New Resin-Based Bulk-Fill Composites: in vitro Evaluation of Micro-Hardness and Depth of Cure as Infection Risk Indexes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Devoto, W.; Saracinelli, M.; Manauta, J. Composite in everyday practice: How to choose the right material and simplify application techniques in the anterior teeth. Eur. J. Esthet. Dent. 2010, 5, 102–124. [Google Scholar] [PubMed]
- Hamlin, N.J.; Bailey, C.; Motyka, N.C.; Vandewalle, K.S. Effect of tooth-structure thickness on light attenuation and depth of cure. Oper. Dent. 2016, 41, 200–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, A.F.; Vestphal, M.; Amaral, R.C.D.; Rodrigues, J.A.; Roulet, J.F.; Roscoe, M.G. Efficiency of polymerization of bulk-fill composite resins: A systematic review. Braz. Oral Res. 2017, 31, e59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krifka, S.; Spagnuolo, G.; Schmalz, G.; Schweikl, H. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials 2013, 34, 4555–4563. [Google Scholar] [CrossRef] [PubMed]
- Nedeljkovic, I.; Teughels, W.; De Munck, J.; Van Meerbeek, B.; Van Landuyt, K.L. Is secondary caries with composites a material-based problem? Dent. Mater. 2015, 31, e247–e277. [Google Scholar] [CrossRef] [PubMed]
- Flury, S.; Hayoz, S.; Peutzfeldt, A.; Hüsler, J.; Lussi, A. Depth of cure of resin composites: Is the ISO 4049 method suitable for bulk fill materials? Dent. Mater. 2012, 28, 521–528. [Google Scholar] [CrossRef]
- Musanje, L.; Darvell, B.W. Curing-light attenuation in filled-resin restorative materials. Dent. Mater. 2006, 22, 804–817. [Google Scholar] [CrossRef]
- Alrahlah, A.; Silikas, N.; Watts, D.C. Post-cure depth of cure of bulk fill dental resin composites. Dent. Mater. 2014, 30, 149–154. [Google Scholar] [CrossRef]
- Silikas, N.; Eliades, G.; Watts, D.C. Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent. Mater. 2000, 16, 292–296. [Google Scholar] [CrossRef]
- Gupta, S.K.; Saxena, P.; Pant, V.A.; Pant, A.B. Release and toxicity of dental resin composite. Toxicol. Int. 2012, 19, 225–234. [Google Scholar]
- Cebe, M.A.; Cebe, F.; Cengiz, M.F.; Cetin, A.R.; Arpag, O.F.; Ozturk, B. Elution of monomer from different bulk fill dental composite resins. Dent. Mater. 2015, 31, e141–e149. [Google Scholar] [CrossRef]
- Moore, B.K.; Platt, J.A.; Borges, G.; Chu, T.M.; Katsilieri, I. Depth of cure of dental resin composites: ISO 4049 depth and microhardness of types of materials and shades. Oper. Dent. 2008, 33, 408–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguiar, F.H.; Braceiro, A.; Lima, D.A.; Ambrosano, G.M.; Lovadino, J.R. Effect of light curing modes and light curing time on the microhardness of a hybrid composite resin. J. Contemp. Dent. Pract. 2007, 8, 1–8. [Google Scholar] [PubMed]
- Bouschlicher, M.R.; Rueggeberg, F.A.; Wilson, B.M. Correlation of bottom-to-top surface microhardness and conversion ratios for a variety of resin composite compositions. Oper. Dent. 2004, 29, 698–704. [Google Scholar] [PubMed]
- Rode, K.M.; Kawano, Y.; Turbino, M.L. Evaluation of curing light distance on resin composite microhardness and polymerization. Oper. Dent. 2007, 32, 571–578. [Google Scholar] [CrossRef]
- Zorzin, J.; Maier, E.; Harre, S.; Fey, T.; Belli, R.; Lohbauer, U.; Petschelt, A.; Taschner, M. Bulk-fill resin composites: Polymerization properties and extended light curing. Dent. Mater. 2015, 31, 293–301. [Google Scholar] [CrossRef]
- Beltrami, R.; Chiesa, M.; Scribante, A.; Allegretti, J.; Poggio, C. Comparison of shear bond strength of universal adhesives on etched and nonetched enamel. J. Appl. Biomater. Funct. Mater. 2016, 14, e78–e83. [Google Scholar] [CrossRef] [Green Version]
- Poggio, C.; Lombardini, M.; Gaviati, S.; Chiesa, M. Evaluation of Vickers hardness and depth of cure of six composite resins photo-activated with different polymerization modes. J. Conserv. Dent. 2012, 15, 237. [Google Scholar] [CrossRef]
- Lima, R.B.W.; Troconis, C.C.M.; Moreno, M.B.P.; Murillo-Gómez, F.; De Goes, M.F. Depth of cure of bulk fill resin composites: A systematic review. J. Esthet. Restor. Dent. 2018, 30, 492–501. [Google Scholar] [CrossRef]
- Kattan, H.; Chatzistavrou, X.; Boynton, J.; Dennison, J.; Yaman, P.; Papagerakis, P. Physical Properties of an Ag-Doped Bioactive Flowable Composite Resin. Materials 2015, 8, 4668–4678. [Google Scholar] [CrossRef] [Green Version]
- Colombo, M.; Poggio, C.; Lasagna, A.; Chiesa, M.; Scribante, A. Vickers micro-hardness of new restorative CAD/CAM dental materials: Evaluation and comparison after exposure to acidic drink. Materials 2019, 12, 1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemikamangar, S.S.; Pourhashemi, S.J.; Talebi, M.; Kiomarsi, N.; Kharazifard, M.J. Effect of organic acids in dental biofilm on microhardness of a silorane-based composite. Restor. Dent. Endod. 2015, 40, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Leprince, J.G.; Palin, W.M.; Hadis, M.A.; Devaux, J.; Leloup, G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent. Mater. 2013, 29, 139–156. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, E.M.; Poskus, L.T.; Guimarães, J.G.; de Araújo Lima Barcellos, A.; Fellows, C.E. Influence of light polymerization modes on degree of conversion and crosslink density of dental composites. J. Mater. Sci. Mater. Med. 2008, 19, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.J.; Lee, Y.K.; Lim, B.S.; Kim, C.W. Effects of various light curing methods on the leachability of uncured substances and hardness of a composite. J. Oral Rehabil. 2004, 31, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Koupis, N.S.; Martens, L.C.; Verbeeck, R.M. Relative curing degree of polyacid-modified and conventional resin composites determined by surface Knoop hardness. Dent. Mater. 2006, 22, 1045–1050. [Google Scholar] [CrossRef] [PubMed]
- Yap, A.U.; Soh, M.S.; Siow, K.S. Effectiveness of composite cure with pulse activation and soft-start polymerization. Oper. Dent. 2002, 27, 44–49. [Google Scholar]
- Ferracane, J.L. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent. Mater. 1985, 1, 11–14. [Google Scholar] [CrossRef]
- Rueggeberg, F.A.; Craig, R.G. Correlation of parameters used to estimate monomer conversion in a light-cured composite. J. Dent. Res. 1988, 67, 932–937. [Google Scholar] [CrossRef]
- ISO 4049:1988 (2.) Dentistry—Resin-Based Filling Materials; International Organization for Standardization: Geneva, Switzerland, 1988.
- DeWald, J.P.; Ferracane, J.L. A comparison of four modes of evaluating depth of cure of light-activated composites. J. Dent. Res. 1987, 66, 727–730. [Google Scholar] [CrossRef]
- Lucey, S.; Lynch, C.D.; Ray, N.J.; Burke, F.M.; Hannigan, A. Effect of pre-heating on the viscosity and microhardness of a resin composite. J. Oral Rehabil. 2010, 37, 278–282. [Google Scholar] [CrossRef]
- Abbas, G.; Fleming, G.J.P.; Harrington, E.; Shortall, A.C.C.; Burke, F.J.T. Cuspal Movement. Microleakage in premolar teeth restoredwith a packable composite cured in bulk or in increments. J. Dent. 2003, 31, 437–444. [Google Scholar] [CrossRef]
- Bucuta, S.; Ilie, N. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites. Clin. Oral Investig. 2014, 18, 1991–2000. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Nishiyama, N.; Nemoto, K.; Okada, T.; Ikemi, T. Effect of base monomer’s refractive index on curing depth and polymerization conversion of photo-cured resin composites. Dent. Mater. J. 2005, 24, 403–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shortall, A.C.; Palin, W.M.; Burtscher, P. Refractive index mismatch and monomer reactivity influence composite curing depth. J. Dent. Res. 2008, 87, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Chang, J.; Ferracane, J.; Lee, I.B. How should composite be layered to reduce shrinkage stress: Incremental or bulk filling? Dent. Mater. 2008, 24, 1501–1505. [Google Scholar] [CrossRef]
- Roggendorf, M.J.; Krämer, N.; Appelt, A.; Naumann, M.; Frankenberger, R. Marginal quality of flowable 4-mm base vs. conventionally layered resin composite. J. Dent. 2011, 39, 643–647. [Google Scholar] [CrossRef]
- Erdemir, U.; Yildiz, E.; Eren, M.M.; Ozel, S. Surface hardness evaluation of different composite resin materials: Influence of sports and energy drinks immersion after a short-term period. J. Appl. Oral Sci. 2013, 21, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, I.B.; Güler, A.U. Effects of different surface treatments on the color stability of various dental porcelains. J. Dent. Sci. 2011, 6, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Badra, V.V.; Faraoni, J.J.; Ramos, R.P.; Palma-Dibb, R.G. Influence of different beverages on the microhardness and surface roughness of resin composites. Oper. Dent. 2005, 30, 213–219. [Google Scholar]
- Catelan, A.; Briso, A.L.; Sundfeld, R.H.; Dos Santos, P.H. Effect of artificial aging on the roughness and microhardness of sealed composites. J. Esthet. Restor. Dent. 2010, 22, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Erdemir, U.; Yildiz, E.; Eren, M.M.; Ozel, S. Surface hardness of different restorative materials after long-term immersion in sports and energy drinks. Dent. Mater. J. 2012, 31, 729–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yap, A.U.; Chew, C.L.; Ong, L.F.; Teoh, S.H. Environmental damage and occlusal contact area wear of composite restoratives. J. Oral Rehabil. 2002, 29, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Sunbul, H.A.; Silikas, N.; Watts, D.C. Surface and bulk properties of dental resin- composites after solvent storage. Dent. Mater. 2016, 32, 987–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poggio, C.; Arciola, C.R.; Rosti, F.; Scribante, A.; Saino, E.; Visai, L. Adhesion of Streptococcus mutans to different restorative materials. Int. J. Artif. Organs. 2009, 32, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Scribante, A.; Bollardi, M.; Chiesa, M.; Poggio, C.; Colombo, M. Flexural Properties and Elastic Modulus of Different Esthetic Restorative Materials: Evaluation after Exposure to Acidic Drink. Biomed. Res. Int. 2019, 2019, 5109481. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, E.; Gagliani, M.; Ionescu, A.; Fadini, L.; García-Godoy, F. The influence of light-curing time on the bacterial colonization of resin composite surfaces. Dent. Mater. 2009, 25, 1067–1072. [Google Scholar] [CrossRef]
- Brambilla, E.; Ionescu, A.; Gagliani, M.; Cochis, A.; Arciola, C.R.; Rimondini, L. Biofilm formation on composite resins for dental restorations: An in situ study on the effect of chlorhexidine mouthrinses. Int. J. Artif. Organs. 2012, 35, 792–799. [Google Scholar] [CrossRef]
- Poggio, C.; Dagna, A.; Chiesa, M.; Colombo, M.; Scribante, A. Surface roughness of flowable resin composites eroded by acidic and alcoholic drinks. J. Conserv. Dent. 2012, 15, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Buzalaf, M.A.; Hannas, A.R.; Kato, M.T. Saliva and dental erosion. J. Appl. Oral Sci. 2012, 20, 493–502. [Google Scholar] [CrossRef] [Green Version]
Group | Material | Code | Type | Composition | Filler Content % | Lot # | Manufacturer |
---|---|---|---|---|---|---|---|
1 | VisCalor bulk | VIS | Termoviscous bulk-fill composite (nanofilled composite) | Matrix: Bis-GMA, aliphatic dimethacrylate Filler: Inorganic filler | 83 (w/w) | 76292 | Voco, Cuxhaven, Germany |
2 | Admira Fusion x-tra | FUS | Nano-hybrid ORMOCER®-based material | Matrix: ORMOCER® Filler: glass ceramics, silica nanoparticles, pigments | 84 (w/w) | 1750435 1904427 | Voco, Cuxhaven, Germany |
3 | x-tra fil | XTF | Light-curing posterior filling material | Matrix: dimethacrylate (Bis-GMA, TEGDMA, UDMA) Filler: Inorganic filler (Bariumaluminium silicate, fumed silica, pigments) | 86 (w/w) | 1906144 | Voco, Cuxhaven, Germany |
4 | GrandioSO x-tra | GRA | Aestethic nanohybrid bulk restorative material | Matrix: Bis-GMA, Bis-EMA, aliphatic dimethacrylate Filler: Inorganic filler, organically modified silica | 86 (w/w) | 1907626 | Voco, Cuxhaven, Germany |
Group | Material Code | Side | Mean | Min | Mdn | Max |
---|---|---|---|---|---|---|
1 | VIS | External (A) | 82.82 (1.62) a | 80.10 | 83.21 | 85.10 |
1 | VIS | Internal (B) | 67.80 (2.51) b | 64.60 | 67.65 | 72.30 |
2 | FUS | External (A) | 62.08 (0.92) c | 60.58 | 62.29 | 63.08 |
2 | FUS | Internal (B) | 53.14 (2.31) d | 50.10 | 53.12 | 57.00 |
3 | XTF | External (A) | 87.00 (1.97) e | 84.40 | 87.20 | 90.50 |
3 | XTF | Internal (B) | 82.80 (2.28) a | 78.90 | 83.00 | 86.20 |
4 | GRA | External (A) | 71.50 (1.70) f | 68.30 | 72.15 | 73.44 |
4 | GRA | Internal (B) | 65.60 (1.28) b | 63.80 | 65.70 | 67.20 |
Group | Material Code | Mean Percentage Loss (SD) % |
---|---|---|
1 | VIS | −18.14 (0.02) a |
2 | FUS | −14.40 (0.04) b |
3 | XTF | −4.79 (0.03) c |
4 | GRA | −8.22 (0.02) d |
Group | Material Code | Hardness Ratio (SD) |
---|---|---|
1 | VIS | 0.82 (0.02) |
2 | FUS | 0.86 (0.04) |
3 | XTF | 0.95 (0.03) |
4 | GRA | 0.92 (0.02) |
Subgroups | Material Code | Storage | Mean (SD) | Min | Mdn | Max |
---|---|---|---|---|---|---|
1A | VIS | Control | 82.82 (1.62) a | 80.10 | 83.21 | 85.10 |
1B | VIS | 1-day acid drink | 76.76 (1.75) b | 73.40 | 77.08 | 78.77 |
1C | VIS | 1-week acid drink | 71.70 (1.68) c | 69.60 | 71.65 | 74.70 |
2A | FUS | Control | 62.08 (0.92) d | 60.58 | 62.29 | 63.08 |
2B | FUS | 1-day acid drink | 57.22 (1.03) e | 55.72 | 57.65 | 58.40 |
2C | FUS | 1-week acid drink | 53.80 (0.92) f | 52.30 | 53.90 | 55.00 |
3A | XTF | Control | 87.00 (1.97) g | 84.40 | 87.20 | 90.50 |
3B | XTF | 1-day acid drink | 84.06 (2.02) a | 80.20 | 84.43 | 86.41 |
3C | XTF | 1-week acid drink | 79.04 (2.01) b | 76.40 | 79.57 | 81.60 |
4A | GRA | Control | 71.50 (1.70) c | 68.30 | 72.15 | 73.44 |
4B | GRA | 1-day acid drink | 67.90 (1.35) h | 65.80 | 68.20 | 69.36 |
4C | GRA | 1-week acid drink | 62.96 (1.26) d | 61.30 | 63.08 | 64.90 |
Group | Material Code | T0–T1 (%) | T1–T2 (%) | T0–T2 (%) |
---|---|---|---|---|
1 | VIS | −7.30 (2.05) a | −6.58 (1.85) a | −13.42 (1.72) b |
2 | FUS | −7.83 (0.57) a | −5.97 (0.72) a | −13.34 (0.50) b |
3 | XTF | −3.36 (2.07) c | −5.92 (3.55) a,c | −9.12 (2.68) a,d |
4 | GRA | −5.02 (1.27) a | −7.27 (0.99) a | −11.92 (1.77) b,d |
Coefficient | Estimate | Std. Error | t Value | Pr(>|t|) | Confidence | Intervals |
---|---|---|---|---|---|---|
Intercept | 74.35 | 1.21 | 61.41 | <0.0001 | 71.97 | 76.72 |
Time | −0.04597 | 0.01 | −3.72 | <0.0001 | −0.07 | −0.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colombo, M.; Gallo, S.; Poggio, C.; Ricaldone, V.; Arciola, C.R.; Scribante, A. New Resin-Based Bulk-Fill Composites: in vitro Evaluation of Micro-Hardness and Depth of Cure as Infection Risk Indexes. Materials 2020, 13, 1308. https://doi.org/10.3390/ma13061308
Colombo M, Gallo S, Poggio C, Ricaldone V, Arciola CR, Scribante A. New Resin-Based Bulk-Fill Composites: in vitro Evaluation of Micro-Hardness and Depth of Cure as Infection Risk Indexes. Materials. 2020; 13(6):1308. https://doi.org/10.3390/ma13061308
Chicago/Turabian StyleColombo, Marco, Simone Gallo, Claudio Poggio, Vittorio Ricaldone, Carla Renata Arciola, and Andrea Scribante. 2020. "New Resin-Based Bulk-Fill Composites: in vitro Evaluation of Micro-Hardness and Depth of Cure as Infection Risk Indexes" Materials 13, no. 6: 1308. https://doi.org/10.3390/ma13061308
APA StyleColombo, M., Gallo, S., Poggio, C., Ricaldone, V., Arciola, C. R., & Scribante, A. (2020). New Resin-Based Bulk-Fill Composites: in vitro Evaluation of Micro-Hardness and Depth of Cure as Infection Risk Indexes. Materials, 13(6), 1308. https://doi.org/10.3390/ma13061308