Abstract
The size, heterogeneity, and biological production process of protein therapeutics like monoclonal antibodies create unique challenges for their analysis and regulation compared with small molecules. Complete structural characterization of a molecule 1000-fold heavier than aspirin is no small feat. Biological post-translational modifications such as glycosylation further complicate their characterization and regulation. Even approved protein therapeutics are known to contain multiple structural variants in differing amounts. Structural modification occurs during production and storage as well as within patients after administration. Thus, the goals of manufacturers and regulators are to control and characterize this heterogeneity, not take on the impossible task of eliminating it. The aim of this review is to describe the structural heterogeneities known to occur with immunoglobulin G (IgG), note current detection and analytical strategies, establish their causes, and define their potential effects on the ultimate safety, purity, and potency of antibody therapeutics when known.
Similar content being viewed by others
References
Reichert JM (2008) Monoclonal antibodies as innovative therapeutics. Curr Pharm Biotechnol 9:423–430
Spiegelberg HL, Fishkin BG (1972) The catabolism of human G immunoglobulins of different heavy chain subclasses. 3. The catabolism of heavy chain disease proteins and of Fc fragments of myeloma proteins. Clin Exp Immunol 10:599–607
Correia IR (2010) Stability of IgG isotypes in serum. MAbs 2:221–232
Nimmerjahn F, Ravtech JV (2008) Fcγ receptors as regulators of immune responses. Nat Rev Immunol 8:34–47
Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7:715–725
Ghetie V, Ward ES (2000) Multiple roles for the major histocompatibility complex class I- related receptor FcRn. Annu Rev Immunol 18:739–766
Stern M, Herrmann R (2005) Overview of monoclonal antibodies in cancer therapy: present and promise. Crit Rev Oncol Hematol 54:11–29
Osbourn J, Jermutus L, Duncan A (2003) Current methods for the generation of human antibodies for the treatment of autoimmune diseases. Drug Discov Today 8:845–851
Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19:936–949
Read EK, Park JT, Brorson KA (2011) Industry and regulatory experience of the glycosylation of monoclonal antibodies. Biotechnol Appl Biochem 58:213–219
Bretthauer RK, Castellino FJ (1999) Glycosylation of Pichia pastoris-derived proteins. Biotechnol Appl Biochem 30(Pt 3):193–200
Gomord V, Faye L (2004) Post-translational modification of therapeutic proteins in plants. Curr Opin Plant Biol 7:171–181
Sox HC Jr, Hood L (1970) Attachment of carbohydrate to the variable region of myeloma immunoglobulin light chains. Proc Natl Acad Sci U S A 66:975–982
Spiegelberg HL, Abel CA, Fishkin BG, Grey HM (1970) Localization of the carbohydrate within the variable region of light and heavy chains of human γG myeloma proteins. Biochemistry 9:4217–4223
Holland M, Yagi H, Takahashi N, Kato K, Savage COS, Goodall DM, Jefferis R (2006) Differential glycosylation of polyclonal IgG, IgG-Fc, and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim Biophys Acta Gen Subj 1760:669–677
Wright A, Tao MH, Kabat EA, Morrison SL (1991) Antibody variable region glycosylation: position effects on antigen binding and carbohydrate structure. EMBO J 10:2717–2723
Wallick SC, Kabat EA, Morrison SL (1988) Glycosylation of a VH residue of a monoclonal antibody against alpha (1–6) dextran increases its affinity for antigen. J Exp Med 168:1099–1109
Jacquemin M, Radcliffe CM, Lavend'Homme R, Wormald MR, Vanderelst L, Wallays G, Dewaele J, Collen D, Vermylen J, Dwek RA, Saint-Remy JM, Rudd PM, Dewerchin M (2006) Variable region heavy chain glycosylation determines the anticoagulant activity of a factor VIII antibody. J Thromb Haemost 4:1047–1055
Mimura Y, Ashton PR, Takahashi N, Harvey DJ, Jefferis R (2007) Contrasting glycosylation profiles between Fab and Fc of a human IgG protein studied by electrospray ionization mass spectrometry. J Immunol Methods 326:116–126
Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P (2003) Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol 979–989
Sondermann P, Huber R, Oosthuizen V, Jacob U (2000) The 3.2-angst. Crystal structure of the human IgG1 Fc fragment-Fc[gamma]RIII complex. Nature 406:267–273
Edelman GM, Cunningham BA, Gall WE, Gottlieb PD, Rutishauser U, Waxdal MJ (1969) The covalent structure of an entire gammaG immunoglobulin molecule. Proc Natl Acad Sci U S A 63:78–85
Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, Xie D, Lai J, Stadlen A, Li B, Fox JA, Presta LG (2001) High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J Biol Chem 276:6591–6604
Yamaguchi Y, Nishimura M, Nagano M, Yagi H, Sasakawa H, Uchida K, Shitara K, Kato K (2006) Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Biochim Biophys Acta Gen Subj 1760:693–700
Mimura Y, Sondermann P, Ghirlando R, Lund J, Young SP, Goodall M, Jefferis R (2001) Role of oligosaccharide residues of IgG1-Fc in FcγRIIb binding. J Biol Chem 276:45539–45547
Leatherbarrow RJ, Rademacher TW, Dwek RA, Woof JM, Clark A, Burton DR, Richardson N, Feinstein A (1985) Effector functions of a monoclonal aglycosylated mouse IgG2a: binding and activation of complement component C1 and interaction with human monocyte Fc receptor. Mol Immunol 22:407–415
Kanda Y, Yamada T, Mori K, Okazaki A, Inoue M, Kitajima-Miyama K, Kuni-Kamochi R, Nakano R, Yano K, Kakita S, Shitara K, Satoh M (2007) Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology 17:104–118
Barb AW, Prestegard JH (2011) NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat Chem Biol 7:147–153
Pučić M, Knežević A, Vidič J, Adamczyk B, Novokmet M, Polašek O, Gornik O, Šupraha-Goreta S, Wormald MR, Redžić I, Campbell H, Wright A, Hastie ND, Wilson JF, Rudan I, Wuhrer M, Rudd PM, Josić D, Lauc G (2011) High throughput isolation and glycosylation analysis of IgG—variability and heritability of the IgG glycome in three isolated human populations. Mol Cell Proteomics 10(10):M111.010090
Wacker C, Berger CN, Girard P, Meier R (2011) Glycosylation profiles of therapeutic antibody pharmaceuticals. Eur J Pharm Biopharm 79:503–507
Costa AR, Rodrigues ME, Henriques M, Oliveira R, Azeredo J (2013) Glycosylation: impact, control, and improvement during therapeutic protein production. Crit Rev Biotechnol
Wright A, Morrison SL (1998) Effect of C2-associated carbohydrate structure on Ig effector function: studies with chimeric mouse-human IgG1 antibodies in glycosylation mutants of Chinese hamster ovary cells. J Immunol 160:3393–3402
Shields RL, Lai J, Keck R, O'Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcγ RIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740
Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473
Tangvoranuntakul P, Gagneux P, Diaz S, Bardor M, Varki N, Varki A, Muchmore E (2003) Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc Natl Acad Sci U S A 100:12045–12050
Jez J, Antes B, Castilho A, Kainer M, Wiederkum S, Grass J, Rüker F, Woisetschläger M, Steinkellner H (2012) Significant impact of single N-glycan residues on the biological activity of Fc-based antibody-like fragments. J Biol Chem 287:24313–24319
Boyd PN, Lines AC, Patel AK (1995) The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol Immunol 32:1311–1318
Hodoniczky J, Zheng YZ, James DC (2005) Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog 21:1644–1652
Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, Murphy BA, Satinover SM, Hosen J, Mauro D, Slebos RJ, Zhou Q, Gold D, Hatley T, Hicklin DJ, Platts-Mills TA (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-α-1,3-galactose. N Engl J Med 358:1109–1117
Takeuchi M, Inoue N, Strickland TW, Kubota M, Wada M, Shimizu R, Hoshi S, Kozutsumi H, Takasaki S, Kobata A (1989) Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells. Proc Natl Acad Sci U S A 86:7819–7822
Nimmerjahn F, Ravetch JV (2008) Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 26:513–533
Nimmerjahn F, Ravetch JV (2007) The anti-inflammatory activity of IgG: the intravenous IgG paradox. J Exp Med 204:11–15
Anthony RM, Wermeling F, Karlsson MC, Ravetch JV (2008) Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci U S A 105:19571–19578
Higashi H, Naiki M, Matuo S, Ōkouchi K (1977) Antigen of “serum sickness” type of heterophile antibodies in human sera: identification as gangliosides with N-glycolylneuraminic acid. Biochem Biophys Res Commun 79:388–395
Merrick JM, Zadarlik K, Milgrom F (1978) Characterization of the Hanganutziu-Deicher (serum-sickness) antigen as gangliosides containing N-glycolylneuraminic acid. Int Arch Allergy Appl Immunol 57:477–580
Ghaderi D, Taylor RE, Padler-Karavani V, Diaz S, Varki A (2010) Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol 28:863–867
Wright A, Sato Y, Okada T, Chang KH, Endo T, Morrison SL (2000) In vivo trafficking and catabolism of IgG1 antibodies with Fc associated carbohydrates of differing structure. Glycobiology 10:1347–1355
Yu M, Brown D, Reed C, Chung S, Lutman J, Stefanich E, Wong A, Stephan J-P, Bayer R (2012) Production, characterization, and pharmacokinetic properties of antibodies with N-linked mannose-5 glycans. mAbs 4(4):475–487, Landes Bioscience
Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17:176–180
Ferrara C, Brünker P, Suter T, Moser S, Püntener U, Umaña P (2006) Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous β1,4-N-acetylglucosaminyltransferase III and Golgi α-mannosidase II. Biotechnol Bioeng 93:851–861
Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291
Read EK, Bradley SA, Smitka TA, Agarabi CD, Lute SC, Brorson KA (2013) Fermentanomics informed amino acid supplementation of an antibody producing mammalian cell culture. Biotechnol Prog 29:745–753
Abu-Absi SF, Yang L, Thompson P, Jiang C, Kandula S, Schilling B, Shukla AA (2010) Defining process design space for monoclonal antibody cell culture. Biotechnol Bioeng 106:894–905
Schiel JE (2012) Glycoprotein analysis using mass spectrometry: unraveling the layers of complexity. Anal Bioanal Chem 404:1141–1149
Prien JM, Prater BD, Cockrill SL (2010) A multi-method approach toward de novo glycan characterization: a Man-5 case study. Glycobiology 20:629–647
Mechref Y, Hu Y, Desantos-Garcia JL, Hussein A, Tang H (2013) Quantitative glycomics strategies. Mol Cell Proteomics 12:874–884
Matsumiya S, Yamaguchi Y, Saito J-I, Nagano M, Sasakawa H, Otaki S, Satoh M, Shitara K, Kato K (2007) Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1. J Mol Biol 368:767–779
Houde D, Peng Y, Berkowitz SA, Engen JR (2010) Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol Cell Proteomics 9:1716–1728
Ferrara C, Stuart F, Sondermann P, Brünker P, Umaña P (2006) Thecarbohydrate at FcγRIIIa Asn-162: an element required for high affinity binding to non-fucosylated IgG glycoforms. J Biol Chem 281:5032–5036
Ferrara C, Grau S, Jager C, Sondermann P, Brunker P, Waldhauer I, Hennig M, Ruf A, Rufer AC, Stihle M, Umana P, Benz J (2011) Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcγRIII and antibodies lacking core fucose. Proc Natl Acad Sci U S A 108:12669–12674
Beck A, Reichert JM (1012) Marketing approval of mogamulizumab: a triumph for glyco-engineering, mAbs. Landes Bioscience: pp 419–425
Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1:237–243
Rademacher TW, Williams P, Dwek RA (1994) Agalactosyl glycoforms of IgG autoantibodies are pathogenic. Proc Natl Acad Sci U S A 91:6123–6127
Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, Rademacher TW, Mizuochi T, Taniguchi T, Matsuta K et al (1985) Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316:452–457
Youings A, Chang SC, Dwek RA, Scragg IG (1996) Site-specific glycosylation of human immunoglobulin G is altered in four rheumatoid arthritis patients. Biochem J 314(Pt 2):621–630
Rook GA, Steele J, Brealey R, Whyte A, Isenberg D, Sumar N, Nelson JL, Bodman KB, Young A, Roitt IM et al (1991) Changes in IgG glycoform levels are associated with remission of arthritis during pregnancy. J Autoimmun 4:779–794
Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV (2008) Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320:373–376
Kaneko Y, Nimmerjahn F, Ravetch JV (2006) Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313:670–673
Nimmerjahn F, Anthony RM, Ravetch JV (2007) Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc Natl Acad Sci U S A 104:8433–8437
Yang M, Butler M (2000) Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnol Bioeng 68:370–380
Gawlitzek M, Ryll T, Lofgren J, Sliwkowski MB (2000) Ammonium alters N-glycan structures of recombinant TNFR-IgG: degradative versus biosynthetic mechanisms. Biotechnol Bioeng 68:637–646
Yoo EM, Yu LJ, Wims LA, Goldberg D, Morrison SL (2010) Differences in N-glycan structures found on recombinant IgA1 and IgA2 produced in murine myeloma and CHO cell lines. MAbs 2:320–334
Galili U, Macher BA, Buehler J, Shohet SB (1985) Human natural anti-α-galactosyl IgG. II. The specific recognition of alpha (1–3)-linked galactose residues. J Exp Med 162:573–582
Galili U, Rachmilewitz EA, Peleg A, Flechner I (1984) A unique natural human IgG antibody with anti-α-galactosyl specificity. J Exp Med 160:1519–1531
Vecchi ML, Davin JC, Castronovo V, Foidart JM, Malaise M, Foidart JB, Dechene C, Sangiorgi GB, Mahieu P (1989) Reactivity of human anti-α-galactosyl IgG antibody with α(1– > 3)-linked galactosyl epitopes exposed on basement membranes and on glomerular epithelial cells: an in vitro and in vivo study in the mouse. Clin Exp Immunol 78:271–277
Arkestal K, Sibanda E, Thors C, Troye-Blomberg M, Mduluza T, Valenta R, Gronlund H, van Hage M (2011) Impaired allergy diagnostics among parasite-infected patients caused by IgE antibodies to the carbohydrate epitope galactose-α1,3-galactose. J Allergy Clin Immunol 127:1024–1028
Commins SP, Kelly LA, Ronmark E, James HR, Pochan SL, Peters EJ, Lundback B, Nganga LW, Cooper P, Hoskins JM, Eapen SS, Matos LA, McBride DC, Heymann PW, Woodfolk JA, Perzanowski MS, Platts-Mills TA (2012) Galactose-α-1,3-galactose-specific IgE is associated with anaphylaxis but not asthma. Am J Respir Crit Care Med 185:723–730
van Bueren JJL, Rispens T, Verploegen S, van der Palen-Merkus T, Stapel S, Workman LJ, James H, van Berkel PHC, van de Winkel JGJ, Platts-Mills TAE, Parren PWHI (2011) Anti-galactose-α-1,3-galactose IgE from allergic patients does not bind α-galactosylated glycans on intact therapeutic antibody Fc domains. Nat Biotechnol 29:574–576
Erbayraktar S, Grasso G, Sfacteria A, Xie QW, Coleman T, Kreilgaard M, Torup L, Sager T, Erbayraktar Z, Gokmen N, Yilmaz O, Ghezzi P, Villa P, Fratelli M, Casagrande S, Leist M, Helboe L, Gerwein J, Christensen S, Geist MA, Pedersen LO, Cerami-Hand C, Wuerth JP, Cerami A, Brines M (2003) Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci U S A 100:6741–6746
Egrie JC, Dwyer E, Browne JK, Hitz A, Lykos MA (2003) Darbepoetin-α has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol 31:290–299
Putnam WS, Prabhu S, Zheng Y, Subramanyam M, Wang YM (2010) Pharmacokinetic, pharmacodynamic, and immunogenicity comparability assessment strategies for monoclonal antibodies. Trends Biotechnol 28:509–516
Padler-Karavani V, Yu H, Cao H, Chokhawala H, Karp F, Varki N, Chen X, Varki A (2008) Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology 18:818–830
Yang M, Butler M (2000) Effect of ammonia on the glycosylation of human recombinant erythropoietin in culture. Biotechnol Prog 16:751–759
Borys MC, Linzer DI, Papoutsakis ET (1993) Culture pH affects expression rates and glycosylation of recombinant mouse placental lactogen proteins by Chinese hamster ovary (CHO) cells. Biotechnology (NY) 11:720–724
Flynn GC, Chen X, Liu YD, Shah B, Zhang Z (2010) Naturally occurring glycan forms of human immunoglobulins G1 and G2. Mol Immunol 47:2074–2082
Goetze AM, Liu YD, Zhang Z, Shah B, Lee E, Bondarenko PV, Flynn GC (2011) High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology 21:949–959
Chen X, Liu YD, Flynn GC (2009) The effect of Fc glycan forms on human IgG2 antibody clearance in humans. Glycobiology 19:240–249
Zhou Q, Shankara S, Roy A, Qiu H, Estes S, McVie-Wylie A, Culm-Merdek K, Park A, Pan C, Edmunds T (2008) Development of a simple and rapid method for producing non-fucosylated oligomannose containing antibodies with increased effector function. Biotechnol Bioeng 99:652–665
Pacis E, Yu M, Autsen J, Bayer R, Li F (2011) Effects of cell culture conditions on antibody N-linked glycosylation-what affects high mannose 5 glycoform. Biotechnol Bioeng 108(10):2348–2358
Davies J, Jiang L, Pan L-Z, LaBarre MJ, Anderson D, Reff M (2001) Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FCγRIII. Biotechnol Bioeng 74:288–294
Campbell C, Stanley P (1984) A dominant mutation to ricin resistance in Chinese hamster ovary cells induces UDP-GlcNAc:glycopeptide beta-4-N-acetylglucosaminyltransferase III activity. J Biol Chem 259:13370–13378
Hermeling S, Crommelin DA, Schellekens H, Jiskoot W (2004) Structure–immunogenicity relationships of therapeutic proteins. Pharm Res 21:897–903
Salas-Solano O, Kennel B, Park SS, Roby K, Sosic Z, Boumajny B, Free S, Reed-Bogan A, Michels D, McElroy W, Bonasia P, Hong M, He X, Ruesch M, Moffatt F, Kiessig S, Nunnally B (2012) Robustness of iCIEF methodology for the analysis of monoclonal antibodies: an interlaboratory study. J Sep Sci 35:3124–3129
Zhang T, Bourret J, Cano T (2011) Isolation and characterization of therapeutic antibody charge variants using cation exchange displacement chromatography. J Chromatogr A 1218:5079–5086
Khawli LA, Goswami S, Hutchinson R, Kwong ZW, Yang J, Wang X, Yao Z, Sreedhara A, Cano T, Tesar D, Nijem I, Allison DE, Wong PY, Kao YH, Quan C, Joshi A, Harris RJ, Motchnik P (2010) Charge variants in IgG1: isolation, characterization, in vitro binding properties, and pharmacokinetics in rats. MAbs 2:613–624
Holzmann J, Hausberger A, Rupprechter A, Toll H (2013) Top-down MS for rapid methionine oxidation site assignment in filgrastim. Anal Bioanal Chem 405:6667–6674
Jiang H, Wu SL, Karger BL, Hancock WS (2009) Mass spectrometric analysis of innovator, counterfeit, and follow-on recombinant human growth hormone. Biotechnol Prog 25:207–218
Božič B, Čučnik S, Kveder T, Rozman B (2006) Changes in avidity and specificity of IgG during electro-oxidation. Relevance of binding of antibodies to β2-GPI. Autoimmun Rev 6:28–32
Bertolotti-Ciarlet A, Wang W, Lownes R, Pristatsky P, Fang Y, McKelvey T, Li Y, Li Y, Drummond J, Prueksaritanont T, Vlasak J (2009) Impact of methionine oxidation on the binding of human IgG1 to FcRn and Fcγ receptors. Mol Immunol 46:1878–1882
Liu D, Ren D, Huang H, Dankberg J, Rosenfeld R, Cocco MJ, Li L, Brems DN, Remmele RL (2008) Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation. Biochemistry 47:5088–5100
Liu H, Gaza-Bulseco G, Xiang T, Chumsae C (2008) Structural effect of deglycosylation and methionine oxidation on a recombinant monoclonal antibody. Mol Immunol 45:701–708
Burkitt W, Domann P, O'Connor G (2010) Conformational changes in oxidatively stressed monoclonal antibodies studied by hydrogen exchange mass spectrometry. Protein Sci 19:826–835
Pan H, Chen K, Chu L, Kinderman F, Apostol I, Huang G (2009) Methionine oxidation in human IgG2 Fc decreases binding affinities to protein A and FcRn. Protein Sci 18:424–433
Gaza-Bulseco G, Faldu S, Hurkmans K, Chumsae C, Liu H (2008) Effect of methionine oxidation of a recombinant monoclonal antibody on the binding affinity to protein A and protein G. J Chromatogr B Anal Technol Biomed Life Sci 870:55–62
Cromwell ME, Hilario E, Jacobson F (2006) Protein aggregation and bioprocessing. AAPS J 8:E572–E579
Wang W, Vlasak J, Li Y, Pristatsky P, Fang Y, Pittman T, Roman J, Wang Y, Prueksaritanont T, Ionescu R (2011) Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies. Mol Immunol 48:860–866
Yin S, Pastuskovas C, Khawli L, Stults J (2013) Characterization of therapeutic monoclonal antibodies reveals differences between in vitro and in vivo time-course studies. Pharm Res 30:167–178
Chumsae C, Gaza-Bulseco G, Sun J, Liu H (2007) Comparison of methionine oxidation in thermal stability and chemically stressed samples of a fully human monoclonal antibody. J Chromatogr B Anal Technol Biomed Life Sci 850:285–294
Liu H, Gaza-Bulseco G, Zhou L (2009) Mass spectrometry analysis of photo-induced methionine oxidation of a recombinant human monoclonal antibody. J Am Soc Mass Spectrom 20:525–528
Vlasak J, Ionescu R (2008) Heterogeneity of monoclonal antibodies revealed by charge-sensitive methods. Curr Pharm Biotechnol 9:468–481
Nepomuceno AI, Gibson RJ, Randall SM, Muddiman DC (2014) Accurate identification of deamidated peptides in global proteomics using a quadrupole orbitrap mass spectrometer. J Proteome Res 13:777–785
Sydow JF, Lipsmeier F, Larraillet V, Hilger M, Mautz B, Molhoj M, Kuentzer J, Klostermann S, Schoch J, Voelger HR, Regula JT, Cramer P, Papadimitriou A, Kettenberger H (2014) Structure-based prediction of asparagine and aspartate degradation sites in antibody variable regions. PLoS One 9:e100736
Chelius D, Rehder DS, Bondarenko PV (2005) Identification and characterization of deamidation sites in the conserved regions of human immunoglobulin-γ antibodies. Anal Chem 77:6004–6011
Jenkins N, Murphy L, Tyther R (2008) Post-translational modifications of recombinant proteins: significance for biopharmaceuticals. Mol Biotechnol 39:113–118
Liu YD, van Enk JZ, Flynn GC (2009) Human antibody Fc deamidation in vivo. Biologicals 37:313–322
Mamula MJ, Gee RJ, Elliott JI, Sette A, Southwood S, Jones PJ, Blier PR (1999) Isoaspartyl post-translational modification triggers autoimmune responses to self-proteins. J Biol Chem 274:22321–22327
Goetze AM, Schenauer MR, Flynn GC (2010) Assessing monoclonal antibody product quality attribute criticality through clinical studies. MAbs 2:500–507
Liu H, May K (2012) Disulfide bond structures of IgG molecules: structural variations, chemical modifications, and possible impacts to stability and biological function. MAbs 4:17–23
Wang W, Singh S, Zeng DL, King K, Nema S (2007) Antibody structure, instability, and formulation. J Pharm Sci 96:1–26
Han M, Phan D, Nightlinger N, Taylor L, Jankhah S, Woodruff B, Yates Z, Freeman S, Guo A, Balland A, Pettit D (2006) Optimization of CE-SDS method for antibody separation based on multi-users experimental practices. Chromatographia 64:335–342
Zhang W, Marzilli LA, Rouse JC, Czupryn MJ (2002) Complete disulfide bond assignment of a recombinant immunoglobulin G4 monoclonal antibody. Anal Biochem 311:1–9
Harris RJ (2005) Heterogeneity of recombinant antibodies: linking structure to function. Dev Biol (Basel) 122:117–127
Liu YD, Chen X, von Enk JZ, Plant M, Dillon TM, Flynn GC (2008) Human IgG2 antibody disulfide rearrangement in vivo. J Biol Chem 283:29266–29272
Wypych J, Li M, Guo A, Zhang Z, Martinez T, Allen MJ, Fodor S, Kelner DN, Flynn GC, Liu YD, Bondarenko PV, Ricci MS, Dillon TM, Balland A (2008) Human IgG2 antibodies display disulfide-mediated structural isoforms. J Biol Chem 283:16194–16205
Yoo EM, Wims LA, Chan LA, Morrison SL (2003) Human IgG2 can form covalent dimers. J Immunol 170:3134–3138
Hayes NV, Smales CM, Klappa P (2010) Protein disulfide isomerase does not control recombinant IgG4 productivity in mammalian cell lines. Biotechnol Bioeng 105:770–779
Rispens T, Ooijevaar-de Heer P, Bende O, Aalberse RC (2011) Mechanism of immunoglobulin G4 Fab-arm exchange. J Am Chem Soc 133:10302–10311
Schuurman J, Perdok GJ, Gorter AD, Aalberse RC (2001) The inter-heavy chain disulfide bonds of IgG4 are in equilibrium with intra-chain disulfide bonds. Mol Immunol 38:1–8
Schuurman J, Van Ree R, Perdok GJ, Van Doorn HR, Tan KY, Aalberse RC (1999) Normal human immunoglobulin G4 is bispecific: it has two different antigen-combining sites. Immunology 97:693–698
van der Neut Kolfschoten M, Schuurman J, Losen M, Bleeker WK, Martínez-Martínez P, Vermeulen E, den Bleker TH, Wiegman L, Vink T, Aarden LA, De Baets MH, van de Winkel JG, Aalberse RC, Parren PWHI (2007) Antiinflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317:1554–1557
Bloom JW, Madanat MS, Marriott D, Wong T, Chan S-Y (1997) Intrachain disulfide bond in the core hinge region of human IgG4. Protein Sci 6:407–415
Peters SJ, Smales CM, Henry AJ, Stephens PE, West S, Humphreys DP (2012) Engineering an improved IgG4 molecule with reduced disulfide bond heterogeneity and increased Fab domain thermal stability. J Biol Chem 287:24525–24533
Gu S, Wen D, Weinreb PH, Sun Y, Zhang L, Foley SF, Kshirsagar R, Evans D, Mi S, Meier W, Pepinsky RB (2010) Characterization of trisulfide modification in antibodies. Anal Biochem 400:89–98
Pristatsky P, Cohen SL, Krantz D, Acevedo J, Ionescu R, Vlasak J (2009) Evidence for trisulfide bonds in a recombinant variant of a human IgG2 monoclonal antibody. Anal Chem 81:6148–6155
Tous GI, Wei Z, Feng J, Bilbulian S, Bowen S, Smith J, Strouse R, McGeehan P, Casas-Finet J, Schenerman MA (2005) Characterization of a novel modification to monoclonal antibodies: thioether cross-link of heavy and light chains. Anal Chem 77:2675–2682
Cohen SL, Price C, Vlasak J (2007) Beta-elimination and peptide bond hydrolysis: two distinct mechanisms of human IgG1 hinge fragmentation upon storage. J Am Chem Soc 129:6976–6977
Thies MJ, Talamo F, Mayer M, Bell S, Ruoppolo M, Marino G, Buchner J (2002) Folding and oxidation of the antibody domain C(H)3. J Mol Biol 319:1267–1277
McAuley A, Jacob J, Kolvenbach CG, Westland K, Lee HJ, Brych SR, Rehder D, Kleemann GR, Brems DN, Matsumura M (2008) Contributions of a disulfide bond to the structure, stability, and dimerization of human IgG1 antibody CH3 domain. Protein Sci 17:95–106
Franey H, Brych SR, Kolvenbach CG, Rajan RS (2010) Increased aggregation propensity of IgG2 subclass over IgG1: role of conformational changes and covalent character in isolated aggregates. Protein Sci 19:1601–1615
Lacy ER, Baker M, Brigham-Burke M (2008) Free sulfhydryl measurement as an indicator of antibody stability. Anal Biochem 382:66–68
Maas C, Hermeling S, Bouma B, Jiskoot W, Gebbink MFBG (2007) A role for protein misfolding in immunogenicity of biopharmaceuticals. J Biol Chem 282:2229–2236
Jairajpuri DS, Fatima S, Saleemuddin M (2007) Immunoglobulin glycation with fructose: a comparative study. Clin Chim Acta 378:86–92
Quan C, Alcala E, Petkovska I, Matthews D, Canova-Davis E, Taticek R, Ma S (2008) A study in glycation of a therapeutic recombinant humanized monoclonal antibody: where it is, how it got there, and how it affects charge-based behavior. Anal Biochem 373:179–191
Newkirk MM, Goldbach-Mansky R, Lee J, Hoxworth J, McCoy A, Yarboro C, Klippel J, El-Gabalawy HS (2003) Advanced glycation end-product (AGE)-damaged IgG and IgM autoantibodies to IgG-AGE in patients with early synovitis. Arthritis Res Ther 5:R82–R90
Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412
Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625
Gugliucci A (2000) Glycation as the glucose link to diabetic complications. J Am Osteopath Assoc 100:621–634
Rasheed Z, Kumar L, Abbas S, Prasad I, Ansari N, Ahmad R (2009) Advanced glycation end-products damaged IgG, a _target for circulating autoantibodies in patients with type 1 diabetes mellitus. Open Glycosci 2:1–8
Vrdoljak A, Trescec A, Benko B, Hecimovic D, Simic M (2004) In vitro glycation of human immunoglobulin G. Clin Chim Acta 345:105–111
Ahmad S, Habib S, Moinuddin, Ali A (2013) Preferential recognition of epitopes on AGE-IgG by the autoantibodies in rheumatoid arthritis patients. Hum Immunol 74:23–27
Shaikh S, Nicholson LF (2008) Advanced glycation end products induce in vitro cross-linking of alpha-synuclein and accelerate the process of intracellular inclusion body formation. J Neurosci Res 86:2071–2082
Kennedy DM, Skillen AW, Self CH (1994) Glycation of monoclonal antibodies impairs their ability to bind antigen. Clin Exp Immunol 98:245–251
Fischer S, Hoernschemeyer J, Mahler H-C (2008) Glycation during storage and administration of monoclonal antibody formulations. Eur J Pharm Biopharm 70:42–50
Goetze AM, Liu YD, Arroll T, Chu L, Flynn GC (2012) Rates and impact of human antibody glycation in vivo. Glycobiology 22:221–234
Gadgil HS, Bondarenko PV, Pipes G, Rehder D, McAuley A, Perico N, Dillon T, Ricci M, Treuheit M (2007) The LC/MS analysis of glycation of IgG molecules in sucrose containing formulations. J Pharm Sci 96:2607–2621
Lapolla A, Tonani R, Fedele D, Garbeglio M, Senesi A, Seraglia R, Favretto D, Traldi P (2002) Nonenzymatic glycation of IgG: an in vivo study. Horm Metab Res 34:260–264
Dolhofer-Bliesener R, Gerbitz KD (1990) Effect of nonenzymatic glycation on the structure of immunoglobulin G. Biol Chem Hoppe Seyler 371:693–697
Morin LG, Austin GE, Rodey GE, Johnson JE (1989) Nonenzymic glycation of human immunoglobulins does not impair their immunoreactivity. Clin Chem 35:1039–1042
Dolhofer R, Siess EA, Wieland OH (1985) Nonenzymatic glycation of immunoglobulins leads to an impairment of immunoreactivity. Biol Chem Hoppe Seyler 366:361–366
Moinuddin AS, Ali A (2012) Immunological studies on glycated human IgG. Life Sci 90:980–987
Chikazawa M, Otaki N, Shibata T, Miyashita H, Kawai Y, Maruyama S, Toyokuni S, Kitaura Y, Matsuda T, Uchida K (2013) Multispecificity of immunoglobulin M Antibodies raised against advanced glycation end products: involvement of electronegative potential of antigens. J Biol Chem 288:13204–13214
Moinuddin AS, Khan RH, Ali A (2012) Physicochemical studies on glycation-induced structural changes in human IgG. IUBMB Life 64:151–156
Eon-Duval A, Broly H, Gleixner R (2012) Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach. Biotechnol Prog 28:608–622
Beck A, Sanglier-Cianferani S, Van Dorsselaer A (2012) Biosimilar, biobetter, and next generation antibody characterization by mass spectrometry. Anal Chem 84:4637–4646
Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianferani S (2013) Characterization of therapeutic antibodies and related products. Anal Chem 85:715–736
Wang B, Gucinski AC, Keire DA, Buhse LF, Boyne MT II (2013) Structural comparison of two anti-CD20 monoclonal antibody drug products using middle-down mass spectrometry. Analyst 138:3058–3065
Lyubarskaya Y, Houde D, Woodard J, Murphy D, Mhatre R (2006) Analysis of recombinant monoclonal antibody isoforms by electrospray ionization mass spectrometry as a strategy for streamlining characterization of recombinant monoclonal antibody charge heterogeneity. Anal Biochem 348:24–39
Antes B, Amon S, Rizzi A, Wiederkum S, Kainer M, Szolar O, Fido M, Kircheis R, Nechansky A (2007) Analysis of lysine clipping of a humanized Lewis-Y specific IgG antibody and its relation to Fc-mediated effector function. J Chromatogr B Anal Technol Biomed Life Sci 852:250–256
Cai B, Pan H, Flynn GC (2011) C-terminal lysine processing of human immunoglobulin G2 heavy chain in vivo. Biotechnol Bioeng 108:404–412
Dick LW Jr, Qiu D, Mahon D, Adamo M, Cheng KC (2008) C-terminal lysine variants in fully human monoclonal antibodies: investigation of test methods and possible causes. Biotechnol Bioeng 100:1132–1143
Lubiniecki A, Volkin DB, Federici M, Bond MD, Nedved ML, Hendricks L, Mehndiratta P, Bruner M, Burman S, DalMonte P, Kline J, Ni A, Panek ME, Pikounis B, Powers G, Vafa O, Siegel R (2011) Comparability assessments of process and product changes made during development of two different monoclonal antibodies. Biologicals 39:9–22
Kinoshita M, Nakatsuji Y, Suzuki S, Hayakawa T, Kakehi K (2013) Quality assurance of monoclonal antibody pharmaceuticals based on their charge variants using microchip isoelectric focusing method. J Chromatogr A 1309:76–83
Kang X, Kutzko JP, Hayes ML, Frey DD (2013) Monoclonal antibody heterogeneity analysis and deamidation monitoring with high-performance cation-exchange chromatofocusing using simple, two component buffer systems. J Chromatogr A 1283:89–97
Chelius D, Jing K, Lueras A, Rehder DS, Dillon TM, Vizel A, Rajan RS, Li T, Treuheit MJ, Bondarenko PV (2006) Formation of pyroglutamic acid from N-terminal glutamic acid in immunoglobulin-γ antibodies. Anal Chem 78:2370–2376
Yan B, Valliere-Douglass J, Brady L, Steen S, Han M, Pace D, Elliott S, Yates Z, Han Y, Balland A, Wang W, Pettit D (2007) Analysis of post-translational modifications in recombinant monoclonal antibody IgG1 by reversed-phase liquid chromatography/mass spectrometry. J Chromatogr A 1164:153–161
Rehder DS, Dillon TM, Pipes GD, Bondarenko PV (2006) Reversed-phase liquid chromatography/mass spectrometry analysis of reduced monoclonal antibodies in pharmaceutics. J Chromatogr A 1102:164–175
Liu YD, Goetze AM, Bass RB, Flynn GC (2011) N-terminal glutamate to pyroglutamate conversion in vivo for human IgG2 antibodies. J Biol Chem 286:11211–11217
van de Putte LB, Atkins C, Malaise M, Sany J, Russell AS, van Riel PL, Settas L, Bijlsma JW, Todesco S, Dougados M, Nash P, Emery P, Walter N, Kaul M, Fischkoff S, Kupper H (2004) Efficacy and safety of adalimumab as monotherapy in patients with rheumatoid arthritis for whom previous disease modifying antirheumatic drug treatment has failed. Ann Rheum Dis 63:508–516
Sauerborn M, Brinks V, Jiskoot W, Schellekens H (2010) Immunological mechanism underlying the immune response to recombinant human protein therapeutics. Trends Pharmacol Sci 31:53, H 59
Baluna R, Vitetta ES (1997) Vascular leak syndrome: a side effect of immunotherapy. Immunopharmacology 37:117–132
Liu XY, Pop LM, Schindler J, Vitetta ES (2012) Immunotoxins constructed with chimeric, short-lived anti-CD22 monoclonal antibodies induce less vascular leak without loss of cytotoxicity. MAbs 4:57–68
Hwang WYK, Foote J (2005) Immunogenicity of engineered antibodies. Methods 36:3–10
Bender NK, Heilig CE, Droll B, Wohlgemuth J, Armbruster FP, Heilig B (2007) Immunogenicity, efficacy, and adverse events of adalimumab in RA patients. Rheumatol Int 27:269–274
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hmiel, L.K., Brorson, K.A. & Boyne, M.T. Post-translational structural modifications of immunoglobulin G and their effect on biological activity. Anal Bioanal Chem 407, 79–94 (2015). https://doi.org/10.1007/s00216-014-8108-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-014-8108-x