Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial sampling bias influences our understanding of early hominin evolution in eastern Africa

Abstract

The eastern branch of the Eastern African Rift System (EARS) is the source of a large proportion of the early hominin fossil record, but it covers a tiny fraction (ca. 1%) of the continent. Here we investigate how this mismatch between where fossils are preserved and where hominins probably lived may influence our ability to understand early hominin evolution, using extant mammals as analogues. We show that the eastern branch of the EARS is not an environmentally representative sample of the full species range for nearly all extant rift-dwelling mammals. Likewise, when we investigate published morphometric datasets for extant cercopithecine primates, evidence from the eastern branch alone fails to capture major portions of continental-scale cercopithecine cranial morphospace. We suggest that extant rift-dwelling species should be used as analogues to place confidence intervals on hominin habitat reconstructions. Furthermore, given the north–south orientation of the eastern branch of the EARS, morphoclines that are not aligned along this major north–south axis are likely to be poorly sampled by sites in the eastern branch. There is a pressing need for research on the geography of early hominin morphoclines to estimate how morphologically representative the hominin fossil sample from the eastern branch may be.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of Africa with selected early hominin fossil sites labelled with yellow dots.
Fig. 2: Distributions of environmental variables across the full ranges of 106 rift-dwelling taxa compared with the within-rift subset.
Fig. 3: Geographic distribution of cranial specimens analysed (open black circles) overlaid onto the species range maps drawn from IUCN (ranges of each species are plotted in different colours).
Fig. 4: Locations of 500 ‘random’ rifts placed on the African continent.
Fig. 5: Histograms showing the sampling efficiency of ‘random’ rifts in guenons+ and baboons compared with the sampling efficiency of the actual eastern branch (vertical red line).

Similar content being viewed by others

Data availability

Data files necessary for producing the figures and analyses are available on Github at https://github.com/wabarr/outside-rift.

Code availability

Code necessary for producing the figures and analyses is available on Github at https://github.com/wabarr/outside-rift.

References

  1. Langergraber, K. E. et al. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1211740109 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kronenberg, Z. N. et al. High-resolution comparative analysis of great ape genomes. Science 360, eaar6343 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Diogo, R., Molnar, J. L. & Wood, B. Bonobo anatomy reveals stasis and mosaicism in chimpanzee evolution, and supports bonobos as the most appropriate extant model for the common ancestor of chimpanzees and humans. Sci. Rep. 7, 608 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Darwin, C. The Descent of Man and Selection in Relation to Sex (Murray, 1871).

    Book  Google Scholar 

  5. Pickering, R. et al. U–Pb-dated flowstones restrict South African early hominin record to dry climate phases. Nature https://doi.org/10.1038/s41586-018-0711-0 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Curtis, G. H., Drake, Cerling, T. & Hampel, J. H. Age of KBS Tuff in Koobi Fora Formation, East Rudolf, Kenya. Nature 258, 395–398 (1975).

    Article  CAS  Google Scholar 

  7. Gleadow, A. J. W. Fission track age of the KBS Tuff and associated hominid remains in northern Kenya. Nature 284, 225–230 (1980).

    Article  CAS  Google Scholar 

  8. Campisano, C. J. & Feibel, C. S. Tephrostratigraphy of the Hadar and Busidima Formations at Hadar, Afar Depression, Ethiopia. Geol. Soc. Am. Spec. Pap. 446, 135–162 (2008).

    Google Scholar 

  9. Deino, A. L. et al. 40Ar/39Ar dating, paleomagnetism, and tephrochemistry of Pliocene strata of the hominid-bearing Woranso-Mille area, west-central Afar Rift, Ethiopia. J. Hum. Evol. 58, 111–126 (2010).

    Article  PubMed  Google Scholar 

  10. Cohen, A. et al. The hominin sites and paleolakes drilling project: inferring the environmental context of human evolution from eastern African rift lake deposits. Sci. Drill. 21, 1–16 (2016).

    Article  Google Scholar 

  11. Leakey, L. S. B. A new fossil skull from Olduvai. Nature 184, 491–493 (1959).

    Article  Google Scholar 

  12. Leakey, R. E. F. Further evidence of Lower Pleistocene hominids from East Rudolf, North Kenya, 1973. Nature 248, 653–656 (1974).

    Article  CAS  PubMed  Google Scholar 

  13. Johanson, D. C. & White, T. D. A systematic assessment of early African hominids. Science 203, 321–330 (1979).

    Article  CAS  PubMed  Google Scholar 

  14. Walker, A. & Leakey, R. E. F. The Nariokotome Homo erectus Skeleton (Springer, 1993).

  15. Alemseged, Z. et al. A juvenile early hominin skeleton from Dikika, Ethiopia. Nature 443, 296–301 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. White, T. D. et al. Ardipithecus ramidus and the paleobiology of early hominids. Science 326, 64–86 (2009).

    Article  Google Scholar 

  17. Haile-Selassie, Y., Melillo, S. M., Vazzana, A., Benazzi, S. & Ryan, T. M. A 3.8-million-year-old hominin cranium from Woranso-Mille, Ethiopia. Nature https://doi.org/10.1038/s41586-019-1513-8 (2019).

  18. Behrensmeyer, A. K., Todd, N. E., Potts, R. & McBrinn, G. E. Late Pliocene faunal turnover in the Turkana Basin, Kenya and Ethiopia. Science 278, 1589–1594 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Bobe, R., Behrensmeyer, A. & Chapmam, R. Faunal change, environmental variability and late Pliocene hominin evolution. J. Hum. Evol. 42, 475–497 (2002).

    Article  PubMed  Google Scholar 

  20. Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M. & Ehleringer, J. R. A stable isotope aridity index for terrestrial environments. Proc. Natl Acad. Sci. USA 103, 11201–11205 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Reed, K. E. Paleoecological patterns at the Hadar hominin site, Afar Regional State, Ethiopia. J. Hum. Evol. 54, 743–768 (2008).

    Article  PubMed  Google Scholar 

  22. Potts, R. et al. Increased ecological resource variability during a critical transition in hominin evolution. Sci. Adv. 6, eabc8975 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Hill, A. in Hominin Environments in the East African Pliocene: An Assessment of the Faunal Evidence (eds Bobe, R. et al.) xvii–xx (Springer, 2007).

  24. Kidwell, S. M. & Holland, S. M. The quality of the fossil record: implications for evolutionary analyses. Annu. Rev. Ecol. Syst. 33, 561–588 (2002).

    Article  Google Scholar 

  25. Benson, R. B. J., Butler, R., Close, R. A., Saupe, E. & Rabosky, D. L. Biodiversity across space and time in the fossil record. Curr. Biol. 31, R1225–R1236 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Holland, S. M. The non-uniformity of fossil preservation. Philos. Trans. R. Soc. B 371, 20150130 (2016).

    Article  Google Scholar 

  27. Behrensmeyer, A. K., Kidwell, S. M. & Gastaldo, R. A. Taphonomy and paleobiology. Paleobiology 26, 103–147 (2000).

    Article  Google Scholar 

  28. Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).

    Article  Google Scholar 

  29. Nyberg, B. & Howell, J. A. Is the present the key to the past? A global characterization of modern sedimentary basins. Geology 43, 643–646 (2015).

    Article  Google Scholar 

  30. Hopley, P. J. & Maxwell, S. J. in African Paleoecology and Human Evolution (eds Reynolds, S. C. & Bobe, R.) 15–23 (Cambridge Univ. Press, 2022); https://doi.org/10.1017/9781139696470.003

  31. Maxwell, S. J., Hopley, P. J., Upchurch, P. & Soligo, C. Sporadic sampling, not climatic forcing, drives observed early hominin diversity. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1721538115 (2018).

  32. Morley, C. K., Ngenoh, D. K. & Ego, J. K. in Geoscience of Rift Systems—Evolution of East Africa (ed. Morley, C. K.) 1–18 (AAPG Studies in Geology, 1999).

  33. Ebinger, C. Continental break-up: the East African perspective. Astron. Geophys. 46, 2.16–2.21 (2005).

    Article  CAS  Google Scholar 

  34. Frost, S. R., Marcus, L. F., Bookstein, F. L., Reddy, D. P. & Delson, E. Cranial allometry, phylogeography, and systematics of large-bodied papionins (primates: Cercopithecinae) inferred from geometric morphometric analysis of landmark data. Anat. Rec. A 275A, 1048–1072 (2003).

    Article  Google Scholar 

  35. Cardini, A. & Elton, S. Is there a Wainer’s rule? Testing which sex varies most as an example analysis using GueSDat, the free Guenon Skull Database. Hystrix Ital. J. Mammal. 28, 147–156 (2017).

    Google Scholar 

  36. Alemseged, Z. et al. Fossils from Mille-Logya, Afar, Ethiopia, elucidate the link between Pliocene environmental changes and Homo origins. Nat. Commun. 11, 2480 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Robinson, J. R., Rowan, J., Campisano, C. J., Wynn, J. G. & Reed, K. E. Late Pliocene environmental change during the transition from Australopithecus to Homo. Nat. Ecol. Evol. 1, 0159 (2017).

    Article  Google Scholar 

  38. DiMaggio, E. N. et al. Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia. Science 347, 1355–1359 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Su, D. F. & Harrison, T. The paleoecology of the Upper Laetolil Beds, Laetoli Tanzania: a review and synthesis. J. Afr. Earth Sci. 101, 405–419 (2015).

    Article  Google Scholar 

  40. White, T. D. et al. Macrovertebrate paleontology and the Pliocene habitat of Ardipithecus ramidus. Science 326, 67–93 (2009).

    Article  Google Scholar 

  41. WoldeGabriel, G. et al. The geological, isotopic, botanical, invertebrate, and lower vertebrate surroundings of Ardipithecus ramidus. Science 326, 65–65e5 (2009).

    Article  Google Scholar 

  42. Cerling, T. E. et al. Comment on the paleoenvironment of Ardipithecus ramidus. Science 328, 1105-d (2010).

    Article  Google Scholar 

  43. Domínguez-Rodrigo, M. Is the ‘savanna hypothesis’ a dead concept for explaining the emergence of the earliest hominins? Curr. Anthropol. 55, 59–81 (2014).

    Article  Google Scholar 

  44. Behrensmeyer, A. K., Bobe, R. & Alemseged, Z. in Hominin Environments in the East African Pliocene: An Assessment of the Faunal Evidence (eds Bobe, R. et al.) 1–24 (Springer, 2007).

  45. Levin, N. E. Environment and climate of early human evolution. Annu. Rev. Earth Planet. Sci. 43, 405–429 (2015).

    Article  CAS  Google Scholar 

  46. Timmermann, A. et al. Climate effects on archaic human habitats and species successions. Nature 604, 495–501 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mondanaro, A. et al. A major change in rate of climate niche envelope evolution during hominid history. iScience 23, 101693 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cardini, A., Dunn, J., O’Higgins, P. & Elton, S. Clines in Africa: does size vary in the same way among widespread sub-Saharan monkeys? J. Biogeogr. 40, 370–381 (2013).

    Article  Google Scholar 

  49. Frost, S. R. & Delson, E. Fossil Cercopithecidae from the Hadar Formation and surrounding areas of the Afar Depression, Ethiopia. J. Hum. Evol. 43, 687–748 (2002).

    Article  PubMed  Google Scholar 

  50. Dunn, J., Cardini, A. & Elton, S. Biogeographic variation in the baboon: dissecting the cline. J. Anat. 223, 337–352 (2013).

    Article  PubMed  Google Scholar 

  51. Cardini, A. & Elton, S. Variation in guenon skulls (I): species divergence, ecological and genetic differences. J. Hum. Evol. 54, 615–637 (2008).

    Article  PubMed  Google Scholar 

  52. Joordens, J. C. A., Feibel, C. S., Vonhof, H. B., Schulp, A. S. & Kroon, D. Relevance of the eastern African coastal forest for early hominin biogeography. J. Hum. Evol. 131, 176–202 (2019).

    Article  PubMed  Google Scholar 

  53. Brunet, M. et al. New material of the earliest hominid from the Upper Miocene of Chad. Nature 434, 752–755 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Brunet, M. et al. Australopithecus bahrelghazali, une nouvelle espèce d’Hominidé ancien de la région de Koro Toro (Tchad). Comptes Rendus Acad Sci. Sér. 2 322, 907–913 (1996).

    Google Scholar 

  55. Jolly, C. J. The Seed-Eaters: a new model of hominid differentiation based on a baboon analogy. Man 5, 5–26 (1970).

    Article  Google Scholar 

  56. Habermann, J. M. et al. Gorongosa by the sea: first Miocene fossil sites from the Urema Rift, central Mozambique, and their coastal paleoenvironmental and paleoecological contexts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 514, 723–738 (2019).

    Article  Google Scholar 

  57. Bobe, R. et al. The first Miocene fossils from coastal woodlands in the southern East African Rift. iScience 26, 107644 (2023).

    Article  PubMed  Google Scholar 

  58. The IUCN Red List of Threatened Species. Version 2022-2. IUCN http://www.iucnredlist.org/ (2022).

  59. QGIS Development Team. QGIS Geographic Information System (QGIS Association, 2023).

  60. Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2017.06.031 (2017).

    Article  Google Scholar 

  61. Buchhorn, M. et al. Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2019: Globe. Zenodo https://doi.org/10.5281/zenodo.3939050 (2020).

  62. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  63. Mitteroecker, P. & Gunz, P. Advances in geometric morphometrics. Evol. Biol. 36, 235–247 (2009).

    Article  Google Scholar 

  64. Baken, E. K., Collyer, M. L., Kaliontzopoulou, A. & Adams, D. C. geomorph v4.0 and gmShiny: enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods Ecol. Evol. 12, 2355–2363 (2021).

    Article  Google Scholar 

  65. Adams, D. C., Collyer, M. L., Kaliontzopoulou, A. & Baken, E. K. Geomorph: Software for Geometric Morphometric Analyses. R Package Version 4.0.4 (R Foundation for Statistical Computing, 2022).

  66. R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).

  67. Guillerme, T., Puttick, M. N., Marcy, A. E. & Weisbecker, V. Shifting spaces: which disparity or dissimilarity measurement best summarize occupancy in multidimensional spaces? Ecol. Evol. 10, 7261–7275 (2020).

    Article  PubMed  Google Scholar 

  68. Habel, K., Grasman, R., Gramacy, R. B., Mozharovskyi, P. & Sterratt, D. C. Geometry: Mesh Generation and Surface Tessellation (R Foundation for Statistical Computing, 2023).

  69. Foote, M. Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18, 1–16 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to A. Cardini, S. Elton and S. Frost for generously providing access to datasets and providing spatial coordinates. We gratefully acknowledge the financial support of the Center for the Advanced Study of Human Paleobiology at GWU, the GWU Department of Anthropology and the GWU Office of the Provost. Thanks to members of the PAPER discussion group for fruitful discussion, to S. McPherron and S. Elton for helpful feedback after a conference presentation of some of the ideas in this paper, and to C. Campisano for answering our geological questions about the rift.

Author information

Authors and Affiliations

Authors

Contributions

W.A.B. devised the research question, compiled the datasets, wrote all code, interpreted all statistical analyses, wrote the first draft of the paper and revised the paper. B.W. contributed to the development of the research question, consulted on analytical strategy and revised the paper.

Corresponding author

Correspondence to W. Andrew Barr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Jose Joordens and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Tables 1–3.

Reporting Summary

Supplementary Video 1

A GIF animation showing the placement of random sampling units on the continent of Africa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barr, W.A., Wood, B. Spatial sampling bias influences our understanding of early hominin evolution in eastern Africa. Nat Ecol Evol 8, 2113–2120 (2024). https://doi.org/10.1038/s41559-024-02522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-024-02522-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
Association 1
Idea 1
idea 1
INTERN 1
Note 1
Project 1
twitter 1