Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolutionary context of the first hominins

Subjects

Abstract

The relationships among the living apes and modern humans have effectively been resolved, but it is much more difficult to locate fossil apes on the tree of life because shared skeletal morphology does not always mean shared recent evolutionary history. Sorting fossil taxa into those that belong on the branch of the tree of life that leads to modern humans from those that belong on other closely related branches is a considerable challenge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypothetical trees.
Figure 2: Phylogenetic tree for extant orang-utans ( Pongo ) and fossil pongines.
Figure 3

Similar content being viewed by others

References

  1. White, T. D. et al. Ardipithecus ramidus and the paleobiology of early hominins. Science 326, 75–86 (2009)

    ADS  CAS  PubMed  Google Scholar 

  2. Senut, B. et al. First hominid from the Miocene (Lukeino Formation, Kenya). C. R. Acad. Sci. 332, 137–144 (2001)

    Article  Google Scholar 

  3. Brunet, M. et al. A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418, 145–151 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Haile-Selassie, Y., Suwa, G. & White, T. D. Late Miocene teeth from Middle Awash, Ethiopia, and early hominid dental evolution. Science 303, 1503–1505 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Goodman, M. in Classification and Human Evolution (ed. Washburn, S. L.) 204–234 (Aldine, 1963)

    Google Scholar 

  6. Zuckerkandl, E. in Classification and Human Evolution (ed. Washburn, S. L.) 243–272 (Aldine, 1963)

    Google Scholar 

  7. King, M.-C. & Wilson, A. C. Evolution in two levels in humans and chimpanzees. Science 188, 107–116 (1975)

    Article  ADS  CAS  Google Scholar 

  8. Ruvolo, M. Molecular phylogeny of the hominoids: inferences from multiple independent DNA sequence data sets. Mol. Biol. Evol. 14, 248–265 (1997)

    Article  CAS  Google Scholar 

  9. Bradley, B. Reconstructing phylogenies and phenotypes: a molecular view of human evolution. J. Anat. 212, 337–353 (2008)

    Article  CAS  Google Scholar 

  10. Patterson, N. et al. Genetic evidence for complex speciation of humans and chimpanzees. Nature 441, 1103–1108 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Fabre, P.-H., Rodrigues, A. & Douzery, E. J. P. Patterns of macroevolution among primates inferred from a supermatrix of mitochondrial and nuclear DNA. Mol. Phyl. Evol. 53, 808–825 (2009)

    Article  CAS  Google Scholar 

  12. Werdelin, L., Sanders, W. J., eds. Cenozoic Mammals of Africa (University of California Press, 2010)

    Book  Google Scholar 

  13. Pilbeam, D. R. in The Primate Fossil Record (ed. Hartwig, W. C.) 303–310 (Cambridge University Press, 2002)

    Google Scholar 

  14. Andrews, P. & Harrison, T. in Interpreting the Past: Essays on Human, Primate, and Mammal Evolution in Honor of David Pilbeam (eds Lieberman, D. E., Smith, R. J. & Kelley, J.) 103–121 (Brill, 2005)

    Google Scholar 

  15. Shreeve, J. 4.4 Million years ago: the birth of bipedalism. Nat. Geogr. Mag. 218, 63–66 (2010)

    Google Scholar 

  16. White, T. D., Suwa, G. & Asfaw, B. Australopithecus ramidus, a new species of hominid from Aramis, Ethiopia. Nature 371, 306–312 (1994)

    Article  ADS  CAS  Google Scholar 

  17. Suwa, G. et al. The Ardipithecus ramidus skull and its implications for hominid origins. Science 326, 68e1–68e7 (2009)

    Article  Google Scholar 

  18. Zollikofer, C. P. E. et al. Virtual cranial reconstruction of Sahelanthropus tchadensis . Nature 434, 755–759 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Haile-Selassie, Y. Late Miocene hominids from the Middle Awash, Ethiopia. Nature 412, 178–181 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Galik, K. et al. External and internal morphology of the BAR 1002’00 Orrorin tugenensis femur. Science 305, 1450–1453 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Richmond, B. G. & Jungers, W. L. Orrorin tugenensis femoral morphology and the evolution of hominin bipedalism. Science 319, 1662–1665 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Rein, T. R. & Harrison, T. Quantifying the angle of orientation of the metatarsophalangeal joint surface of proximal phalanges in extant primates. Am. J. Phys. Anthropol. 132 (S44). 197 (2007)

    Google Scholar 

  23. Rafferty, K. L. Structural design of the femoral neck in primates. J. Hum. Evol. 34, 361–383 (1998)

    Article  CAS  Google Scholar 

  24. Fernández, M. H. & Vrba, E. S. A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of extant ruminants. Biol. Rev. Camb. Philos. Soc. 80, 269–302 (2005)

    Article  Google Scholar 

  25. Flynn, J. J. et al. Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Syst. Biol. 54, 317–337 (2005)

    Article  Google Scholar 

  26. Lankester, E. R. On the use of the term homology. Ann. Mag. Nat. Hist. Zool. Botany Geol. 6, 34–43 (1870)

    Article  Google Scholar 

  27. Collard, M. & Wood, B. Hominin homoiology: an assessment of the impact of phenotypic plasticity on phylogenetic analyses of humans and their fossil relatives. J. Hum. Evol. 52, 573–584 (2007)

    Article  Google Scholar 

  28. Collard, M. & Wood, B. How reliable are human phylogenetic hypotheses? Proc. Natl Acad. Sci. USA 97, 5003–5006 (2000)This paper showed that when conventional metrical and non-metrical hard-tissue characters are used to generate hypotheses about the relationships among the great apes and the baboon/mangabey group the resulting cladograms are not consistent with the pattern of relationships supported by molecular evidence.

    Article  ADS  CAS  Google Scholar 

  29. Strait, D. S. & Grine, F. E. Inferring hominoid and early hominid phylogeny using craniodental characters: the role of fossil taxa. J. Hum. Evol. 47, 399–452 (2004)

    Article  Google Scholar 

  30. Gibbs, S., Collard, M. & Wood, B. Soft-tissue characters in higher primate phylogenetics. Proc. Natl Acad. Sci. USA 97, 11130–11132 (2000)This paper showed that in contrast to the poor performance of hard-tissue characters when soft-tissue characters are used to generate hypotheses about the relationships among the great apes the resulting cladograms are consistent with the pattern of relationships supported by molecular evidence.

    Article  ADS  CAS  Google Scholar 

  31. Gibbs, S., Collard, M. & Wood, B. Soft-tissue anatomy of the extant hominoids: a review and phylogenetic analysis. J. Anat. 200, 3–49 (2002)

    Article  CAS  Google Scholar 

  32. Lockwood, C. A., Kimbel, W. H. & Lynch, J. M. Morphometrics and hominoid phylogeny: support for a chimpanzee-human clade and differentiation among great ape subspecies. Proc. Natl Acad. Sci. USA 101, 4356–4360 (2004)

    Article  ADS  CAS  Google Scholar 

  33. Harvati, K. & Weaver, T. D. in Neanderthals Revisited: New Approaches and Perspectives (eds Harvati, K. & Harrison, T.) 239–254 (Springer, 2006)

    Book  Google Scholar 

  34. Young, N. M. A reassessment of living hominoid postcranial variability: implications for ape evolution. J. Hum. Evol. 45, 441–464 (2003)

    Article  Google Scholar 

  35. Harrison, T. in Cenozoic Mammals of Africa (eds Werdelin, L. & Sanders, W. J.) 429–469 (University of California Press, 2010)

    Book  Google Scholar 

  36. Nakatsukasa, M. Comparative study of Moroto vertebral specimens. J. Hum. Evol. 55, 581–588 (2008)

    Article  Google Scholar 

  37. Suwa, G. et al. A new species of great ape from the late Miocene epoch in Ethiopia. Nature 448, 921–924 (2007)

    Article  ADS  CAS  Google Scholar 

  38. Gatesy, J. et al. A cladistic analysis of mitochondrial ribosomal DNA from the Bovidae. Mol. Phyl. Evol. 7, 303–319 (1997)

    Article  CAS  Google Scholar 

  39. Bernor, R. L. et al. in Cenozoic Mammals of Africa (eds Werdelin, L. & Sanders, W. J.) 685–721 (University of California Press, 2010)

  40. Todd, N. E. New phylogenetic analysis of the family Elephantidae based on cranio-dental morphology. Anat. Rec. 293, 74–90 (2010)

    Article  Google Scholar 

  41. Van Valkenburgh, B. Déjà vu: the evolution of feeding morphologies in the Carnivora. Integr. Comp. Biol. 47, 147–163 (2007)

    Article  Google Scholar 

  42. Jablonski N. G., Leakey M. G., eds. Koobi Fora Research Project Vol. 6 The Fossil Monkeys (California Academy of Science, 2008)

  43. White, T. D. in The Paleobiological Revolution: Essays on the Growth of Modern Paleontology (eds Sepkoski, D. & Ruse, M.) 122–148 (University of Chicago Press, 2009)

    Book  Google Scholar 

  44. Wood, B. A. Reconstructing human evolution: achievements, challenges and opportunities. Proc. Natl Acad. Sci. USA 107 (Suppl. 2). 8902–8909 (2010)

    Article  ADS  CAS  Google Scholar 

  45. Kelley, J. in The Primate Fossil Record (ed. Hartwig, W. C.) 369–384 (Cambridge Univesrity Press, 2002)

    Google Scholar 

  46. Harrison, T. Apes among the tangled branches of human origins. Science 327, 532–534 (2010)This paper shows that there is a remarkable diversity of fossil apes from the Miocene that represents precursors of the hominins and highlights the uncertainties in interpreting the phylogenetic placement of the earliest purported hominins.

    Article  ADS  CAS  Google Scholar 

  47. Harrison, T., Ji, X. & Su, D. On the systematic status of the late Miocene and Pliocene hominoids from Yunnan Province, China. J. Hum. Evol. 43, 207–227 (2002)

    Article  Google Scholar 

  48. Harrison, T., Krigbaum, J. S. & Manser, J. in Primate Biogeography (eds Fleagle, J. G. & Lehman, S. M.) 323–364 (Springer, 2006)

    Google Scholar 

  49. Berger, L. R. et al. Australopithecus sediba: a new species of Homo-like australopith from South Africa. Science 328, 195–204 (2010)

    Article  ADS  CAS  Google Scholar 

  50. Lockwood, C. A., Kimbel, W. H. & Johanson, D. C. Temporal trends and metric variation in the mandibles and dentition of Australopithecus afarensis . J. Hum. Evol. 39, 23–55 (2000)

    Article  CAS  Google Scholar 

  51. Kimbel, W. H. & Delezene, L. K. “Lucy” redux: a review of research on Australopithecus afarensis . Ybk Phys. Anthropol. 140 (49). 2–48 (2009)

    Article  Google Scholar 

  52. Rak, Y. The Australopithecine Face (Academic Press, 1983)

    Book  Google Scholar 

  53. Wood, B. A. in Evolutionary History of the “Robust” Australopithecines (ed. Grine, F. E.) 269–284 (Aldine de Gruyter, 1988)

    Google Scholar 

  54. McCollum, M. The robust australopithecine face: a morphometric perspective. Science 284, 301–305 (1999)

    Article  ADS  CAS  Google Scholar 

  55. Lacruz, R. S., Dean, M. C., Ramirez-Rossi, F. & Bromage, T. G. Megadontia, striae periodicity and patterns of enamel secretion in Plio-Pleistocene fossil hominins. J. Anat. 213, 148–158 (2008)

    Article  Google Scholar 

  56. Lovejoy, C. O. et al. The pelvis and femur of Ardipithecus ramidus: the emergence of upright walking. Science 326, 71e1–71e6 (2009)

    PubMed  Google Scholar 

  57. Suwa, G. et al. Paleobiological implications of the Ardipithecus ramidus dentition. Science 326, 94–99 (2009)

    ADS  CAS  PubMed  Google Scholar 

  58. Simons, E. L. The phyletic position of Ramapithecus . Postilla 54, 1–20 (1961)

    Google Scholar 

  59. Pilbeam, D. R. New hominoid skull material from the Miocene of Pakistan. Nature 295, 232–234 (1982)

    Article  ADS  CAS  Google Scholar 

  60. Hürzeler, J. Zur systematischen Stellung von Oreopithecus . Verh. Naturf. Ges. Basel 65, 88–95 (1954)

    Google Scholar 

  61. Straus, W. L. in Classification and Human Evolution (ed. Washburn, S. L.) 146–177 (Aldine, 1963)

    Google Scholar 

  62. Hürzeler, J. Oreopithecus bambolii Gervais: a preliminary report. Verh. Naturf. Ges. Basel 69, 1–48 (1958)

    Google Scholar 

  63. Harrison, T. & Rook, L. in Function, Phylogeny and Fossils: Miocene Hominoid Evolution and Adaptation (eds Begun, D. R., Ward, C. V. & Rose, M. D.) 327–362 (Plenum, 1997)This is a detailed study of the anatomy and phylogenetic relationships of Oreopithecus bambolii , demonstrating that it is a stem hominid with many postcranial features that parallel the specialized anatomy of modern humans.

    Book  Google Scholar 

  64. Moyà Solà, S. & Köhler, M. The phylogenetic relationships of Oreopithecus bambolii Gervais, 1872. C. R. Acad. Sci. Paris 324 (sér. IIa). 141–148 (1997)

  65. Sarmiento, E. E. The phylogenetic position of Oreopithecus and its significance in the origin of the Hominoidea. Am. Mus. Novit. 2881, 1–44 (1987)

    Google Scholar 

  66. Skinner, M., Wood, B. A. & Hublin, J.-J. Enamel-dentine junction (EDJ) morphology distinguishes the lower molars of Australopithecus africanus and Paranthropus robustus . J. Hum. Evol. 55, 979–988 (2008)

    Article  Google Scholar 

  67. Smith, T. & Tafforeau, P. New visions of dental tissue research: tooth development, chemistry, and structure. Evol. Anthropol. 17, 213–226 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Support was provided by the GW Vice-President for Academic Affairs and to the GW Selective Excellence Program (to Provost and B.W.) and the NSF (BCS-0309513) (to T.H.). We thank R. Bernstein, J. DeSilva, T. Kivell, D. Pilbeam and B. Richmond for their critical comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the research and writing.

Corresponding author

Correspondence to Bernard Wood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, B., Harrison, T. The evolutionary context of the first hominins. Nature 470, 347–352 (2011). https://doi.org/10.1038/nature09709

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09709

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
Idea 1
idea 1
INTERN 2
Note 1
Project 1
twitter 1