logically into subnetworks. Computers in the same subnetwork have the same address prefix. For example, in a typical home network with legacy Internet Protocol version 4, the network prefix would be something like 192.168.1.0/24, as expressed in CIDR notation. DHCPv6 Prefix Delegation is supported by most ISPs who provide native IPv6 for consumers on fixed networks. (en)
- IP网络通常被划分为多个子网,在同一子网的计算机具有相同的地址的前缀。例如,在典型的家庭网络中,使用IPv4协议的话,该子网用CIDR符号可能表示192.168.1.0/24。 在IPv4环境下,通常在家庭网络中使用的专用网络地址,是无法在广域网路由的。其在连接到广域网时,需要使用网络地址转换技术。企业网络通常需要手动设置的子网前缀。而在IPv6环境下,由于自始至终使用全局唯一地址,因此,即使家庭网络也需要下发可路由的公网IP地址给主机。 显而易见,大规模地手工配置网络不切实际。所以在IPv6环境下,DHCPv6前缀代理(Prefix delegation,PD)被用于从上游网络获得网络地址前缀,并允许其向下游继续自动分配可路由的地址。这种工作模式的典型案例是,在一个家庭网络中,主路由器通过DHCPv6协议从运营商请求一个网络前缀,成功之后,通过DHCPv6或SLAAC协议在家庭网络上进行。 (zh)
|
rdfs:label
|
- Prefix delegation (en)
- 前缀代理 (zh)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |