Abstract
Phylogenetic relationships among 41 species of salmonid fish and some aspects of their diversification-time history were studied using the GenBank and original mtDNA data. The position of the root of the Salmonidae phylogenetic tree was uncertain. Among the possible variants, the most reasonable seems to be that in which thymallins are grouped into the same clade as coregonins and the lineage of salmonins occupied a basal position relative to this clade. The genera of Salmoninae formed two distinct clades, i.e., (Brachymystax, Hucho) and (Salmo, Parahucho, (Salvelinus, (Parasalmo, Oncorhynchus)). Furthermore, the genera Parasalmo and Oncorhynchus were reciprocally monophyletic. The congruence of Salmonidae phylogenetic trees obtained using different types of phylogenetic markers is discussed. According to Bayesian dating, ancestral lineages of salmonids and their sister esocoids diverged about 106 million years ago. Sometime after, probably 100–70 million years ago, the salmonid-specific whole genome duplication took place. The divergence of salmonid lineages on the genus level occurred much later, within the time interval of 42–20 million years ago. The main wave of the diversification of salmonids at the species level occurred during the last 12 million years. The possible effect of genome duplication on the Salmonidae diversification pattern is discussed.
Similar content being viewed by others
References
Glubokovskii, M.K., Evolyutsionnaya biologiya lososevykh ryb (Evolutionary Biology of Salmonids), Moscow: Nauka, 1995.
Evolution Illuminated: Salmon and Their Relatives, Hendry, A.P. and Stearns, S.C., Eds., New York: Oxford Univ. Press, 2004.
Volff, J.-N., Genome evolution and biodiversity in teleost fish, Heredity, 2005, vol. 94, no. 3, pp. 280–294.
Davidson, W.S., Koop, B.F., Jones, S.J.M., et al., Sequencing the genome of the Atlantic salmon (Salmo salar), Genome Biol., 2010, vol. 11, no. 9, p. 403.
Koop, B.F., Schalburg, K.R., Leong, J., et al., A salmonid EST genomic study: genes, duplications, phylogeny and microarrays, BMC Genomics, 2008, vol. 9, p. 545.
Li, J., Xia, R., McDowall, R.M., et al., Phylogenetic position of the enigmatic Lepidogalaxias salamandroides with comment on the orders of lower euteleostean fishes, Mol. Phylogenet. Evol., 2010, vol. 57, no. 2, pp. 932–936.
Yasuike, M., Jantzen, S., Cooper, G.A., et al., Grayling (Thymallinae) phylogeny within salmonids: complete mitochondrial DNA sequences of Thymallus arcticus and Thymallus thymallus, J. Fish. Biol., 2010, vol. 76, pp. 395–400.
Wang, Y., Guo, R., Li, H., et al., The complete mitochondrial genome of the Sichuan taimen (Hucho bleekeri): repetitive sequences in the control region and phylogenetic implications for Salmonidae, Mar. Genomics, 2011, vol. 4, no. 3, pp. 221–228.
Shedko S.V., Miroshnichenko, I.L., and Nemkova, G.A., Phylogeny of salmonids (Salmoniformes: Salmonidae) and its molecular dating: analysis of nuclear RAG1 gene, Russ. J. Genet., vol. 48, no. 5, pp. 575–579.
Oakley, T.H. and Phillips, R.B., Phylogeny of salmonine fishes based on growth hormone introns: atlantic (Salmo) and Pacific (Oncorhynchus) salmon are not sister taxa, Mol. Phylogenet. Evol., 1999, vol. 11, no. 3, pp. 381–393.
Osinov, A.G. and Lebedev, V.S., Genetic divergence and phylogeny of the Salmoninae based on allozyme data, J. Fish. Biol., 2000, vol. 57, no. 2, pp. 354–381.
Shedko, S.V., Phylogeny of mitochondrial DNA in salmonids of the subfamily Salmoninae: analysis of the cytochrome b gene sequences, Russ. J. Genet., 2002, vol. 38, no. 3, pp. 277–285.
Phillips, R.B., Matsuoka, M.P., Konkol, N.R., and McKay, S., Molecular systematics and evolution of the growth hormone introns in the Salmoninae, Environ. Biol. Fishes, 2004, vol. 69, nos. 1–4, pp. 433–440.
Crespi, B.J. and Fulton, M.J., Molecular systematics of Salmonidae: combined nuclear data yields a robust phylogeny, Mol. Phylogenet. Evol., 2004, vol. 31, no. 2, pp. 658–679.
Matveev, V. and Okada, N., Retroposons of salmonoid fishes (Actinopterygii: Salmonoidei) and their evolution, Gene, 2009, vol. 434, nos. 1–2, pp. 16–28.
Avise, J.C., Molecular Markers, Natural History, and Evolution, Sunderland: Sinauer, 2004, 2nd ed.
Berg, W.J. and Ferris, S.D., Restriction endonuclease analysis of salmonid mitochondrial DNA, Can. J. Fish. Aquat. Sci., 1984, vol. 41, pp. 1041–1047.
Nelson, J.S., Fishes of the World, New Jersey: Wiley, 2006, 4th ed.
Crow, K.D. and Wagner, G.P., What is the role of genome duplication in the evolution of complexity and diversity?, Mol. Biol. Evol., 2006, vol. 23, no. 5, pp. 725–732.
Van de Peer, Y., Maere, S., and Meyer, A., The evolutionary significance of ancient genome duplications, Nat. Rev. Genet., 2009, vol. 10, no. 10, pp. 725–732.
Santini, F., Harmon, L.J., Carnevale, G., et al., Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes, BMC Evol. Biol., 2009, vol. 9, p. 194.
Ward, R.D., Zemlak, T.S., Innes, B.H., et al., DNA barcoding Australia’s fish species, Philos. Trans. R. Soc., B, 2005, vol. 360, no. 1462, pp. 1847–1857.
Sevilla, R.G., Diez, A., Norén, M., et al., Primers and polymerase chain reaction conditions for DNA barcoding teleost fish based on the mitochondrial cytochrome b and nuclear rhodopsin genes, Mol. Ecol. Notes, 2007, vol. 7, no. 5, pp. 730–734.
Brunner, P.C., Douglas, M.S., Osinov, A.G., et al., Holarctic phylogeography of Arctic charr (Salvelinus alpinus complex) inferred from mitochondrial DNA sequences, Evolution, 2001, vol. 55, no. 3, pp. 573–586.
Yamamoto, S., Morita, K., Kitano, S., et al., Phylogeography of white-spotted charr (Salvelinus leucomaenis) inferred from mitochondrial DNA sequences, Zool. Sci., 2004, vol. 21, no. 2, pp. 229–240.
Hillis, D.M., Taxonomic sampling, phylogenetic accuracy, and investigator bias, Syst. Biol., 1998, vol. 47, no. 1, pp. 3–8.
Wiens, J.J. and Tiu, J., Highly incomplete taxa can rescue phylogenetic analyses from the negative impacts of limited taxon sampling, PLoS One, 2012, vol. 7, no. 8, p. e42925.
Roure, B., Baurain, D., and Philippe, H., Impact of missing data on phylogenies inferred from empirical phylogenomic data sets, Mol. Biol. Evol., 2013. vol. 30, no. 1, pp. 197–214.
Katoh, K., Misawa, K., Kuma, K., and Miyata, T., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res., 2002, vol. 30, pp. 3059–3066.
Swofford, D.L., PAUP* Phylogenetic Analysis Using Parsimony (and Other Methods): Beta Version 10, Sunderland: Sinauer Associates, 2002.
Posada, D. and Crandall, K.A., MODELTEST: testing the model of DNA substitution, Bioinformatics, 1998, vol. 14, no. 9, pp. 817–818.
Zwickl, D.J., Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion, PhD Dissertation, Austin: Univ. of Texas, 2006.
Ronquist, F. and Huelsenbeck, J.P., MRBAYES 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, 2003, vol. 19, no. 12, pp. 1572–1574.
Drummond, A.J. and Rambaut, A., BEAST: Bayesian evolutionary analysis by sampling trees, BMC Evol. Biol., 2007, vol. 7, no. 1, p. 214.
Wilson, M.V.H., Brinkman, D.B., and Neuman, A.G., Cretaceous Esocoidei (Teleostei): early radiation of the pikes in North American fresh waters, J. Paleontol., 1992, vol. 66, no. 5, pp. 839–846.
Wilson, M.V.H., Osteology of the Palaeocene teleost Esox tiemani, Palaeontol., 1984, vol. 27, no. 3, pp. 597–608.
Grande, L., The first Esox (Esocidae: Teleostei) from the Eocene Green River Formation, and a brief review of esocid fishes, J. Vert. Paleontol., 1999, vol. 19, no. 2, pp. 271–292.
Wilson, M.V.H. and Li, G.-Q., Osteology and systematic position of the Eocene salmonid †Eosalmo driftwoodensis Wilson from western North America, Zool. J. Linn. Soc., 1999, vol. 125, no. 3, pp. 279–311.
Eiting, T.P. and Smith, G.R., Miocene salmon (Oncorhynchus) from western North America: Gill Raker evolution correlated with plankton productivity in the eastern Pacific, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2007, vol. 249, nos. 3–4, pp. 412–424.
Shimodaira, H. and Hasegawa, M., CONSEL: for assessing the confidence of phylogenetic tree selection, Bioinformatics, 2001, vol. 17, no. 12, pp. 1246–1247.
Moghadam, H.K., Ferguson, M.M., and Danzmann, R.G., Whole genome duplication: challenges and considerations associated with sequence orthology assignment in Salmoninae, J. Fish. Biol., 2011, vol. 79, pp. 561–574.
Felsenstein, J., Inferring Phylogenies, Sanderland: Sinauer Associates, 2004.
Finn, R.N. and Kristoffersen, B.A., Vertebrate vitellogenin gene duplication in relation to the “3R hypothesis”: correlation to the pelagic egg and the oceanic radiation of teleosts, PLoS One, 2007, vol. 2, no. 1, p. e169.
Sanford, C.P.J., The phylogenetic relationships of salmonoid fishes, Bull. Br. Mus. Nat. Hist. (Zool.), 1990, vol. 56, no. 2, pp. 145–153.
Sanford, C.P.J., Salmonoid fish osteology and phylogeny (Teleostei: Salmonoidei), vol. 33 of Theses Zoologicae, Vaduz: ARG Gantner, 2000.
Stearley, R.F. and Smith, G.R., Phylogeny of the pacific trouts and salmons (Oncorhynchus) and genera of the family Salmonidae, Trans. Am. Fish. Soc., 1993, vol. 122, no. 1, pp. 1–33.
Johnson, G.D. and Patterson, C., Relationships of lower euteleostean fishes, Interrelationships of Fishes, Stiassny, M.L.J., Parenti, L., and Johnson, G.D., Eds., New York: Academic, 1996, pp. 251–332.
Ilves, K.L. and Taylor, E.B., Molecular resolution of the systematics of a problematic group of fishes (Teleostei: Osmeridae) and evidence for morphological homoplasy, Mol. Phylogenet. Evol., 2009, vol. 50, no. 1, pp. 163–178.
Shedko, S.V., Phylogenetic relations of lenoks of the Genus Brachymystax (Salmonidae, Salmoniformes) and characteristics of their speciation, Cand. Sci. (Biol.) Dissertation, Vladivostok: Institute of Biology and Soil Science, Far Eastern Branch of Russian Academy of Sciences, 2003.
Phillips, R.B., Sajdak, S.L., and Domanico, M.J., Relationships among charrs based on DNA sequences, Nord. J. Freshwater Res., 1995, vol. 71, pp. 378–391.
Radchenko, O.A., Variability of nucleotide sequences of mitochondrial DNA cytochrome b gene in chars of the genus Salvelinus, Russ. J. Genet., 2004, vol. 40, no. 3, pp. 244–254.
Oleinik, A.G., Skurikhina, L.A., and Brykov, V.A., Divergence of Salvelinus species from northeastern Asia based on mitochondrial DNA, Ecol. Freshwater Fish., 2007, vol. 16, no. 1, pp. 87–98.
Shedko, S.V., Ginatulina, L.K., Miroshnichenko, I.L., and Nemkova, G.A., Phylogeography of mitochondrial DNA in South Asian dolly varden char Salvelinus curilus Pallas, 1814 (Salmoniformes, Salmonidae): Mediated gene introgression?, Russ. J. Genet., 2007, vol. 43, no. 2, pp. 165–176.
Crane, P.A., Seeb, L.W., and Seeb, J.E., Genetic relationships among Salvelinus species inferred from allozyme data, Can. J. Fish. Aquat. Sci., 1994, vol. 51, pp. 182–197.
Salmenkova, E.A., Omelchenko, V.T., Kolesnikov, A.A., and Malinina, T.V., Genetic differentiation of charrs in the Russian North and Far East, J. Fish. Biol., 2000, vol. 57,suppl. A, pp. 136–157.
Phillips, R.B. and Oakley, T.H., Phylogenetic relationships among the Salmoninae based on nuclear and mitochondrial DNA sequences, Molecular Systematics of Fishes, Kocher, T.D. and Stepien, C.A., Eds., San Diego: Academic, 1997, pp. 145–162.
Grewe, P.M., Billington, N., and Hebert, P.D.N., Phylogenetic relationships among members of Salvelinus inferred from mitochondrial DNA divergence, Can. J. Fish. Aquat. Sci., 1990, vol. 47, pp. 984–991.
Westrich, K.M., Konkol, N.R., Matsuoka, M.P., and Phillips, R.B., Interspecific relationships among charrs based on phylogenetic analysis of nuclear growth hormone intron sequences, Environ. Biol. Fishes, 2002, vol. 64, pp. 217–222.
Shubina, E.A., Ponomareva, E.V., and Gritsenko, O.F., Population genetic structure of the char species of the Northern Kuril Islands and the rank of the Dolly Varden Char in the system of the genus Salvelinus (Salmonidae: Teleostei), Zh. Obshch. Biol., 2006, vol. 67, no. 4, pp. 280–297.
Frolov, S.V., Izmenchivost’ i evolyutsiya kariotipov lososevykh ryb (Karyotype Variation and the Evolution of Salmonids), Vladivostok: Dal’nauka, 2000.
Allendorf, F.W. and Thorgaard, G.H., Tetraploidy and the evolution of salmonid fishes, Evolutionary Genetics of Fishes, Turner, B.J., Ed., New York: Plenum, 1984.
Bailey, G.S. and Lim, S.T., Gene duplication in salmonid fish: Evolution of a lactate dehydrogenase with an altered function, vol. 6 of Isozymes, Markert, C.L., Ed., San Francisco: Academic, 1975.
Lim, S.T., Kay, R.M., and Bailey, G.S., Lactate dehydrogenase isozymes of salmonid fish: evidence for unique and rapid functional divergence of duplicate H4 lactate dehydrogenases, J. Biol. Chem., 1975, vol. 250, no. 5, pp. 1790–1800.
Osinov, A.G. and Lebedev, V.S., Salmonid fishes (Salmonidae, Salmoniformes): the systematic position in the superorder Protacanthopterygii, the main stages of evolution, and molecular dating, Vopr. Ikhtiol., 2004, vol. 44, no. 6, pp. 738–765.
Leong, J. and Jantzen, S., Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a post-tetraploidization genome, BMC Genomics, 2010, vol. 11, p. 279.
Mayrose, I., Zhan, S.H., Rothfels, C.J., et al., Recently formed polyploid plants diversify at lower rates, Science, 2011, vol. 333, no. 6047, p. 1257.
Rabosky, D.L., LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies, Evol. Bioinform., 2006, vol. 2, pp. 273–276.
Wolfe, K.H. and Shields, D.C., Molecular evidence for an ancient duplication of the entire yeast genome, Nature, 1997, vol. 387, no. 6634, pp. 708–713.
Kellis, M., Birren, B.W., and Lander, E.S., Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae, Nature, 2004, vol. 428, no. 6983, pp. 617–624.
Byrne, K.P. and Blanc, G., Computational analyses of ancient polyploidy, Curr. Bioinform., 2006, vol. 1, no. 2, pp. 131–146.
Scannell, D.R., Byrne, K.P., Gordon, J.L., et al., Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts, Nature, 2006, vol. 440, no. 7082, pp. 341–345.
Jaillon, O., Aury, J.-M., Brunet, F., et al., Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype, Nature, 2004, vol. 431, no. 7011, pp. 946–957.
Taylor, J.S., Van de Peer, Y., and Meyer, A., Genome duplication, divergent resolution and speciation, Trends Genet., 2001, vol. 17, no. 6, pp. 299–301.
Mungpakdee, S., Seo, H.-C., Angotzi, A.R., et al., Differential evolution of the 13 Atlantic salmon Hox clusters, Mol. Biol. Evol., 2008, vol. 25, no. 7, pp. 1333–1343.
Henkel, C.V., Burgerhout, E., de Wijze, D.L., et al., Primitive duplicate Hox clusters in the European eel’s genome, PLoS One, 2012, vol. 7, no. 2, p. e32231.
Braasch, I., Brunet, F., Volff, J.-N., and Scharlt, M., Pigmentation pathway evolution after whole-genome duplication in fish, Genome Biol. Evol., 2009, vol. 1, pp. 479–493.
Sato, Y., Hashiguchi, Y., and Nishida, M., Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication, BMC Evol. Biol., 2009, vol. 9, p. 127.
Hoegg, S., Boore, J.L., Kuehl, J.V., and Meyer, A., Comparative phylogenomic analyses of teleost fish Hox gene clusters: lessons from the cichlid fish Astatotilapia burtoni, BMC Genomics, 2007, vol. 8, p. 317.
Kuraku, S. and Meyer, A., The evolution and maintenance of Hox gene clusters in vertebrates and the teleostspecific genome duplication, Int. J. Dev. Biol., 2009, vol. 53, nos. 5–6, pp. 765–773.
Larhammar, D. and Risinger, C., Molecular genetic aspects of tetraploidy in the common carp Cyprinus carpio, Mol. Phylogenet. Evol., 1994, vol. 3, no. 1, pp. 59–68.
David, L., Blum, S., Feldman, M.W., et al., Recent duplication of the common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite loci, Mol. Biol. Evol., 2003, vol. 20, no. 9, pp. 1425–1434.
Yuan, J., He, Z., Yuan, X., et al., Speciation of polyploid Cyprinidae fish of common carp, crucian carp, and silver crucian carp derived from duplicated Hox genes, J. Exp. Zool., Part B, 2010, vol. 314, no. 6, pp. 445–456.
Ferris, S.D. and Whitt, G.S., The evolution of duplicate gene expression in the carp (Cyprinus carpio), Experientia, 1977, vol. 33, no. 10, pp. 1299–1301.
Zhang, Y., Liang, L., Jiang, P., et al., Genome evolution trend of common carp (Cyprinus carpio L.) as revealed by the analysis of microsatellite loci in a gynogentic family, J. Genet. Genomics, 2008, vol. 35, no. 2, pp. 97–103.
Li, W.H., Rate of gene silencing at duplicate loci: a theoretical study and interpretation of data from tetraploid fishes, Genetics, 1980, vol. 95, no. 1, pp. 237–258.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © S.V. Shedko, I.L. Miroshnichenko, G.A. Nemkova, 2013, published in Genetika, 2013, Vol. 49, No. 6, pp. 718–734.
Rights and permissions
About this article
Cite this article
Shedko, S.V., Miroshnichenko, I.L. & Nemkova, G.A. Phylogeny of salmonids (salmoniformes: Salmonidae) and its molecular dating: Analysis of mtDNA data. Russ J Genet 49, 623–637 (2013). https://doi.org/10.1134/S1022795413060112
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1022795413060112