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Abstract This article relates two categories of music-thearetical graphs, in which points represent notes
and chords, respectively. It unifies previous work by Brower, Callender, Cohn, Douthett, Gollin, 0'Connell,
Quinn, Steinbach, and myself, while also introducing new models of voice-leading structure—including a
three-note octahedral Tonnetz and tetrahedral models of four-note diatonic and chromatic chords.

MUSIC THEORISTS TYPICALLY REPRESENT voice leading using two different
kinds of diagram. In note-based graphs, points represent notes, and chords cor-
respond to extended shapes of some kind; the prototypical example is the
Tonnetz, where major and minor triads are triangles, and where parsimoni-
ous voice leadings are reflections (“flips”) preserving a triangle’s edge. In
chord-based graphs, by contrast, each point represents an entire sonority, and
efficient voice leading corresponds to short-distance motion in the space,
typically along an edge of a lattice. This difference is illustrated in Figure 1,
which offers two perspectives on the same set of musical possibilities: on the
top, we have the traditional note-based Tonnetz, while on the bottom we have
Jack Douthett and Peter Steinbach’s (1998) chord-based “chicken-wire torus.”
These figures both represent single-step (or “parsimonious”) voice leading
among major and minor triads and are “dual” to each other in a sense that
will be discussed shortly.

In A Geometry of Music (Tymoczko 2011), I provide a general recipe for
constructing chord-based graphs, beginning with the continuous geometri-
cal spaces representing all n-note chords and showing how different scales
determine different kinds of cubic lattices within them. I also showed that
nearly even chords (such as those prevalent in Western tonal music) are rep-
resented by three main families of lattices. Two of these are particularly use-
ful in analysis: the first consists of a circle of n-dimensional cubes linked by

Thanks to Richard Cohn and Gilles Baroin for helpful comments.

1 The chicken-wire torus was introduced in Douthett and
Steinbach 1998. There are many different orthographical
variants of the traditional Tonnetz, depending on how one
orients the axes; for a survey, see Cohn 2011a. For present
purposes, these are all equivalent.
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Figure 1. Two versions of the Tonnetz. (a) The note-based version, in which points
represent notes and triangles represent chords. (b) Its geometrical dual, called the
“chicken-wire torus” by Douthett and Steinbach (1998). Here, points represent chords
and edges represent single-step voice leading.
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shared vertices; the second consists of a circle of n-dimensional cubes linked
by shared facets (the third does not often appear in practical contexts, and
can be safely ignored).? What results is a systematic perspective on the full
family of chord-based graphs.

The question immediately arises whether we can provide a similarly
systematic description of the note-based graphs. What note-based construc-
tion represents efficient voice leading among nearly even four-note chords in
the chromatic scale? What about nearly even four-note chords in the diatonic
scale? How can we generalize the familiar Tonnetz to arbitrary chords within
arbitrary scales? Is there a note-based graph for every chord-based graph? Is
one or the other type of graph more useful for particular applications?

The purpose of this article is to answer these questions by providing a
recipe for constructing generalized note-based graphs, or Tonnetze. Along
the way we will encounter some surprising facts:

e The Tonnetz, while apparently a two-dimensional structure, can also
be understood as a three-dimensional circle of octahedra linked by
shared faces. The shared faces represent augmented triads, which do
not appear on the traditional Tonnetz. The two versions of the Ton-
netz are graph-theoretically identical but geometrically (and topo-
logically) distinct.

e The seventh-chord analogue to the traditional Tonnetz can be
depicted as a series of nested tetrahedra, each containing the notes
of a diminished-seventh chord. This figure represents efficient voice
leading among diminished, half-diminished, dominant seventh,
minor-seventh, and French sixth chords.

e The traditional Tonnetz is often described as a torus, or a “circle
times a circle.” However, the more general description is the “twisted
product of an (n — 2)-dimensional sphere with a circle.” It just so hap-
pens that in the three-note case, the one-dimensional sphere is itself
a circle, potentially misleading theorists into thinking that higher-
dimensional Tonnetze are also toroidal.

« Any sufficiently large note-based graph will inevitably contain either
“flip restrictions” or “redundancies”—that is, the graph will either
contain “flips” that represent nonstepwise voice leadings or multiple
representations of the same chord. The traditional Tonnetzis unusual
in that it lacks both features.

e Chord-based voice-leading graphs are associated with note-based
Tonnetze by the geometrical property of duality. However, the duality

2 This type of graph occurs only when the number of  terthese graphs, for scales smaller than fourteen notes, is
notes in the chord is less than half the size of the scale, and ~ when exploring four-note chords in a ten-note scale, hardly
shares a common factor with it, but does not divide the  an everyday occurrence.

size of the scale exactly. The only time we would encoun-
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relation obtains not between graphs considered as unified wholes,
but rather between their cubic and octahedral components.

From a theoretical point of view, the last point is the crucial one. The most
natural route to the generalized Tonnetz begins with the chord-based lat-
tices described in A Geometry of Music. These are typically arrangements of
n-dimensional cubes. We can replace each n-cube with its geometrical dual,
producing a collection of “generalized octahedra.” These generalized octa-
hedra then need to be rotated or reflected before they can be glued together
to form the note-based analogue to the original chord-based graph.

Geometrical investigations of chordal voice leading began with the
note-based Tonnetz, a structure that was originally devised to represent
purely acoustical relationships among notes.? But as the geometrical approach
matured, it gradually moved toward chord-based graphs, which are more eas-
ily generalized to a broader range of musical circumstances. Having under-
stood these chord-based structures, we can now complete the circle, return-
ing to the note-based graphs that started the investigation. Thus, more than
two decades after the beginnings of neo-Riemannian theory, we are poised
to understand the Tonnetz in a deeper and more principled way.

1. Mathematical Background

This section reviews some basic mathematical material, beginning with ele-
mentary geometrical terminology and proceeding to describe the duality of
the hypercube and the cross-polytope. I will try to be informal and intuitive,
in keeping with my goal of remaining comprehensible to readers who are
musicians first and foremost. This is consistent with my philosophy that music
theory is an applied discipline in which mathematics is a tool rather than an
end in itself.*

One word of warning: when doing higher-dimensional geometry, it is
often necessary to prioritize algebra over direct visualization. In large part,
geometry is a matter of grasping patterns that repeat themselves in increas-
ing dimensions, with algebraic relations providing our best guide as to which
properties do, in fact, generalize. Thus, rather than struggling to constructa
vivid picture of the seven-dimensional cross-polytope, one should instead
concentrate on the generic properties shared by all cross-polytopes, content-
ing oneself with visualizing only the lower-dimensional examples.® That said,
music can sometimes be a useful tool for picturing higher-dimensional rela-

3 It was Richard Cohn (1997) who pioneered the use of
geometrical graphs, and in particular the note-based Ton-
netz, to represent chordal voice leading. Some earlier work,
such as Roeder 1984 and 1987, used geometry to repre-
sent voice leading among set-classes. For a brief history of
the development of geometrical models of voice leading,
see Tymoczko forthcoming.

4 Readers who pine for mathematical rigor will likely be able
to generate proofs from the following informal exposition.

5 A substantial number of blind mathematicians are geom-
eters (Jackson 2002). One hypothesis is that blindness can
be helpful, insofar as it reduces the reliance on quasi-visual
pictures.
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tionships; for example, readers who have finished this article will have no
trouble imagining the seven-dimensional cross-polytope as a certain collec-
tion of relations between two completely even seven-note scales.

Basic terminology

In plane Euclidean geometry, a polygon is a two-dimensional plane figure
bounded by a closed sequence of line segments. A vertex is a point belonging
to two adjacent line segments. A polygon is said to be convex if its interior
contains every line segment between any two points of the polygon. (Convex
polygons have internal angles less than or equal to 180°.) These definitions
can be generalized to higher dimensions: the three-dimensional analogue of
a polygon is a polyhedron, while the n-dimensional analogue is a polytope. A
polyhedron is bounded by polygonal faces (dimension 2) that intersect at lin-
ear edges (dimension 1), which in turn intersect at points called vertices (dimen-
sion 0). An n-dimensional polytope is bounded by facets that are all (n — 1)-
dimensional polytopes, themselves intersecting to form (n — 2)-dimensional
polytopes (ridges) thatintersect to form (n—3)-dimensional polytopes (peaks) . . .
all the way down to two-dimensional faces, one-dimensional edges, and zero-
dimensional vertices. The term codimension is sometimes useful: if Wis a sub-
space of V, then the codimension of Win Vis the dimension of Vminus the
dimension of W (that is, the number of “extra” dimensions in Vnot taken up
by W). A facet always has codimension 1, a ridge has codimension 2, and so on.

A hyperplane is an infinite flat space of codimension 1. In (n + 1)-
dimensional Euclidean space, the n-dimensional sphere (n-sphere) is the set
of points equidistant from the origin; the n-dimensional ball consists of all
points less than or equal to a certain distance from the origin. (Itis a “filled-
in” sphere, the union of a sphere and its interior.) Topological equivalence can
be understood as “equivalence to within stretching”™ two shapes are topo-
logically equivalent if one can be smoothly deformed into the other without
tearing or gluing. (Imagine the shapes being made out of infinitely flexible
rubber.) All convex n-dimensional polytopes are topologically equivalent to
the n-dimensional ball.

It is important to distinguish a space’s intrinsic and extrinsic dimension-
ality. Intuitively, the former refers to the number of perpendicular direc-
tions in which one can move, at any point in the space; the latter refers to the
way the space is embedded in some other, higher-dimensional space. For
example, a circle is intrinsically one-dimensional, since at any point one can
move only clockwise or counterclockwise.® Intrinsically, then, the circle has
one dimension; we typically conceive of it extrinsically as being embedded in
a two-dimensional space (in much the same way the surface of a globe is

6 Counterclockwise is the opposite of clockwise and does
not count as a separate (perpendicular) direction.
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intrinsically two-dimensional, though often represented in three dimen-
sions).” Mathematicians are typically concerned with the intrinsic rather than
extrinsic dimension of a space. In this article, however, the issue of dimen-
sionality will be rather subtle, since we will be considering graphs that are
embedded within larger geometrical spaces. Thus, we will find ourselves
wondering whether it is better to model the augmented triad on the familiar
Tonnetz as a circle of intrinsic dimension 1, or as a triangle embedded in a
three-dimensional space, having extrinsic dimension 2.

Related to this is the contrast between graph theory and geometry.
From a formal point of view, a graph is a very abstract structure—a collection
of points (or vertices) along with a series of connections between them (edges),
not necessarily embedded in any larger space. Graphs do not have straight
lines, angles, or any determinate topology.® In what follows, however, I will
sometimes use the term graph to refer to a series of vertices connected by line
segments and contained within some continuous geometrical space. This is because
chord-based graphs are typically embedded within the continuous spaces
representing all possible n-note chords. As we will see, it is sometimes useful
to take this point of view with respect to the note-based graphs as well.

The dual polytope

A convex polytope (polyhedron, polygon) can be associated with another
polytope known as its geometrical dual. For every facet of the original polytope
(= region of codimension 1), the dual has a verfex. (In many contexts, we can
imagine this vertex to be situated in the center of the original facet.) Two
vertices in the dual are linked by an edgeif they are associated with facets that
intersect in a ridge (= region of codimension 2). (Thus, for every ridge in the
original space, the dual has an edge.) Figure 2 shows that the dual of a square
is another square, while the dual of a cube is an octahedron. The dual of the
octahedron is a cube, illustrating the general principle that every polytope is
its dual’s dual. The square is “self-dual” since its dual is another square. The
triangle and tetrahedron are also self-dual.

Hypercubes, cross-polytopes, duality, and simplexes

The duality relation between cubes and octahedra can be extended to arbi-
trary dimensions, with an n-dimensional cube being known as the “hyper-
cube,” the n-dimensional octahedron being the “cross-polytope,” and the two
structures being dual to each other. Mindful of my earlier warnings against

7 Note that if we were to “zoom in” to a very small region 8 Lewinian “node/arrow systems,” though more structured
of a circle (or sphere), the curvature would gradually disap-  than graphs, are similarly abstract (Lewin 1987).

pear, and the space would seem more and more like a line

(or plane).
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Figure 2. The dual of a convex polytope is another polytope that has a vertex for every
face of the original. The dual of a square is another square, while the dual of a cube is
an octahedron.

visualization, we will investigate the relationship by introducing algebraic
coordinates that can be interpreted musically.

In n-dimensional Cartesian space, we can form an n-dimensional
hypercube by considering the figure whose vertices are (*1, 1, *1,..., £1).°
Its dual n-dimensional cross-polytope has vertices whose coordinates are the
permutations (reorderings) of (*1, 0,0, ..., 0). These coordinates are con-
venient insofar as each facet of the hypercube will be bounded by vertices
that share a single number in some particular order position (Figures 3 and
4). As is clear from the illustrations, any cubic facet’s shared coordinate is the
nonzero coordinate of the associated vertex in the dual cross-polytope.

It is easy to see that the facets of an n-dimensional hypercube are (n—
1)-dimensional hypercubes.!” The facets of an n-dimensional cross-polytope
are neither cubes nor cross-polytopes, but are instead (n — 1)-dimensional
simplexes. A simplex is a generalized triangle or tetrahedron: an n-dimensional
simplex is bounded by n + 1 vertices, not all in the same hyperplane, with edges
connecting all vertices. Itis called a “simplex” because it is the n-dimensional
polytope with the fewest vertices; in that sense, it can be said to be as simple
as possible.!! The cross-polytope whose vertices are permutations of (%1, 0,

9 That is, all possible combinations of the values +1 and
-1.

10 If we fix any one coordinate, then we are left with an
(n = 1)-dimensional figure whose vertices are (*£1, *1,
*1,..., +1). This is the equation for an (n— 1)-dimensional
hypercube.

11 In n-dimensional space, there is an important (n — 1)-
dimensional simplex whose vertices are the permutations
of (1,0, 0, ..., 0). (This is in fact one of the facets of the
cross-polytope described in the main text.) All points on
this simplex have coordinates that sum to the value 1. The
simplex can therefore be taken to represent the different
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-1,1) (0,1) (1,1)
(-1,0) (1,0)
(-1,-1) (0,-1) 1,-1)

Figure 3. If the square has vertices whose coordinates are (+1,
+1), then the dual has vertices whose coordinates are (+1, 0)
and (0, £1).

1,1,-1)

(1,0,0)

(-1,-1,-1)

Figure 4. If the cube has vertices whose coordinates are (=1, =1, 1),
then the dual has vertices whose coordinates are (+1, 0, 0), (0, =1, 0), and
(0, 0, £1). Each of the octahedron’s vertices is therefore situated in the
middle of one of the square’s faces.
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0, ..., 0) has facets that are bounded by a collection of n vertices no two of
which are nonzero in the same coordinate: thus each facet is determined by
choosing signs for the collection (*1,0,0,...,0), (0, £1,0,...,0),..., (0,
0,0, ..., £1)."2 This cross-polytope can be thought of as having a simplicial
“top facet” whose coordinates are the reorderings of (+1,0,0,...,0) anda
simplicial “bottom facet” whose coordinates are the reorderings of (-1, 0,
0,...,0). (Note that on Figure 3 the “top facet” is on the upper right, while
on Figure 4 it is on the upper right rear. It would be possible to rotate the
coordinate axes so that this face did indeed appear to be the “top” of the
figure.) The remaining facets combine vertices from the top and bottom fac-
ets in an appropriate way. Edges connect every vertex on the top facet to all
the vertices on the bottom facet except the one that is nonzero in the same
coordinate.

Musically, we will interpret the hypercube (*1, =1, =1, ..., =1) as rep-
resenting a chord-based graph that records all possible sequences of lower-
ings that take an ordered n-note chord to the chord a step below it. Let any
+1 coordinate refer to one of the chord’s original notes, and —1 refer to the
note a step below. Figure 3 shows that we can move from (+1, +1) to (-1, -1)
by passing through either (+1, -1) or (-1, +1); similarly, Figure 4 shows that
we can move from (+1, +1, +1) to (-1, -1, 1) by passing through intermedi-
ate vertices such as (+1, +1, -1) and (+1, -1, =1). The “dual” cross-polytope,
whose vertices are the permutations of (*1, 0,0, ..., 0), can be interpreted
as a note-based graph recording the same information. We begin with the orig-
inal chord at the top facet (that is, the facet whose vertex coordinates are all
+1, corresponding to the original, “unlowered” form of each note). Each
single-step lowering is represented by a “simplex flip” that replaces a top-facet
vertex with its bottom-facet analogue (that is, the vertex with -1 in the same
order position). For example, on Figure 3 we can flip the upper-right edge
onto the upper left around the top vertex, lowering the first coordinate in the
process; on Figure 4, we can flip the upper-right-rear triangle onto the upper-
right front, lowering the third coordinate. We can continue to flip, replacing
+1 vertices with their —1 counterparts, until we have reached the bottom
facet, where no more lowerings are available.

This interpretations will be central to the rest of this article, so readers
are encouraged to study Figures 3 and 4 carefully. Alternatively, you may

ways of dividing a fixed quantity of stuff into n different 12 For instance, the facets of the octahedron in Figure 3
piles; for instance, the line segment from (1, 0) to (0, 1)isa  are bounded by sets such as (1, 0, 0), (0, 1, 0), and (0, O, 1).
one-dimensional simplex that can represent the results of ~ There are no facets that contain pairs such as (1, 0, 0) and
a two-party election, while the triangle whose verticesare (-1, 0, 0), as these correspond to opposite faces of the
(1,0,0), (0, 1,0), and (0, 0, 1) is a two-dimensional simplex  associated cube.

that can represent the results of a three-party election—or

the relative size of the three intervals in a three-note trans-

positional set-class, or a three-pulse rhythm in a measure

of fixed size.
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prefer to return to these ideas after the following section, which clarifies the
musical relevance of the points just discussed.

2. Music-Theoretical Background

Now we need to review some basic theoretical material from chapter 3 of A
Geometry of Music. We will start with a general discussion of the standard Ton-
netz, then turn to the role of hypercubes in the continuous chord spaces, and
end with the two main families of chord-based voice-leading lattices.

The multivalent Tonnetz

Since the Tonnetz is our central example of a note-based graph, it pays to
consider it carefully. In particular, it is important to realize that the Tonnetz
has a triply ambiguous status as a representation of acoustic, voice-leading, and
common-tone relationships. From a historical point of view, the acoustic aspect
is primary: Leonhard Euler originally designed the structure so that maxi-
mally consonant intervals—the perfect fifth and major third—corresponded
to the graph’s edges. The Tonnetz’s second role, as a representation of single-
step voice-leading relationships among major and minor triads, became important
in Richard Cohn’s early papers (see esp. Cohn 1996, 1997). It is this second
aspect that will concern us here: we will be trying to generalize the Tonnetz
considered as a graph of efficient voice-leading possibilities rather than as a repre-
sentation of acoustical relationships.

There is, however, one complication. Cohn’s early work, like neo-
Riemannian theory more generally, often conflated voice-leading efficiency
and common-tone retention. This can be seen in Cohn’s practice of measur-
ing voice-leading distance in terms of “Tonnetz flips” or “parsimonious voice-
leading moves.”"® While it might seem that this strategy would produce an
effective measure of voice-leading size, this is not the case: the voice leading
(G, E, G) — (C, F, A) is smaller by this measure than the voice leading (C, E,
G) — (G, F, Ab), whereas from the voice-leading perspective the opposite is
true. Moreover, common-tone retention does not necessarily produce the
most efficient voice leading between chords: the common tone—preserving
(E4, F4, G4) — (E4, F4, D4) has a voice crossing and is, for almost every stan-
dard measure of voice-leading size, less efficient than (E4, F4, G4) — (D4, E4,
F4), which has no crossings and preserves no common tones.'

The crucial point is that the three conceptions of the Tonnetz general-
ize in different ways. The most natural generalization of the acoustic Tonnetz
is a structure in which additional axes represent additional consonant inter-
vals such as the octave (in the work of Longuet Higgins) or the just minor

13 See Cohn 1997, which categorizes progressions by the 14 Tymoczko 2006, 2008b, and 2011, appendix C. See
number of parsimonious voice-leading moves (“binary,”  also Hall and Tymoczko 2012.
“ternary,” etc.).
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Figure 5. Cohn’s generalized Tonnetz describes a chord (0, x, x +
y). Each trichord shares an edge (and hence two common tones)
with three of its inversions.

seventh (in the work of some contemporary tuning theorists) (Tymoczko
2009a). The most natural generalization of the common-tone Tonnetz is the
one that Cohn constructed in his influential 1997 article “Neo-Riemannian
Operations, Parsimonious Trichords, and Their ‘Tonnetz’ Representations,”
shown here as Figure 5. (Note that this generalization cannot be extended to
chords of arbitrary size.) By contrast, the “voice-leading Tonnetz” is one of a
large family of note-based graphs that will be explored below.

Cubic geometry in chord spaces

Chapter 3 of A Geometry of Music provides a detailed, user-friendly introduc-
tion to the continuous geometrical spaces representing all possible chords.
Here I very briefly review the essentials, trusting that readers will consult the
book in the event of any confusion. Chords live in quotient spaces or orbi-
folds, arising when we “glue together” ordered pitch sequences that represent
the same set of pitch classes. We start with n-dimensional Cartesian space, R",
which can be pictured as an infinite space with n linear axes, all at right
angles to one another. Points in this space are represented by n-tuples of real
numbers, one for each axis or voice, with each coordinate representing the
pitch sounded by that particular voice. To form a space of musical chords, we
need to ignore octave and order. We ignore octave by considering the coor-
dinates modulo 12, or in other words, gluing together the points (..., x,...)
and (..., x+ 12,...). This transforms our space into the n-dimensional torus

11
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(B,Ff) (C,Ff) (B,F) (C,F)
-1,D (1, 1) -1,1) (1,1)
-1,-1) (1,-1) (-1,-1) (1,-1)
(B,F) (C,F) (B,E) (C,E)

Figure 6. A square represents all the ways in which one can lower the
notes of a two-note chord, eventually producing the chord a scale-
step below. This is true whether we are working in the chromatic scale
(left), diatonic scale (right), or any other scale.

T, or ordered pitch-class space. (A torus can be thought of as an n-dimensional
space with circular axes, all at right angles to one another.) To ignore order,
we glue together all points whose coordinates are related by permutation.
This produces a twisted n-dimensional donut, known to mathematicians as
T/S,.1> This space contains singular points that act like mirrors, with line seg-
ments appearing to “bounce off” these singularities like billiard balls reflect-
ing off the edges of a pool table.

The global structure of these spaces is not important in what follows.
For us, the crucial fact is that the spaces admit “locally valid” coordinate sys-
tems in which the orthogonal axes correspond to motion in the individual
musical voices.!'® (Mathematical readers will note that this follows from their
construction: we began with R”, in which each coordinate represented a dif-
ferent voice; our various “gluings” changed the space only at a few singular
points, with the bulk of the space remaining locally isomorphic to regions of
the original.) Discrete chord-based voice-leading lattices are typically con-
structed from Zypercubes in which the various spatial dimensions represent
single-step motion in each of a chord’s various voices.”” A single hypercube
will represent the different ways of lowering (or raising) the notes of one
particular chord by step. This is illustrated in Figures 6 and 7, which show the
two- and three-note diatonic and chromatic cases. Note that the basic struc-
ture of the diatonic and chromatic graphs is identical, with the only differ-
ence being the location of the transpositional relationships; for instance, in

15 This space has one facet; the Mobius strip has one
edge; three-note chord space, a twisted triangular donut,
has one face, and so on. Points represent chords, while
line segments represent voice leadings or ways of moving
from one chord to another.

16 The coordinate system is only “locally” valid since the
space has a “nontrivial holonomy,” which means that a cir-
cular path can rotate or reflect the axes.

17 Actually, this is true only when we are considering
n-dimensional lattices in n-dimensional space. There are
some cases when the lattice will have lower dimension
than the ambient space, and the faces will fix multiple pitch
classes. We will return to this point below.
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(B,E,G§) (C,E,Ab)
(_1’1’1) (1,1,1)
(B,E,G)
(-1,1,-1)
((13 ,1 EEiAlb)) (C,Eb,Ab)
1, 1,-1,1)
(B, D4, G)
(-1,-1,-1) (C.Eb,G)
(1,-1,-1)
(B,E,A) (C,E,A)
(_17191) (1,1,1)
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(-1,-1,1) (1,-1,1)
(B,D,G)
(-1,-1,-1) (C,D,0)

1,-1,-1)

Figure 7. A cube represents all the ways in which one can
lower the notes of a three-note chord, eventually producing
the chord a scale step below. This is again true no matter
what scale we are working in.

Figure 6, the chromatic graph has two tritones and two perfect fifths, whereas
the diatonic graph has three fourths (all related by diatonic transposition)
and one third. Likewise, in Figure 7, the chromatic cube has two augmented
triads, three major triads, and three minor triads; the diatonic case has four
triads, two fourth chords, and two incomplete sevenths. Nevertheless, all the
graphs show the various ways of stepwise lowering the notes of the chord on
the upper right (or upper-right rear) of the figure.

Figure 8 shows that there is another way of conceiving the coordinate
systems in our space: instead of understanding the various directions as mov-

13
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Figure 8. In n-dimensional chord space, we can
find a coordinate system such that each direction
corresponds to motion in a particular voice.
Alternatively, we can think of each direction as
holding all but one voice constant. It follows that
n -1 of these axes define a hyperplane holding a
single note constant.

ing one voice, we can conceive of them as holding fixed all but one voice. It follows
that, at any point in the space, the hyperplane defined by all but one of our
axes will be associated with a single fixed pitch class. This in turn means that
the facets of our voice-leading cubes will each fix some particular pitch class,
common to all the chords on its vertices. (This is also true of the hyperplane
containing that facet.) When we transform such a cube into its geometrical
dual, each facet in the original cube becomes a point in the dual cross-poly-
tope. It follows that the vertices of the dual polytope represent particular pitch
classes. Chords in the dual are now represented by the cross-polytope’s simpli-
cial facets. (Since every polytope is the dual of its dual, these facets in turn
correspond to vertices in our original, cubic, chord-based graph, so every-
thing works out as expected.) In the dual graph, single-step voice leading is
represented by a “simplex flip” that reflects one simplex into another through
a common ridge."®

Thus, if we start with an n-dimensional cube in n-note chord space,
representing single-step voice-leading in each voice, we can use duality to
form a Tonnetz analogue, a “generalized octahedron” (cross-polytope) in
which vertices represent pitch classes and facets (“generalized triangles” or
simplexes) represent chords. Efficient voice leading is now represented by

18 That is, reflections preserving a common ridge of the
original cross-polytope, which is to say a facet of the sim-
plical facet.
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“simplex flips” that transform one facet of the octahedron into another that
shares a common ridge. The only difficulties are (1) determining how these
various “generalized octahedra” are to be glued together and (2) describing
the resulting structures.

The two families of lattices

In §3.11 of A Geometry of Music, I showed that just three families of lattices
represent the most nearly even n-note chords in any scale. Only two of these
play a major role in analysis. In the first family, the size of the chord evenly
divides the size of the scale, and we have a circle of n-dimensional cubes
linked by shared vertices (Figure 9). In the second family, the size of the
chord is relatively prime to the size of the scale, and we have a circle of cubes
linked by shared facets. The most interesting difference between the two
families is that in the first, the dimension of the lattice is determined by the
size of the chords we wish to represent (to represent two-, three-, and four-
note chords, we need two-, three-, and four-dimensional lattices, respectively);
whereas in the second family, the dimension is controlled by the number of
chord types we wish to represent. Thus, we can use a one-dimensional graph to
represent the voice-leading relationships among maximally even chords (no
matter how many notes they have!), a two-dimensional graph to represent
voice leading among the two most even types of chord, a three-dimensional
graph to represent the three most even types of chord, and so on.

The basic principles here are relatively simple. If the size of a chord is
relatively prime to the size of a scale, the maximally even chord is a “near inter-
val cycle” all but one of whose intervals are the same, with the unusual inter-
val being just a scale step different from the others (see Clough and Myerson
1985; Clough and Douthett 1991). It follows that we can use this chord to cre-
ate a “generalized circle of fifths”—a circle of transpositionally related chords,
each connected by single-step voice leading to its neighbors (Figure 10).2° To
include the second most even type of chord, we reverse the order of every pair of
adjacent voice leadings in the “generalized circle of fifths.” Figure 11 represents this
geometrically, arranging the generalized circle of fifths in a zigzag. (In this
arrangement, reordering a northeast-then-southeast move involves moving
southeast-then-northeast, and so on.) To represent the third most even type of
chords, we begin with a zigzag through three dimensions, reordering every
triple of adjacent voice leadings in the circle of fifths (Figure 12). Remark-

15

19 A hypercube represents all the ways of systematically
lowering the notes of a chord by step; if the size of the
chord divides the size of the scale, then the scale contains
a perfectly even chord that divides the octave into n equal
parts. This chord is located at the cubes’ shared vertices;
the remaining vertices are generated by all the different
ways of successively lowering its notes by step. Clearly,
no two perfectly even chords will have common tones.

20 Clough and Myerson (1985) use the term “generalized
circle of fifths” to refer to what | have just called a “near
interval cycle,” represented as a circular note-based graph.
By contrast, | am using the term to refer to a circular chord-
based graph in which transpositionally related chords are
linked by single-step voice leading.
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Figure 9. When the size of the chord divides the size of the scale, the most
nearly even chords are represented by a circle of n-dimensional cubes
linked to their neighbors by a shared vertex. Here are the one- and two-
dimensional cases.

ably, this procedure suffices to generate our second family of lattice. Thus,
the abstract graph in Figure 11 can be filled in by fifths, triads, or seventh
chords in the diatonic scale, and pentatonic or diatonic collections in the
chromatic scale, while that in Figure 12 can be filled in by diatonic triads,
octatonic triads, or familiar seven-note scales.

Readers who want further information are directed to §3.11 of A Geom-
etry of Music. Here the important point is that both families of lattice are
constructed from (hyper)cubes joined together in some way, either by shared
vertices (Figure 9) or by shared facets (Figures 11 and 12). We have already
seen that we can convert chord-based graphs into note-based graphs by replac-
ing hypercubes with their dual cross-polytopes. Thus, we simply need to
determine how the cross-polytopes fit together.

3. Constructing the Note-Based Lattices

We will now convert familiar chord-based graphs into note-based structures
analogous to the Tonnetz. Again, the basic strategy will be to replace each of
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Figure 10. When the size of the chord is relatively prime to the size
of the scale, the most nearly even chord is a “near interval cycle”—
a circle of nintervals, all but one the same size, with the outlier
being just a scale step larger or smaller. Given any such chord, we
can construct a “generalized circle of fifths,” or circle of single-
step voice leadings connecting transpositionally related chords.
The circle is formed by moving the position of the unusual inter-
val. Note that this is a note-based graph, in contrast to the

surrounding figures.

Figure 11. Given a “generalized circle of fifths” (122>3>-- ),
we can graph single-semitone voice leadings among the two
most even chord types by scrambling every pair of adjacent
voice leadings along the circle of fifths. This schematic chord-
based graph can therefore represent voice-leading relations
among diatonic triads and fourth chords, diatonic and acoustic
scales, diatonic fourths and thirds, and so forth.

the (hyper)cubes in a chord-based graph with its geometrical dual, connecting
adjacent cross-polytopes as required. For clarity, we will treat each family of
graph separately, beginning with the two- and three-dimensional cases before
turning to higher dimensions.

Note that while the discussion focuses on chords contained within chro-
matic and diatonic scales, the underlying ideas are inherently more general
than that. What is important is not the particular structure of any particular
scale, but simply the relation between the size of the chord and the size of the
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Figure 12. Given a “generalized circle of fifths” (152 >3 > ---), we can

graph single-semitone voice leadings among the three most even chord
types by scrambling every three adjacent voice leadings along the circle
of fifths.

scale—in particular, whether one number divides the other, or whether the
two numbers are relatively prime. Thus, the graph of nearly even four-note
octatonic chords has the same basic structure as the graph of nearly even
four-note chromatic chords, since 4 divides both 8 and 12. In much the same
way, the graph of nearly even five-note diatonic chords is structurally similar
to the graph of nearly even five-note chromatic chords, since 5 is relatively
prime to both 7 and 12. Readers interested in more exotic cases should there-
fore be able to generate the relevant graphs from the following examples.

First family, two dimensions

Figure 13a shows single-semitone voice leading between perfect fourths (=
fifths) and tritones in the chromatic scale; itis a circle of squares, each linked
to its neighbors by a shared vertex. Tritones are on the shared vertex with
fourths on the top and bottom vertices. The two 45° axes (northwest/south-
east and northeast/southwest) represent motion in the individual voices. For
example, at {Bb, E}, motion along one diagonal moves Bb up and down by a
semitone, keeping E fixed, while the other diagonal moves E up and down,
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Figure 13. To form the note-based graph of nearly even two-note chromatic chords, we
start with the chord-based graph at the center of two-note chromatic chord space (a) and
then replace each cube with its dual (b). This produces a note-based graph (c) where line
segments represent chords, and vertex-preserving “flips” represent single-semitone
voice leading. Note that the rightmost square in panel c is linked to the leftmost square
with a “twist,” just as in panel a.

keeping Bb fixed. Figure 13, b and c, constructs the dual graph, replacing
each edge of the original with a point and connecting these new points by
edges whenever the original edges met at a vertex. As discussed above, verti-
ces in the new graph can be associated with pitch classes: each edge in the
original graph is replaced by a point in the dual representing the note that is
not affected by motion along that edge. What results is a series of disconnected
squares in which horizontal edges represent perfect fourths while vertical
edges represent tritones.

Note that the leftmost square in Figure 13b has B above E, while the
leftmost edge of the next square has E above Bb. Looking at Figure 13a, we
can see why this is so: since every 45° line of the original space preserves a
particular pitch class, Bb is fixed by both the upper-right edge of the leftmost
diamond and the lower-left edge of the diamond to its right; thus, in the dual

19
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squares, the pitch class Bb is below E on one square, while the reverse is true
on the neighboring square. To connect them, we therefore need to reflect
every other square around its horizontal axis of symmetry, producing a circle
of squares, each linked to its neighbors by shared edges.

In this dual graph, vertices represent notes, line segments represent
chords, and efficient voice leading corresponds to “edge flips” around a com-
mon vertex. Observe, however, that the fourth C—G shares a vertex with both
the tritone Ci—G and with the fourth G-D. To preserve voice-leading dis-
tances, we should consider the change from C-G to G-D to be a two-step
motion, rather than a simple flip; otherwise, “flip distance” will not corre-
spond in any obvious way to the total number of semitones moved by each
voice.?! I will say that the graph is flip restricted, since not all of its flips are size-
one voice leadings. (In other words, if we want to model voice leading, we
must 7estrict people from using these larger flips.) As we will see, flip restric-
tions often arise in complex note-based graphs.

First family, three dimensions and higher

Figure 14a shows the cubic lattice at the center of three-dimensional chord
space. This structure was discovered by Douthett and Steinbach (1998) in a
slightly more abstract form and is sometimes known as “Cube Dance.”?? As
above, we can replace each cube by its dual octahedron, attaching them at
their common faces to produce the lattice in Figure 14b.? (For clarity, Figure
15 shows how to construct the dual of an isolated cube in the original chord-
based graph.) Efficient voice leading in the note-based graph is now repre-
sented by a “triangle flip” that links two triangles sharing a common edge. Note
that a major triad such as C-E—-G shares an edge with both the augmented
triad C—E—-G# and the minor triad C-E-A. (This is analogous to the way that
C—G shared a vertex with Ci—G and G-D.) To accurately model voice leading,
we must once again introduce flip restrictions, requiring that the major triad
move first to the augmented triad before proceeding up to the minor triad.?*

Let’s now review the properties common to the two- and three-note
cases. Figure 13c can be conceived as a circle of one-dimensional simplexes

21 If we consider the horizontal path from C-G to D-A to
have length 2, then Dk~Ab and D-A are equidistant from
C-G. From a voice-leading perspective this is not true:
D-A can pass through Db—Ab when it moves efficiently to
C-G, but Db—Ab cannot pass through D-A when it moves
efficiently to C-G. We lose the ability to model this when
we consider horizontal flips to have unit length.

22 | will use the term “Cube Dance” in what follows,
though | will typically use the term to refer to this graph-
theoretical construction as it is embedded in three-note
chord space. This embedding endows the lattice with more
geometrical structure, allowing us to speak about “straight

lines” that pass through the augmented triad. See Tym-
oczko 2011, chapter 3 and appendix C.

23 Douthett 2008 depicts one of these octahedra, dual to
the individual cubes on “Cube Dance,” and identified as
the “hexatonic Tonnetz.”

24 As noted above, allowing direct moves between these
triads will have the consequence that “flip distance” no
longer reflects voice-leading distance: F major will be just
two flips from C major, whereas F minor will be three flips
away. See Tymoczko 2010 and 2011, appendix C.
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Figure 14. To form the note-based graph of nearly even three-note chromatic
chords, we start with the chord-based graph at the center of three-note chromatic
chord space (a); then we replace each cube with its dual and glue the resulting
octahedra together in the appropriate way. This produces a circle of octahedra
linked by common faces (b). Here, triangles represent major, minor, and augmented
chords, and edge-preserving flips represent single-semitone voice leading. Note
that the top face is a 120° rotation of the bottom face, indicating that the structure
is globally twisted.

(vertical line segments) representing the completely even two-note chords
(tritones). Each vertex in one tritone-simplex is connected by a line segment
to all those notes in the neighboring tritone-simplexes except for those that are
a semitone away. The tritone-simplexes thus form the “top” and “bottom”
faces of a two-dimensional cross-polytope (= square, the dual of the two-
dimensional cube, which is also a square).? Similarly, Figure 14b is a circle of
two-dimensional simplexes (horizontal triangles) containing completely even
three-note chords (augmented triads); each vertex in one augmented-simplex

25 Recall that every vertex of a cross-polytope is located
either on the top face or on the bottom face; there are no
vertices not contained by these two faces.

21
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Figure 15. The duality between the chord-based cube and the note-
based octahedron.

is connected to all the notes in the neighboring augmented-simplexes except
Jfor those that are a semitone away. The augmented-triad simplexes form the “top”
and “bottom” faces of a three-dimensional cross-polytope (an octahedron,
dual to the three-dimensional cube).

In four dimensions, we thus expect to find a circle of three-dimensional
simplexes (tetrahedra) containing completely even four-note chords (dimin-
ished-seventh chords), with each vertex in one tetrahedron connected by line
segments to all the notes in the neighboring tetrahedra except for those that are
a semitone away. Somewhat surprisingly, it is possible to portray this figure in
three dimensions. Figure 16 presents three nested tetrahedra, eliminating
connections between them for the sake of visual clarity. (Figure 17 provides
a glimpse of the chord-based dual, a circle of four-dimensional cubes, or “tes-
seracts,” linked by shared vertices.) Since this is a three-dimensional repre-
sentation of an inherently four-dimensional structure, it necessarily involves
certain simplifications.?® But it is clear enough to be useful as a model of
tetrachordal voice leading.

Chords here are represented by tetrahedra. The completely even chords
(diminished-seventh chords) are shown on the graph. To form dominant sev-

26 First, the inner (B diminished) tetrahedron should be through the faces of the tetrahedron enclosing it; this is
understood to contain the outer (C# diminished) tetrahe-  simply for legibility—were each simplex entirely contained
dron, since the graph is a “circle of tetrahedra.” For the  within the other, the smallest simplex would be much
sake of clarity, | have not duplicated the B diminished tet-  smaller than the largest.

rahedron. Second, the vertices of each tetrahedron poke
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Figure 16. A note-based graph representing single-

semitone voice leading among nearly even four-note
chromatic chords. The graph is a series of nested
tetrahedra, each dual to its neighbors. Chords are
represented by tetrahedra drawing their vertices from
(at most) two adjacent tetrahedra.

enths, minor sevenths, French sixths, and half~-diminished sevenths, we com-
bine vertices from adjacent tetrahedra, subject to the proviso that a tetra-
hedron cannot contain notes that are a semitone apart. (Semitonally related
notes are maximally distant on adjacent tetrahedra and cannot be connected
without cutting through one of the diminished-seventh chords; in this sense,
they seem like they do not belong together.) Dominant and half-diminished
sevenths contain a triangle from one tetrahedron and a vertex from another;
this additional vertex is maximally close to the triangle in question. (For
instance, the notes Ab and Bb, on Figure 16’s inner and outer tetrahedra, are
directly above the triangle C-El—Gb on the middle tetrahedron.) To form
minor sevenths and French sixths, combine two edges from adjacent tetrahe-
dra. For a given line segment, there is only one available line segment on
another tetrahedron, and its position is visually obvious; for instance, A-Eb
on the middle tetrahedron can be combined either with C#—G on the outer
or B-F on the inner. (All other line segments on the inner and outer tetrahe-
dra contain a note semitonally adjacent to either A or Eb.) Once again, semi-
tonal voice leading is represented by a “simplex flip” that transforms a tetra-
hedron into another tetrahedron sharing a common face. The tetrahedron

23
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C-Eb—Gb—B}b shares a face with both C-Eb—Gb—A and C-Eb—Gb—Ab. To preserve
voice-leading distances, we must treat the flip from c*’ to A¥ as being a size-
two “compound” motion, for exactly the reasons discussed in the two- and
three-dimensional cases.?” Once again we encounter “flip restrictions,” in
this case to prevent us from flipping directly between half-diminished and
dominant sevenths.

We can use the concept of “duality” to get a better grip on this fascinat-
ing figure. Each tetrahedron is drawn as the dual of its neighbors; for instance,
the inner tetrahedron B-D-F-Ab contains a vertex for each face of the tet-
rahedron C-Eb-Gb—A, and vice versa. Nearly even chords are combined by
taking dual elements from adjacent tetrahedra: a face of one tetrahedron can
combine with the dual vertex on its neighbor, forming dominant and half-
diminished sevenths, just as an edge on one tetrahedron can be combined
with the dual edge on a neighbor to form minor sevenths and French sixths.?
The figure thus provides a very clear representation of common-tone rela-
tionships. For example, every face is dual to two vertices related by major-
second transposition, just as every edge is dual to two edges related by that
same interval. Thus, the face C-Eb—G is dual to both Aband Bb (forming Ab
and ¢?7), while the edge Gb-A is dual to both Cé-E and B-D (forming f¥ and
b7). We see that the progression (Ff, A, C§, E) — (F, A, B, D) is in some sense
analogous to (C, Eb, Gb, Bb) — (C, Eb, Gb, Ab), insofar as both combine a fixed,
middle-simplex element (F§—A or C-Eb—Gb) with both its outer-simplex and
inner-simplex duals, related by major second in each case. Such relation-
ships are much clearer in the note-based Figure 16 than in its chord-based
counterpart.

At this point, the generalization to five and higher dimensions should
be fairly clear: the chord-based graph is always a circle of hypercubes linked
by shared vertices, while the note-based graph is always a circle of cross-
polytopes linked by shared facets. (Alternatively, we can imagine a circle of
(n -1)-dimensional simplexes, with each vertex connected to all the vertices
of neighboring simplexes except those that are a semitone away.)?® The sim-
plicial facets of the cross-polytope represent chords, while single-step voice-
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27 The graph in Figure 16 is a three-dimensional represen-
tation of an inherently four-dimensional structure, a fact
that may lead some readers to wonder where the extra
dimension has gone. The answer is, first, that the seventh
chords (= tetrahedra) constructible on Figure 14 are not
all congruent, while in four dimensions they are. (Note
that diminished sevenths are all similar on Figure 14; | am
talking here about minor sevenths, dominant sevenths,
etc.) Furthermore, the radial dimension (outward from the
graph’s center) is doing double duty, with the interior of
each diminished-seventh chord containing another dimin-
ished seventh. In the four-dimensional graph this is not
the case, and the interior of every seventh chord is free of
notes.

28 In a three-dimensional figure, let e be an edge between
vertices A and B. The dual edge is the intersection of the
faces Fand G, with Fdual to Aand G dual to B.

29 There is a slight complication in the case where there
are only two simplexes, as with six-note chords in twelve-
tone equal temperament. Here there are two separate sets
of connections between the simplexes: going in one direc-
tion, each vertex is connected to all the neighboring sim-
plex’s vertices except for the one that is a scale step above
it, while in the other direction each vertex is connected to
all the neighboring simplex’s vertices except for the one
that is a scale step below it. This six-dimensional figure
is graph-theoretically identical to Walter O'Connell’s “tone
lattices” (1968).
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leading corresponds to “flips” that preserve one of the simplex’s own facets
(ridges of the original cross-polytope). As in the previous cases, some sim-
plexes will share facets both with a perfectly even chord and with one of their
own inversions; to model voice-leading distances, we must require that they
move first to the perfectly even chord before proceeding onward to their
inversions.

Second family, one chord type

We now turn to the second family of chord-based graphs, arising when the
size of the chord is relatively prime to the size of the scale. As mentioned
above, the dimension of these graphs is controlled not by the number of notes
in the chord but rather by the number of chord-types we wish to represent. Thus, if
we are concerned only with maximally even chords, we can produce a one-
dimensional voice-leading graph, no matter how large the chord happens to
be. The second dimension is needed when we also want to represent the sec-
ond most even type of chord, just as we need three dimensions to represent
the third most even type of chord, and so on.

When we restrict our attention to just one chord type—the maximally
even chord—things are attractively simple. The chord-based graph is a “gen-
eralized circle of fifths” that links transpositionally related chords by single-
step voice leading (see Figure 10). To form the note-based dual, replace every
vertex on the chord-based graph with an (n — 1)-dimensional simplex (n
being the number of notes in the chord, and the number of vertices in the
simplex). The result is a “circle of simplexes” each linked to its neighbors by
ashared facet. Figure 18 illustrates the one- and two-dimensional cases. Since
we require a vertex for each note, the note-based graphs involve progressively
more and more dimensions. Indeed, the note-based analogue to the circle of
fifth-related diatonic scales (the true “circle of fifths,” whose one-dimen-
sional chord-based graph is shown in Figure 19) would be six-dimensional!

The triadic case has previously been explored by Candace Brower
(2008), who observes that the rightmost triangle on Figure 18b needs to be
attached to the leftmost with a “twist.” Were we to embed this graph in two
dimensions, it would therefore lie on a Moébius strip. (Alternatively, we can
imagine embedding this figure in three-dimensional chord space, where the
“twist” is partially supplied by the space itself.) Another way to think about
the construction is that it is a common-tone Tonnetz for an inversionally sym-
metrical triad. Figure 20 shows that for a “generic” trichord, there are three
separate inversions that preserve two of the chord’s notes. For an inversion-
ally symmetrical trichord, however, there are only two such inversions, since
one inversion reproduces the original trichord. Since the diatonic triad is
inversionally symmetrical, its “common-tone Tonnetz” must therefore consist
of asingle strip of triangles, in contradistinction to the planar Tonnetz we are
all familiar with.
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Figure 18. For an n-note chord, the “generalized circle of fifths” is represented by a one-
dimensional chord-based graph and an (n - 1)-dimensional note-based graph. Here we
construct the note-based graphs representing stepwise voice leading among maximally
even two- and three-note diatonic chords, shown in (a) and (b), respectively.

Figure 21 shows the four-note analogue to Brower’s graph, a chain
of tetrahedra (three-dimensional simplexes) representing diatonic seventh
chords. The circle of thirds spirals around the exterior of this structure in
a way that is distantly reminiscent of Elaine Chew’s (2000) “spiral array.”
Since the “spiral of thirds” takes approximately a quarter-turn with each step,
one can find vaguely straight “lines of seconds” on the figure, for instance,
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Figure 19. The traditional “circle of fifths” represents single-semitone voice
leading among seven-note diatonic scales. The chord-based graph is one-
dimensional, while its note-based analogue requires six dimensions.

C-B-A-G at the top, E-D-C-B at the bottom front, and G-F-E-D at the
bottom rear.

Thus, where our first family of note-based graphs (Figures 13, 14, and 16)
contains “generalized octahedra” (cross-polytopes) linked by shared facets,
the second family—at least in its most elementary manifestations—contains
“generalized tetrahedra” (simplexes) linked by shared facets (Figures 18 and
21). With the first family, the octahedra are linked by simplicial faces repre-
senting completely even chords. Since these chords share no notes with their
semitonal transpositions, we are required to form “hybrid” chords combining
the notes of adjacent simplexes—yielding “nearly even” chords such as perfect
fifths, major and minor triads, and dominant seventh chords, all of which com-
bine the notes of two semitonally adjacent perfectly even chords.* With the
second family, the maximally even chords are not completely even, and neigh-
boring chords turn out to share all but one of their notes. This allows us to

30 Each of these chords has a partner that can be con- C-D-F-Fi-A-B, which are not inversionally related). How-
nected to it by what Robert Cook (2005) calls “extravagant” ever, there is also an alternative generalization of Cook'’s
voice leading, in which every note moves semitonally (e.g., “extravagance” in terms of near inversional symmetry, as
C major and Ab minor, C7 and e%’, C#~D#-E-G-Ab-Bb and  in (C, D%, E) — (Db, D, F).
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a+c—->b c+b-a

a+b-c

a+c—->b c+b-a

c=a+b-c

Figure 20. (a) A generic triad shares two notes with three
of its inversions. For instance, if we start with the C major
chord (a= 0, b =4, and ¢ = 7), then the bottom vertex is A,
the leftmost vertex is Eb, the rightmost vertex is B, and the
three peripheral triangles represent A minor, C minor, and
E minor. (b) By contrast, if we start with an inversionally
symmetrical triad, then one flip reproduces the original
chord. For instance, suppose we start with the C diatonic
triad (a = 0, b = 4, ¢ = 2, measuring in diatonic scale
steps). Then ¢ = a + b - ¢, and the triad is connected to
only two distinct inversions.

form a “circle of simplexes” sharing a common facet, leaving no possibility
for the “hybrid chords” in the first family of lattices.

Second family, two or more chord types

We now turn to figures that represent more than just maximally even chords.
Figure 22 uses the graph of single-step voice leading among diatonic thirds
and fourths to generate the note-based analogue. What is surprising is that
the note-based graph contains redundancies, multiple line segments repre-
senting the same chord; for instance, the tritone B—F appears on three con-
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Figure 21. Voice-leading relations among maximally even diatonic seventh chords are
represented by a circle of tetrahedra, each linked to its neighbors by a shared face.

secutive line segments located on the three leftmost squares. This is because
the original, chord-based graph contains squares that are joined at a com-
mon face: when we take the dual of each of the graph’s component squares,
the shared vertices in the chord-based graph turn into duplicated edges in
the note-based graph.

These redundancies are unattractive, and one’s initial instinct is that
there must be some simple way to remove them. But this turns out to be easier
said than done. Figure 23b removes some—but not all—of the duplications,
transforming two adjacent squares into a single square with a point at its
center (C-F still appears in the two leftmost squares). However, this process
has created edge flips that represent nonstepwise voice leading; for instance,
F-A and F-D share a vertex on the new graph, even though the voice leading
(F, A) = (F, D) moves one voice by three steps. By contrast, all the edge flips
on Figure 23a represented single-step voice leadings, as do all edge flips on
the standard Tonnetz. To use our new graph to represent voice-leading dis-
tances, we must therefore introduce “flip restrictions,” disallowing nonstep-
wise flips, much as we disallowed the direct move from C-G to G-D on Fig-
ure 13.

Thinking about it a little more, it becomes clear that redundancies and
flip restrictions are not unique to this second graph family. Consider that
when we took the dual of the squares in Figure 13a, we created a series of dis-
joint squares in which every tritone was redundantly represented (Figure 13b). We
were able to remove these redundancies by gluing together adjacent squares,
as in Figure 13c, but only at the cost of introducing flip restrictions, as when
we declared that C—G could not directly flip to G=D. (There was no possibil-
ity of such flips when we considered a series of disjoint cubes.) Figure 24
describes another case in which redundancies appear, extending our earlier
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(c)
E C F D G E A

A F B G C A D B

Figure 22. Constructing the dual lattice representing voice leading among
the two most even kinds of two-note diatonic chord (i.e., thirds and
fourths). In (a) we begin with the chord-based lattice. We then take the
dual of each cube (b), producing a redundant lattice in which some chords
appear multiply.

graph of two-note chords (Figure 13a) so as to include major thirds. This
introduces shared faces into the chord-based graph, which in turn produce
redundancies in the note-based analogue. From this perspective, the two
families of lattice are not fundamentally dissimilar: the only difference is
exactly where the redundancies (or flip restrictions) happen to appear.

In fact, we can make this point more precisely. Suppose that a chord-
based voice-leading graph contains a point where a single note can move
either upward or downward by step: symbolically, we can write A < B — C,
meaning that at chord B a note can move either down by step to form chord
A orup by step to form chord C. In the note-based analogue, single-step voice
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Figure 23. We can eliminate some duplications by combining adjacent cubes in the chord-
based graph. Here, for instance, squares 1 and 2 in (a) become the leftmost square-with-a-
central-point in (b). As a result, some “flips,” such as (F, A) = (F, D), will represent non-
stepwise voice leading. (c) We can also use Brower’s graph of diatonic triads to represent

voice leading among diatonic thirds and fourths.

leadings will be represented by “flips” that connect simplexes sharing a com-

mon facet. It follows that either (a) A, B, and Cwill all share a common facet,
and the chord-based graph will be flip restricted;* or (b) Bwill appear redun-
dantly on the graph. Thus, redundancies and flip restrictions, rather than

being problems to be avoided, are actually intrinsic to complex note-based

graphs.” What is remarkable, perhaps, is that the standard Tonnetz contains

31 A and C share a common facet but by hypothesis are
not connected by single-step voice leading: since single-
step voice leading (in the same voice and in the same
direction) takes Ato Band Bto C, the voice leading A— C
moves one voice by two steps.

32 Another way of thinking about the underlying issue is
that there are fundamental divergences between com-

mon-tone and voice-leading distances. From a common-
tone perspective, F-Ais just as close to F-D as it is to F-B,
since they all share the note F. But from a voice-leading
perspective, F-Ais closerto F-B than it is to F-D. Redun-
dancies serve the function of preserving voice-leading
distances in the face of shared common tones. To collapse
these duplications is to begin to prioritize common-tone
distance over voice leading.
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Figure 24. Redundancies can occur in the first family of lattices as well.
Here, (a), we start with a graph containing the three most even types of
two-note chromatic chords (i.e., tritones, perfect fourths, and major
thirds). Since some squares are linked by a common face, the dual
contains duplications (b).

no such redundancies or flip restrictions. This is because we can use “parsi-
monious” (or single-step) voice leading to either raise or lower each note of
every triad, but not both.?

Somewhat surprisingly, however, we can use Brower’s three-note “dia-
tonic Tonnetz” (Figure 18b, reproduced here as Figure 23c) to represent
voice-leading relations among nearly even two-note diatonic chords. Brower’s
graph is redundancy free, with every diatonic third and fourth appearing as
a line segment in exactly one place on the graph. (Indeed, it has no super-
fluous connections or line segments, containing exactly the edges that are
needed for this particular purpose.) From a contrapuntal perspective, how-
ever, the figure is a bit perverse, as stepwise voice leading is reflected by
maximally inefficient flips defining internal angles greater than 90°.%* Flips
such as (F, A) — (F, D) are visually more salient, connecting two edges of a
triangle (and spanning only 60°), but represent musically inefficient voice
leadings in which a voice moves by third or fourth. This inverse relation

33 For instance, the C and E of C—E-A can be raised but 34 Forexample, the voice leading (F, A) — (F, B) is reflected
not lowered, while the A can be lowered but not raised. by a 120° flip, while (F, B) — (F, C) spans 180°.
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between geometrical and contrapuntal distance is problematic insofar as the
central goal of geometrical music theory is to construct spaces in which geo-
metrical proximity models musical proximity.

Once again, these ideas can be generalized to higher dimensions. Fig-
ure 25a shows a three-dimensional chord-based graph representing efficient
voice leading among diatonic triads, fourth chords, and incomplete sevenths;
Figure 25b shows the note-based analogue, a circle of octahedra linked by
shared vertices.? Again, we encounter redundancies, with the F major triad
being represented by three separate triangles on Figure 25. Figure 26a removes
some of these duplications exactly as before, by combining two adjacent octa-
hedra into a single octahedron with a point at its center. This transformation
comes at the cost of introducing flip restrictions, since some edge flips (such
as C-G-A — C-B-A, which share a face) now represent nonstepwise voice
leading. Alternatively, and again somewhat surprisingly, we can use the three-
dimensional, tetrahedral Tonnetz (Figure 26b) to model diatonic trichords,
with chords being represented either as triangles (e.g., E-G-B) or as open
line segments (e.g., C—G-D). Since this graph is completely redundancy free,
itrequires a number of flip restrictions. Interested readers are invited to inves-
tigate further.

The appearance of redundancies and flip restrictions is disappointing,
in large part because the familiar Tonnetz has conditioned us to expect graphs
without these features. One might have hoped that there was an elegant fam-
ily of redundancy-free, Tonnetz-like graphs for whatever musical situation we
might happen to find ourselves in. Instead, however, it seems that flip restric-
tions and redundancies are inherent in the very project of creating general-
ized note-based graphs, avoidable in just a few special cases. Even modest
extensions to the Tonnetz, such as the “chain of octahedra” in Figure 13,
require flip restrictions. It is ironic that the first and earliest example of a
note-based graph would turn out to be such an unusual case.

* * *

Though this section has constructed just a few lattices from just two families
of graphs, our procedures are applicable more broadly: virtually any suffi-
ciently complete chord-based voice-leading lattice will be composed of (hyper)-
cubes, and these can always be converted via duality to cross-polytopes in
which notes represent chords (see Section 2); it is just a matter of determining
how these cross-polytopes intersect with one another and of locating any
duplications they might contain. Thus, very little of our work depends on the
particular structure of the diatonic and chromatic collections: the important

35 Note the inverse relationship between note-based and  if the chord-based cubes intersect in shared facets, then
chord-based graphs: if the hypercubes in the chord-based  the note-based cross-polytopes will intersect in shared
graph intersect at common vertices, then the note-based vertices. This, of course, is a consequence of the way dual-
cross-polytopes will intersect in shared facets; conversely, ity exchanges vertices and facets.
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Figure 25. (a) The chord-based graph representing voice-leading relations
among the three most even types of three-note diatonic chords, a circle of
cubes linked by shared faces. (b) Its note-based version, a circle of octahedra
linked by shared vertices. Note that the top graph contains four cubes,
whereas the bottom graph, for clarity, contains only three octahedra.
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Figure 26. (a) We can glue together adjacent octahedra in Figure 25, forming octahedra with
central points. Once again, however, the resulting graph will have “flips” that represent
nonstepwise voice leading—including (C, G, A) = (C, B, A). (b) We can also represent voice
leading among diatonic trichords using our “circle of tetrahedra.” Here, trichords are repre-
sented by triangles (e.g., E-B-D) or chains of line segments (e.g., C-G-D). In either case, we
need flip restrictions.

variable is simply the relative size of chord and scale.?® The one exception
concerns the use of higher-dimensional diatonic models to model smaller
diatonic chords, as in Figures 23¢ and 26b.%

4. Generalizing the Tonnetz Proper

So far, we have come close to the original Tonnetz without recreating it
exactly: the “circle of octahedra” shown in Figure 14 is a three-dimensional

36 In particular, the preceding ideas are straightforwardly 37 There is no guarantee that we could always use a model
applicable to the hexatonic, octatonic, whole-tone, melodic ~ of trichords to represent voice leading among intervals
minor, and many other scales. See Tymoczko 2011, chap-  (Figure 23c) or a model of tetrachords to represent tri-

ter 4.

chords (Figure 26b). Interested readers are invited to con-
sider the conditions under which these constructions can
be generalized.
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Figure 27. If we remove two opposite faces of an octahedron (left), we can unfold the

remaining faces into a “circle of triangles” (right), shown here as a chain whose right edge is
the same as its left.

figure that displays single-semitone voice leading among major, minor, and
augmented triads, whereas the standard Tonnetz shows only major and minor
chords. The question, then, is how to eliminate the augmented triad so as to
recover the Tonnetz proper.

The trick—and it is a subtle one—is to forget the augmented triad by
reconceiving our graph’s topology. Essentially, we declare that the triangle rep-
resenting the augmented triad, rather than enclosing a region of three-dimensional
space, is actually a circular dimension unto itself. (That is, we stop conceiving of
the augmented triangles extrinsically, as embedded in a surrounding three-
dimensional space, and start thinking of them intrinsically, as one-dimensional
spaces unto themselves, topologically equivalent to the circle.)® This has the
effect of converting our structure from a three-dimensional lattice, embed-
ded within twisted three-dimensional space, into a two-dimensional lattice
living on a two-dimensional torus. It also has the effect of creating a very
sharp distinction between the augmented triads and the major and minor
triads. Figure 27 represents this visually: we declare that the top and bottom
triangles of each octahedron are dimensions unto themselves, unlike the
space-enclosing triangles comprising the rest of the figure. This allows us to
inscribe the remaining six triangles onto a cylinder. (These triangles together
comprise the “LP cycle” of semitonally related hexatonic triads.) Unrolling
the entire stack of octahedra produces the two-dimensional Tonnetz shown
in Figure la.

38 As promised in Section 1, intrinsic and extrinsic are
involved in a subtle dance. Essentially, the music-theoretical
question is whether to consider the augmented chord as a
triangle or as a circular dimension.
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This reconstruction of the Tonnetz sheds new light on an issue that
is currently the subject of spirited theoretical debate. Recently, Richard
Cohn responded to criticism that the Tonnetz does not faithfully represent
voice-leading distances by proposing to include augmented triads on the
structure.” On Cohn’s revised Tonnetz, the self-intersecting line segment
C-E-G#-C is to be counted as triangle just like C-E-G-C and A-C-E-A.
Cohn further declares that the triangle C-E-G—-C cannot be flipped directly
onto A-C—E-A but must first pass through C-E-G#-C. (This flip restriction
has the effect of converting the “R voice leading” into a size-two move, con-
sistent with the fact that it moves its voices by two total semitones.) When I
first encountered Cohn’s proposal, it struck me as fairly ad hoc, largely
because the “triangle” C-E-G#-C is geometrically very different from those
representing major and minor triads: the former is a circular dimension unto
itself, enclosing no surface area on the toroidal Tonnetz, while the latter is a
generic triangle within the space. (Indeed, the entire mathematical subject
of simplicial homology centers around this distinction.) But once we reconceive
the Tonnetz as a three-dimensional structure, dual to the stack of cubes at the
center of three-note chord space, Cohn’s construction looks considerably
more natural: on the three-dimensional version of the Tonnetz shown in
Figure 14, the augmented triad is no less triangular than the other chords. In
this sense, the three-dimensional Tonnetz is the natural geometrical environ-
ment for Cohn’s current work.*’

This should lead us to ask whether the (equal-tempered) Tonnetz is in
fact truly toroidal. Previous theorists have unanimously answered this ques-
tion affirmatively, to the point where one would almost court ridicule to sug-
gest otherwise.*! But our discussion has given us reason to be more circum-
spect. Considered as a graph, the Tonnetz is simply a collection of vertices and
edges having no particular geometry or topology. To embed this graph into
a robustly geometrical space requires us to ask questions like “should the
‘major third axis’ be a single straight line?” or “should the edges representing
augmented triads be similar to those representing major and minor triads?”
Our answers, rather than being simple consequences of the Tonnetz’s graph-
theoretical structure, will depend on what we want to do with the space.*?

39 See Cohn 2011b. For the original criticism, see Tym-
oczko 2009a, 2010, and 2011.

40 Cohn, however, continues to use the traditional, two-
dimensional Tonnetz, which in my view draws an unneces-
sarily sharp distinction between the augmented and the
other triads.

41 For claims that the Tonnetz is toroidal, see Cohn 1997
and Gollin 1998, among many other examples. As far as |
know, no previous theorist has ever considered the possi-
bility that the equal-tempered Tonnetz could be anything
other than a torus.

42 The assumption that the Tonnetz is toroidal is an exam-
ple of music theorists implicitly attributing structure to
their models over and above that contained in their math-
ematical formalism. For other examples, see Tymoczko
2008a and 2009b, which argue that David Lewin implicitly
conceived of group elements as having magnitudes.
Indeed, Lewinian formalism, being much closer to graph
theory than to geometry, may have helped to obscure the
sorts of questions we have been asking.
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And here it becomes vitally important that Tonnetz is a multivalent
structure. From a purely acoustical point of view, it is eminently reasonable to
arrange the notes of the augmented triad along a straight line that returns to
itself, creating an “axis of thirds” and an “axis of fifths.” (Thus, when model-
ing acoustics, we are implicitly assigning to the Tonnetz more than graph-
theoretical structure, asserting that it has “straight lines” rather than simply
connections among vertices.) But insofar as the Tonnetz is understood as a
model of voice leading, these acoustical desiderata take a back seat to the goal
of faithfully representing contrapuntal distances. It follows that we should
represent the voice-leading Tonnetz as a nontoroidal, three-dimensional struc-
ture whose individual octahedra are the duals of the cubes in “Cube Dance,” and in
which major, minor, and augmented triads are all on an equal footing. In this three-
dimensional structure, we no longer have linear “axes” representing motion
by major third, minor third, or perfect fifth, having sacrificed this acoustical
nicety in order to make room for the augmented triads.* To the graph theo-
rist, the two structures the same, but to the topologist, geometer, or music
theorist, they are quite different. If this seems surprising, it is only because we
have been conditioned to assume that there is a single, univocal Tonnetz that
can represent both acoustics and voice leading—and perhaps even common-
tone retention as well.

Having examined the three-note Tonnetz, let us now turn to its four-
dimensional analogue. Since the Tonnetz eliminates augmented chords,
directly connecting major and minor triads by way of the “R voice leading,”
we expect that the four-dimensional graph will eliminate diminished sev-
enths in favor of direct connections between chords such as G” and e*7, which
share the diminished triad E-G-Bb.** And just as we formed the three-note
Tonnetz by pulling apart the augmented triad, so that the two-dimensional
triangle becomes a one-dimensional circle, we will form the four-note Tonnetz
by flattening three-dimensional tetrahedra (Figure 16) into two spherical
dimensions. Figure 28 shows two ways to flatten a tetrahedron: in the first,
one vertex appears in the center of a triangle, while in the second, it appears
in three separate places, lying beyond the triangle’s vertices. The four-note
Tonnetz, shown in Figure 29, can thus be represented as a series of layers,
each identical to one of these two-dimensional representations. Notes on one
layer are connected by edges to all notes on the adjacent layers except those
that are a semitone away.*> (Again, I leave out the cross-layer connections for
the sake of visual clarity.) Chords are represented by (space-enclosing) tetra-
hedra that draw their notes from two adjacent layers.

39

43 In Figure 14b, augmented triads are equilateral triangles
rather than straight lines. Similarly, the paths representing
perfect fifths and minor thirds change direction at every
vertex.

44 Douthett and Steinbach (1998) call this voice leading
“Rx

45 Note that the vertex outside the triangle in one layer is
not connected to the vertex at the center of the triangle in
the next layer. Note also that the triangle in one layer is
dual to those in the adjacent layer: a vertex on one triangle
is not connected to the vertex that is the dual of the original
vertex's opposite edge.
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Figure 28. Two ways of flattening a tetrahedron. If we look from above,
the fourth vertex appears to be in the center of the triangle. From
below, the fourth vertex is reachable in three separate directions. (To
see this, imagine cutting the globe at the north pole and spreading it
flat. No matter which direction we go, from the perspective of the
south pole, we will eventually get to the north pole.)

One interesting feature of the four-note Tonnetz (and indeed, the anal-
ogous constructions in all dimensions) is that it is homogeneous: at every point
in the space, each note can be moved stepwise up or down, but not both.
(This homogeneity is precisely what allows us to avoid flip restrictions and
redundancies, as discussed in Section 3.) For instance, the root of the domi-
nant seventh can be raised by whole step to produce a half-diminished sev-
enth, while the third, fifth, and seventh can each be lowered by half step,
producing a minor seventh, a French sixth, and a minor seventh, respectively.*
Figure 30 tries to illustrate this by representing only those connections that
participate in single-step voice leading from the C half-diminished chord.
The figure consists of four “peripheral” tetrahedra surrounding the central
C half-diminished tetrahedron, with each peripheral tetrahedron sharing
three notes (and hence a face) with the original. Since the graph is homoge-
neous, the neighborhood around any tetrahedron will look locally like the one

46 By contrast, the lattice at the center of four-note chord  eliminating the perfectly even chord, we remove this inho-
space is not homogeneous, since each note of the dimin-  mogeneity, which in turn eliminates the need for redun-
ished seventh can be raised or lowered by semitone; in  dancies and flip restrictions.
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Figure 29. The four-note Tonnetz, with the diminished
sevenths flattened into two dimensions. Each note on one
layer can be connected to all the notes on the adjacent
layers, except those a semitone away. If we require that
chords be three-dimensional figures, then the diminished-
seventh chord is no longer available, since all its notes lie
in two dimensions.

shown in the figure. Thus, by relabeling the vertices on our graph, we could
represent the voice-leading possibilities for any chord in the four-note Ton-
netz (Figure 31).

The four-note Tonnetz is complex enough to justify a look at its chord-
based dual, whose cross sections are shown in Figures 32 and 33. (This struc-
ture is to our four-note Tonnetz as the “chicken-wire torus” is to the original
three-dimensional Tonnetz [Figure 1].) The graph is a circle of “rhombic
dodecahedra,” analogues to the hexagons shown in Figure 1b.*” Each rhom-
bic dodecahedron contains four dominant seventh, minor-seventh, and half-

47 The hexagon is the shape we get when we project  analogous projection of a four-dimensional cube. Musi-
a three-dimensional cube into two dimensions, along  cally, these projections arise when we remove the aug-
the diagonal line connecting two opposite vertices. (For  mented triad from the cubic lattice at the center of three-
instance, we can project the cube whose coordinates are  note chord space, or the diminished-seventh chord at the
all =1 into the plane whose coordinates sum to 0.) The  center of four-note chord space.

rhombic dodecahedron is the shape that results from the



42

JOURNAL of MUSIC THEORY

Figure 30. The tetrahedron representing C half-
diminished shares a face with four other

tetrahedra. As a result, there are four possible
“simplex flips,” each of which raises or lowers
a different note of the original chord.

diminished seventh chords, as well as two French sixths; all these chords draw
their notes from two adjacent diminished sevenths. The dominant seventh
chords on one dodecahedron are linked to the half~-diminished sevenths on
another dodecahedron by single-step voice leading.*®

Interestingly, the Tonnetz of Figure 29 is quite similar to a structure
discovered in the very early days of neo-Riemannian theory. Figure 34 pre-
sents an annotated reproduction of Ed Gollin’s “3D Tonnetz,” consisting of a
series of planes each containing the notes of a diminished-seventh chord
(Gollin 1998).* Exactly as in our own four-note Tonnetz, each note is con-
nected to all the notes on the next plane except those a semitone away. The
differences are relatively minor. First, Gollin’s space contains a few super-
fluous connections. For example, the C in the diminished-seventh chord is
connected by two distinct line segments to F§/Gb, implying that there are two
different but equal ways to move between them; in our space, by contrast, the
diminished-seventh chord forms a tetrahedron, with exactly one line seg-
ment connecting any two notes.”® Second, Gollin describes his figure as a

48 This graph can be obtained from the familiar chain
of four-dimensional cubes (Figure 17) by eliminating
diminished-seventh chords and connecting dominant and
half-diminished sevenths when they share a diminished
triad.

49 In an unpublished 1998 letter, Jack Douthett extended
Gollin’s figure by including minor-seventh chords, coming

very close to the four-dimensional Tonnetz (which, unlike
Douthett’s graph, also has French sixths).

50 On a sphere, any two points can be connected by two
separate arcs of the same great circle. But if Gollin’s cross
sections were truly spherical, then some of these line seg-
ments should intersect each other.
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(¢) (d)
C7 C7 C7[l,5] C¢7
C/D | ¢/Db | ¢/Db | C/Db
E/Eb | Eb/E | E/Eb | Eb/E
G/Gbh | G/Gb | Gb/G | Gb/G
Bb/A | Bb/A | Bb/A | Bb/Ab

Figure 31. (a—c) The local geometry around all chords on the Tonnetz is identical. (d) Every

note of every chord can either be raised or lowered but not both.

“three-dimensional torus,” whereas our figure is (topologically, at least) the

twisted product of a circle and a two-dimensional sphere. Third, Gollin pro-

poses his structure as a model of voice-leading relationships between dominant

seventh chords and half-diminished sevenths only, whereas our figure also

contains minor sevenths and French sixths. (Moreover, the note-based graph

in Figure 16 includes diminished sevenths as well.) These differences not-

withstanding, the relationship between the two figures is actually quite

remarkable. Gollin may not have had a robust geometrical framework for

thinking through these issues, but he came very close to the figure that we

have just described.

43
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Figure 32. The dual of the four-dimensional Tonnetz is a circle of rhombic dode-
cahedra. Each dodecahedron contains four dominant sevenths, half-diminished
sevenths, and minor sevenths, as well as two French sixths. Connections between
dodecahedra occur by way of the tetrachordal “R relation”—single-step voice lead-
ing between dominant and half-diminished sevenths sharing a diminished triad.

As before, the ideas in this section can be extended to arbitrary dimen-
sions. Whenever the number of notes in our chord evenly divides the number
of notes in our scale, we can construct a chord-based lattice that is a circle
of n-dimensional cubes linked by shared vertices. Taking the dual of each
hypercube and attaching in the appropriate way, we produce a circle of
n-dimensional cross-polytopes linked by shared simplicial facets. We then
forget the perfectly even chord, reconceiving the graph’s topology by “flat-
tening” the shared (n — 1)-simplicial facets so that they lie within an (n — 2)-
dimensional spherical space. This “forgetting” of the perfectly even chord
has the effect of linking chords by a generalized version of the “R relation”™—
linking chords such as major and minor triads, or dominant and half-
diminished sevenths, that share all but one of their notes with the perfectly
even chord.” The resulting graph can be conceived as a circular arrangement

51 The original circle of cross-polytopes will require flip
restrictions, since these chords share all but one of their
notes both with each other and with the perfectly even
chord. To model voice leading, we therefore need to
require that they move to one another not directly but by

way of the perfectly even chord. By forgetting the per-
fectly even chord, we lose the intermediary and hence the
need for flip restrictions—at the cost of distorting voice-
leading distances.
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Figure 34. (Top) Ed Gollin’s three-dimensional Tonnetz
(1998) is remarkably similar to the one we are discussing
(Figure 29). Gollin’s graph consists of a series of diminished-
seventh layers, with each note connected to all the other
notes in its own layer, and to all the notes in the adjacent
layers except those a semitone away. (Bottom) The only
difference lies in the internal geometry of the layers, with
Gollin’s cross section not being tetrahedral. However, one
can see hints that the cross section should be spherical,
since the two circumferential paths from G’ to F pass
through the same notes in the same order. (Gollin
incorrectly describes this graph as toroidal.) It is likely that
Gollin was trying to create straight lines that correspond
to motion by particular intervals (e.g., perfect fifth, major
third, etc.), but as in the case of the three-note Tonnetz, this
is incompatible with the goal of representing voice leading
accurately.
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Figure 35. Two adjacent layers of the five-note Tonnetz. Each four-dimensional simplex is
“flattened” into a three-dimensional figure, analogous to the two tetrahedra in Figure 28.
Numbers refer to scale degrees in fifteen-tone equal temperament. Each note on one layer is
connected to all the notes on the other layer, except for the one a semitone away.

of layers, with each layer being an (n — 2)-dimensional sphere, topologically
the outside or “hull” of an (n — 1)-dimensional simplex, and with every note
on one layer connected to all the notes on the next layer except for those that
are a single scale step away. Thus, the generalized Tonnetz, rather than
being a higher-dimensional torus, is the twisted product of a circle and a
higher-dimensional sphere—mathematically, an S"-? bundle over S'.5? (The
two-dimensional Tonnetz is a series of perfect fifths linked by common
tones—Figure 13c without the vertical lines; the six-dimensional Tonnetz is
graph-theoretically identical to Walter O’Connell’s “tone lattice” [1968], the
complete graph of pitch classes.) Figure 35 presents two adjacent layers of the
Tonnetz representing five-note chords in the fifteen-note equal-tempered
scale.

5. Historical and Analytical Conclusion

A decade ago, theorists confronted a blizzard of seemingly unrelated graphs.
Besides the standard Tonnetz, there was Ed Gollin’s three-dimensional Ton-
netz (Figure 34); Douthett and Steinbach’s (1998) chord-based “chicken-wire

52 The graph is “twisted” for the same reason that the  faces of Figure 14b are rotated relative to one another: if
chord-based analogue is twisted: a series of transpositions ~ we transpose the augmented triad up by four steps, we
will return us to the same horizontal location but in a new  return to the same triangle but with B in the voice that held

spatial orientation. Thus, for instance, the top and bottom G, D#in the voice that held B, and so on.
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torus” (Figure 1b), Cube Dance (Figure 14a), and “Power Towers” (a subgraph
of Figure 17); John Roeder’s set-class graphs; Cliff Callender’s trichordal set-
class space; Richard Cohn’s tetrahedral set-class space; and Ian Quinn’s six-
dimensional, Fourier-based model of chord quality.*® To the casual—or even
committed—theorist, it was not clear where these models came from or how
they related to one another. What was needed was a twofold process of gen-
eralization, one that allowed us to extend these specific models to a wider
range of musical circumstances (including arbitrary chords in arbitrary
scales), while also uncovering the structural principles linking them.

Since then we have seen significant progress on both fronts. An early
step was describing the continuous spaces representing voice-leading rela-
tionships among all n-note chords, spaces that naturally contained chord-
based graphs such as Cube Dance and Power Towers (Tymoczko 2006, 2011).
From there, it was possible to understand the analogous “set-class” graphs
discussed by Roeder, Callender, and Cohn (Callender, Quinn, and Tymoczko
2008). (Indeed, these set-class graphs are essentially projections of chord
spaces along the direction representing transposition.) Clear understanding
of these set-class graphs in turn made it possible to draw connections to Quinn’s
Fourier spaces.® With this article, we can start to bring the note-based graphs
into the fold, for we now have the ability to produce Tonnetz-style graphs that
describe a wide range of musical circumstances, as well as a more principled
understanding of their relation to their chord-based cousins. In this sense, we
are nearing the point where we can begin to see the outlines of a complete
geometrical theory of voice-leading.

Particularly interesting here is the way the Tonnetz, a fundamentally
discrete structure, falls out of the continuous spaces representing all possible
three-note chords. When Callender, Quinn, and I were struggling to formu-
late our general approach to chord and set-class geometry, continuity was
an important methodological principle: a robustly physical fact—since fre-
quency is in fact continuous—that privileges certain music-theoretical con-
structions over others. (Indeed, continuity was a key feature of Callender’s
groundbreaking 2004 paper.) For instance, continuity leads us to consider
the (note-based) circle of semitones B—C—Ci- . . . —[B] more fundamental
than the circle of fifths B-Ft—Ci#—. . . —[B], since the former, but not the latter,
is a simple discretization of the continuous pitch-class circle. From this point
of view, it is gratifying to find the circle of fifths reappearing as a chord-based
graph describing single-semitone voice leading among diatonic scales.” But
the Tonnetz never made any such reappearance: at best, it seemed like an

53 See Gollin 1998, Douthett and Steinbach 1998, Roeder 55 The circle of fifths can also be understood as the two-
1984 and 1987, Callender 2004, Cohn 2003, and Quinn note analogue of the traditional Tonnetz: if we remove the

2006 and 2007.

54 See Callender 2007, Hoffmann 2008, and Tymoczko
2008c.

tritones from Figure 13c, we obtain a sequence of perfect
fifths linked by voice leading in which only one voice
moves, and it moves by a major second.
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inaccurate and incomplete version of the lattice at the center of chromatic
three-note chord space rather than something more principled. Now, how-
ever, we understand that there is a nontoroidal version of the Tonnetz that is
simply the geometrical dual of Cube Dance, containing augmented triads and
faithfully representing voice-leading distances among its constituent chords.
This allows us to derive the Tonnetz from the continuous geometrical spaces
representing chords in general.

What remains is the very large project of using these spaces to elucidate
particular pieces. From this perspective, the work in this article might seem
somewhat superfluous, since it simply provides alternative representations of
relationships already modeled by the well-understood family of chord-based
graphs. However, there are situations where note-based graphs are quite use-
ful. Cohn, for example, has stressed that these graphs can sometimes allow
analysts to track the play of pitch classes more easily than the chord-based
alternatives. This is relevant in music where common-tone relationships play
an important role.® There is also the fact that the three- and four-note Ton-
netze can be embedded in spaces of one fewer dimension than their chord-
based counterparts: the standard Tonnetz is embeddable in two-dimensional
toroidal space, in either its note-based or chord-based versions (Figure 1a,b),
whereas “Cube Dance” requires three dimensions (Figure 14a); similarly, the
four-note Tonnetz (Figure 27) is embeddable in a three-dimensional space,
whereas the lattice at the center of four-note chord-space requires four dimen-
sions. (This reduction in dimensionality, as we have seen, is a byproduct of
the way the graphs eliminate the perfectly even chord, subtly distorting voice-
leading distances.) Not only does this dimensional reduction aid in visualiza-
tion, but it also opens the door to some interesting theoretical questions.
Giovanni Albini, for example, has explored Hamiltonian paths through these
spaces both in compositions and in theoretical work. (A Hamiltonian path
touches on all the vertices in a graph without passing through any of them
twice, and is in that sense a generalization of the twelve-tone row. If we are
interested in Hamiltonian paths, it pays to remove the augmented triad and
diminished-seventh chords, as they severely constrain the possibilities.) Finally,
it is inherently useful to have a principled theoretical understanding of the
connections between our various geometrical models of chord structure. The
very existence of these multiple models testifies to the incredible richness of
the voice-leading relations that underwrite so much familiar music.

That said, the complications we have encountered do underscore the
simplicity of the chord-based models. It is no accident, I think, that a general
understanding of voice-leading geometry began with the chord-based spaces,
as they are in many ways simpler to construct, generalize, and comprehend.

56 Suzannah Clark has argued that such relationships are
particularly important in Schubert, a point echoed in Cohn’s
own analysis of “Der Doppelganger.” See Clark 2002 and
Cohn 2011b.
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Absent a robust understanding of the full family of chord-based graphs, it
would be quite hard to see that the nontoroidal, three-dimensional Tonnetz
(Figure 14b) is in some ways preferable to the toroidal version shown in Fig-
ure la. Similarly, it would be (and indeed was) difficult to realize that the
generalized Tonnetz is the twisted product of a circle and a higher-dimen-
sional sphere. Furthermore, note-based graphs confront some inherent limi-
tations: as we consider more and more chords of larger and larger size, the
note-based Tonnetze become harder and harder to use, not just because their
dimension increases but also because they represent chords using extended
shapes (polytopes) which inevitably become hard to visualize. (The ratio of
polytopes to vertices grows with the dimension of the space, requiring us to
picture increasingly complex arrangements of the same basic pitch classes.)®’
Finally, while it is possible to eliminate dimensions in the second family of
chord-based graphs, this is not true in the note-based case: the chord-based
circle of fifths (Figure 19) is one-dimensional, while the note-based alternative
requires five additional dimensions! And of course, there are also those unat-
tractive but unavoidable redundancies and flip restrictions. For all of these
reasons, chord-based graphs are significantly simpler and more straightfor-
ward than the Tonnetze we have explored in this article.

Rather than concluding with a decision in favor of one or another type
of lattice, however, let me instead close by reflecting on the amazing fact that
we can derive something like the standard Tonnetz in three very different
ways: as a graph of acoustical relations among notes, as a graph of common-
tone relations among triads, and as a graph of efficient voice leading among
nearly even three-note chords. Cohn (2011a) has emphasized the many dif-
ferent times in which the Tonnetz has been rediscovered, by theorists with
many different interests and agendas. The present article identifies yet
another route to the figure: to generate Figure 14b’s “chain of octahedra,” we
do not need to make any postulates about acoustics or common tones; instead,
we simply take the geometrical dual of each cube in Figure 14a. In much the
same way, we can derive the “common tone” and “acoustical” Tonnetze with-
out mentioning voice leading at all. Prior to writing this article, I would have
said that one and the same structure could be put to three different theoretical
uses. And in a sense this is true: from the standpoint of graph theory, there
is just one equal-tempered Tonnetz. But to the geometrical music theorist,
the acoustic, common-tone, and voice-leading Tonnetze are all subtly differ-
ent creatures. The coincidence among them was striking enough to mislead
the theoretical community into thinking that there was just one underlying
structure, but we can now see that this is wrong. Our quest to generalize the
Tonnetz has also led us to particularize it, teasing apart the very similar struc-
tures that have previously gone under a single name.

57 For instance, the graph in Figure 14b has twelve points
and thirty-six triangles, while that in Figure 16 has twelve
points and forty-six tetrahedra.
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