Identification of the Red-Necked Longhorn Beetle Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae) with Real-Time PCR on Frass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect and Frass Samples Used for DNA Extraction
2.2. DNA Extraction
2.2.1. DNA Extraction from Frass
2.2.2. DNA Extraction from Insects
2.3. Design of the Primers and Probes for the TaqMan Probe and SYBR Green Real-Time Tests
2.4. Blind Panel Validation of the Assay
2.5. Repeatability and Reproducibility
2.6. Limit of Detection (LoD)
2.7. Data Analysis
3. Results
3.1. DNA Extraction from Frass and Insects
3.2. Optimization of the Diagnostic Methods for RLB
3.3. Blind Panel Validation of the Assay
3.4. Repeatability, Reproducibility, and LoD
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- EPPO—European Plant Protection Organization. Aromia bungii (AROMBU). EPPO Global Database. 2020. Available online: https://gd.eppo.int/taxon/AROMBU/distribution (accessed on 20 March 2020).
- EPPO. First Report of Aromia bungii in Germany: Addition to the EPPO Alert List. EPPO Reporting Service. 2012. Available online: https://gd.eppo.int/reporting/article-1917 (accessed on 9 April 2020).
- Hoerren, T. Another evidence of the Asian muskbeetle Aromia bungii (Faldermann. 1835) in Germany (Coleoptera: Cerambycidae. Cerambycinae). Entomol. Z. 2016, 126, 205–207. (In German) [Google Scholar]
- Bayerische LfL. The Asian Musk Beetle Aromia bungii. 2016. Available online: https://www.lfl.bayern.de/ips/pflanzengesundheit/142278/index.php (accessed on 9 April 2020).
- EPPO. First Report of Aromia bungii in Italy. EPPO Reporting Service. 2012. Available online: https://gd.eppo.int/reporting/article-2410 (accessed on 9 April 2020).
- EPPO. Aromia bungii found for the first time in Lombardia Region. Italy. EPPO Reporting Service. 2013. Available online: https://gd.eppo.int/reporting/article-2649 (accessed on 9 April 2020).
- Garonna, A.P.; Nugnes, F.; Espinosa, B.; Griffo, R.; Benchi, D. Aromia bungii, a new Asian worm found in Campania. Inf. Agrar. 2013, 69, 60–62. (In Italian) [Google Scholar]
- Anonymous. The First Longicorn Beetle in Japan Confirmed in Aichi. Damaging Cherry and Japanese Apricot Trees. 2013. Available online: http://english.agrinews.co.jp/?p=482 (accessed on 4 April 2020).
- Kano, M.; Nonaka, T.; Kiriyama, S.; Iwata, R. Aromia bungii (Coleoptera: Cerambycidae) an invasive cerambycid found at Soka Saitama Pref., Japan infesting cherry trees Cerasus × yedoensis ‘Somei-yoshino’. For. Pests 2014, 63, 101–105, (In Japanese with English summary). [Google Scholar]
- CABI. Aromia bungii. Invasive Species Compendium; CAB International: Wallingford, UK, 2020. Available online: www.cabi.org/isc (accessed on 20 March 2020).
- de la Peña, E.; Schrader, G.; Vos, S. Pest survey card on Aromia bungii. EFSA Supp. Pub. 2019, 16, EN-1731. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q. Cerambycid pests in agricultural and horticultural crops. In Cerambycidae of the World: Biology and Pest Management; Wang, Q., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 409–562. [Google Scholar]
- Ma, W.H.; Sun, L.Y.; Yu, L.G.; Wang, J.T.; Chen, J.Y. Study on the occurrence and life history in Aromia bungii (Faldermann). Acta. Agric. Boreali Sinica 2007, 22, 247–249. [Google Scholar]
- Russo, E.; Nugnes, F.; Vicinanza, F.; Garonna, A.P.; Bernardo, U. Biological and molecular characterization of Aromia bungii (Faldermann. 1835) (Coleoptera: Cerambycidae) an emerging pest of stone fruits in Europe. Sci. Rep. 2020, 10, 7112. [Google Scholar] [CrossRef] [PubMed]
- EPPO. Pest Risk Analysis for Aromia bungii. 2014. Available online: http://www.eppo.int/QUARANTINE/Pest_Risk_Analysis/PRA_intro.htm (accessed on 9 April 2020).
- Cocquempot, C. Aromia bungii. EPPO datasheet on pests recommended for regulation. EPPO Bull. 2014, 45, 4–8. [Google Scholar]
- Carella, D. Regional Action Plan for the Control of the Longhorn Beetle Aromia bungii-VII Update; Executive Decree n. 134. Bollettino Ufficiale della Regione Campania. 2019. Available online: http://agricoltura.regione.campania.it/difesa/files/DRD_134-18-11-19.pdf (accessed on 7 May 2020). (In Italian).
- European Union. Commission Implementing Decision (EU) 2018/1503 of 8 October 2018 as regards measures to prevent the introduction into and the spread within the Union of Aromia bungii (Faldermann). Off. J. Eur. Union. 2018, 254, 9–18. [Google Scholar]
- Calderon-Cortes, N.; Quesada, M.; Cano-Camacho, H.; Zavala-Paramo, G. A simple and rapid method for DNA isolation from xylophagous insects. Int. J. Mol. Sci. 2010, 11, 5056–5064. [Google Scholar] [CrossRef]
- Kethidi, D.R.; Roden, D.B.; Ladd, T.R.; Krell, P.J.; Retnakaran, A.; Feng, Q. Development of SCAR markers for the DNA-based detection of the Asian long-horned beetle Anoplophora glabripennis (Motschulsky). Arch. Insect. Biochem. Physiol. 2003, 52, 193–204. [Google Scholar] [CrossRef]
- Mlynarek, J.J.; Kim, J.H.; Heard, S.B. Identification of leaf-mining insects via DNA recovered from empty mines. FACETS 2016, 1, 217–224. [Google Scholar] [CrossRef]
- Ide, T.; Kanzaki, N.; Ohmura, W.; Okabe, K. Molecular Identification of an invasive wood-boring insect Lyctus brunneus (Coleoptera: Bostrichidae: Lyctinae) using frass by Loop-mediated isothermal amplification and nested PCR assays. J. Econ. Entomol. 2016, 109, 1410–1414. [Google Scholar] [CrossRef] [PubMed]
- Ide, T.; Kanzaki, N.; Ohmura, W.; Okabe, K. Molecular Identification of the western Drywood Termite (Isoptera: Kalotermitidae) by Loop-Mediated Isothermal Amplification of DNA from fecal pellet. J. Econ. Entomol. 2016, 109, 2234–2237. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, R.P.; Goodbla, A.; Graves, E.; Baerwald, M.; Holyoak, M.; Schreier, A. Noninvasive genetic monitoring for the threatened valley elderberry longhorn beetle. PLoS ONE 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strangi, A.; Sabbatini Peverieri, G.; Roversi, P.F. Managing outbreaks of the citrus long-horned beetle Anoplophora chinensis (Forster) in Europe: Molecular diagnosis of plant infestation. Pest Manag. Sci. 2013, 69, 627–634. [Google Scholar] [CrossRef]
- Duffy, E.A.J. A Monograph of the Immature Stages of Oriental Timber Beetles (Cerambycidae); London British Museum (Natural History): London, UK, 1968; p. 434. [Google Scholar]
- Gressitt, J.L. Destructive long-horned beetle borers at Canton. China. Spec. Publ. Lingnan. Nat. Hist. Surv. 1942, 1, 1–60. [Google Scholar]
- Švácha, P.; Danilevsky, M.L. Cerambycoid larvae of Europe and Soviet Union (Coleoptera, Cerambycoidea). Part II. Acta Univ. Carolinae Biol. 1988, 31, 121–284. [Google Scholar]
- Li, R.; Mocka, R.; Huang, Q.; Abad, J.; Hartung, J.G.; Kinarda, G. A reliable and inexpensive method of nucleic acid extraction for the PCR-based detection of diverse plant pathogens. J. Virol. Methods 2008, 154, 48–55. [Google Scholar] [CrossRef]
- Weller, S.A.; Elphinstone, J.G.; Smith, N.C.; Boonham, N.; Stead, D.E. Detection of Ralstonia solanacearum Strains with a Quantitative, Multiplex, Real-Time, Fluorogenic PCR (TaqMan) Assay. Appl. Environ. Microbiol. 2000, 66, 2853–2858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- loos, R.; Fourrier, C.; Iancu, G.; Gordon, T.R. Sensitive detection of Fusarium circinatum in pine seeds by combining an enrichment procedure with a Real-Time PCR using dual-labeled probe chemistry. Phytopathology 2009, 99, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearse, M.; Moir, R.; Wilson, A.; Stone-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- EPPO. 2017 PM 7/76 (4) Use of EPPO diagnostic protocols. EPPO Bull. 2017, 47, 7–9. [Google Scholar] [CrossRef] [Green Version]
- EPPO. PM 7/98 (4) Specific requirements for laboratories preparing accreditation for a plant pest diagnostic activity. EPPO Bull. 2019, 49, 530–563. [Google Scholar] [CrossRef] [Green Version]
- Blaser, S.; Diem, H.; von Felten, A.; Gueuning, M.; Andreou, M.; Boonham, N.; Tomlinson, J.; Müller, P.; Utzinger, J.; Frey, J.E.; et al. From laboratory to point of entry: Development and implementation of a loop-mediated isothermal amplification (LAMP)-based genetic identification system to prevent introduction of quarantine insect species. Pest. Manag. Sci. 2018, 74, 1504–1512. [Google Scholar] [CrossRef] [Green Version]
- Dhami, M.K.; Dsouza, M.; Waite, D.W.; Anderson, D.; Li, D. Real time PCR Assay for the Identification of the Brown Marmorated Stink Bug (Halyomorpha halys). Front. Mol. Biosci. 2016. [Google Scholar] [CrossRef] [Green Version]
- Koohkanzade, M.; Zakiaghl, M.; Dhami, M.K.; Fekrat, L.; Namaghi, H.S. Rapid identification of Bactrocera zonata (Dip.: Tephritidae) using TaqMan real time PCR assay. PLoS ONE 2018. [Google Scholar] [CrossRef] [Green Version]
- Hulme, P.E. Trade. transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 2009, 46, 10–18. [Google Scholar] [CrossRef]
- Hérard, F.; Maspero, M. History of discoveries and management of the citrus longhorned beetle Anoplophora chinensis in Europe. J. Pest Sci. 2019, 92, 117–130. [Google Scholar] [CrossRef]
- Herms, D.A.; McCullough, D.G. Emerald Ash Borer Invasion of North America: History Biology Ecology Impacts and Management. Annu. Rev. Entomol. 2014, 59, 13–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennacchio, F.; Sabbatini, P.G.; Jucker, C.; Allegro, G.; Roversi, P.F. A key for the identification of larvae of Anoplophora chinensis. Anoplophora glabripennis and Psacothea hilaris (Coleoptera Cerambycidae Lamiinae) in Europe. J. Zool. 2012, 95, 57–65. [Google Scholar]
- Fukaya, M.; Kiriyama, S.; Yasui, H. Mate-location flight of the red-necked longicorn beetle. Aromia bungii (Coleoptera: Cerambycidae): An invasive pest lethal to Rosaceae trees. Appl. Entomol. Zool. 2017, 52, 559–565. [Google Scholar] [CrossRef]
- Yasui, H.; Fujiwara-Tsujii, N.; Yasuda, T.; Fukaya, M.; Kiriyama, S.; Nakano, A.; Watanabe, T.; Mori, K. Electroantennographic responses and field attraction of an emerging invader the red-necked longicorn beetle Aromia bungii (Coleoptera: Cerambycidae) to the chiral and racemic forms of its male-produced aggregation-sex pheromone. Appl. Entomol. Zool. 2019, 54, 109–114. [Google Scholar] [CrossRef]
- Germinara, G.S.; Pistillo, O.M.; Griffo, R.; Garonna, A.P.; Di Palma, A. Electroantennographic responses of Aromia bungii (Faldermann. 1835) (Coleoptera: Cerambycidae) to a range of volatile compounds. Insects 2019, 10, 274. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Hansen, L.; Xu, T.; Teale, S.A.; Hao, D.; Millar, J.C. Optimizing pheromone-based lures for the invasive red-necked longhorn beetle. Aromia bungii. J. Pest Sci. 2019, 92, 1217–1225. [Google Scholar] [CrossRef]
- Finley, K.; Chhin, S. Forest health management and detection of invasive forest insects. Resources 2016, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.D.; Forse, L.B.; Babst, B.A.; Bataineh, M.M. Detection of Emerald ash borer infestations in living green ash by noninvasive electronic-nose analysis of wood volatiles. Biosensors 2019, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Trepanowski, N.F.; Molongoski, J.J.; Reagel, P.F.; Lingafelter, S.W.; Nadel, H.; Myers, S.W.; Ray, A.M. Identification of wood-boring beetles (Cerambycidae and Buprestidae) intercepted in trade associated solid wood packaging material using DNA barcoding and morphology. Sci. Rep. 2017, 7, 40316. [Google Scholar] [CrossRef] [Green Version]
- Rytkönen, S.; Vesterinen, E.J.; Westerduin, C.; Leviäkanga, E.J.; Vatka, E.; Mutanen, M.; Ӓlimäki, P.; Hukkanen, M.; Suokas, M.; Orell, M. From feces to data: A metabarcoding method for analyzing consumed and available prey in a bird-insect food web. Ecol. Evol. 2019, 9, 631–639. [Google Scholar] [CrossRef] [Green Version]
Order | Family/Subf | Species | Stage and No. of Samples | |||
---|---|---|---|---|---|---|
A | L | E | F | |||
Lepidoptera | Cossidae | Cossus cossus Linnaeus | - | 2 | - | 1 |
Zeuzera pyrina Linnaeus | - | - | - | 1 | ||
Sesiidae | Sesia sp. Fabricius | - | - | - | 1 | |
Coleoptera | Scarabaeidae | Valgus hemipterus (Linnaeus) | 1 | - | - | - |
Cerambycidae | Anoplophora glabripennis (Motschulsky) | 1 | 1 | 1 | 1 | |
Anoplophora chinensis (Forster) | 1 | 1 | - | 1 | ||
Aromia bungii Faldermann | 2 | 2 | - | 22 | ||
Aromia moschata (Linnaeus) | 1 | - | - | - | ||
Cerambyx cerdo Linnaeus | 1 | - | - | 1 | ||
Cerambyx scopolii Fuessly | 1 | - | - | - | ||
Cerambyx welensii Küster | 1 | - | - | - | ||
Monochamus galloprovincialis (Olivier) | 1 | 1 | - | - | ||
Monochamus sartor (Fabricius) | 1 | - | - | - | ||
Monochamus sutor (Linnaeus) | - | 1 | - | - | ||
Morimus asper (Sulzer) | 1 | - | - | - | ||
Saperda carcharias (Linnaeus) | 1 | - | - | - | ||
Saperda tridentata (Olivier) | 1 | 1 | - | - | ||
Scolytinae | Xylosandrus compactus (Eichhoff) | 1 | - | - | - | |
Ips sexdentatus (Boerner) | 1 | - | - | - | ||
Ips typographus Linnaeus | 1 | - | - | - | ||
Orthotomicus erosus (Wollaston) | 1 | - | - | - | ||
Pityophthorus juglandis Blackman | 1 | - | - | 1 | ||
Pityophthorus pubescens (Marsham) | 1 | - | - | - | ||
Xylosandrus crassiusculus (Motschulsky) | 1 | - | - | 1 | ||
Xylosandrus germanus (Blandford) | 1 | - | - | - | ||
Tomicus destruens (Wollaston) | 1 | - | - | - |
Primer/Probe Name | Length (Bases) | Sequence 5′–3′ | Nucleotide Position | Product Size (bp) | Reference Sequence |
---|---|---|---|---|---|
Abungii_285F | 22 | CAGCAGTTCTTCTTTTATTATC | 285 to 307 | 199 | DQ223728 |
Abungii_484R | 18 | GGTGTCCAAAGAATCAAA | 484 to 502 | ||
Abungii_309P | 26 | FAM_TACCAGTATTAGCAGGAGCCATTACG_BHQ1 | 309 to 335 | 157 | JQ904852 |
Abungii_436F | 22 | TAACTTCCGTCTATTAGATGTA | 436 to 458 | ||
Abungii_592R | 18 | GCTAACTTGGTTGATTCG | 592 to 610 |
N. | Expected Result | qPCR Probe Protocol | qPCR SYBR Green Protocol | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lab 1 | Lab 2 | Lab 3 | Cq Mean ± SD | Lab 1 | Lab 2 | Lab 3 | Cq mean ± SD | ||||||||
Cq | Res. | Cq | Res. | Cq | Res. | Cq | Res. | Cq | Res. | Cq | Res. | ||||
1 | + | 25.11 | + | 24.78 | + | 24.37 | + | 24.38 ± 0.37 | 22.65 | + | 25.37 | + | Und | + | 24.01 ± 1.92 |
2 | + | 28.6 | + | 28.48 | + | 26.96 | + | 26.96 ± 0.91 | 26.48 | + | 26.29 | + | Und | + | 26.39 ± 0.13 |
3 | + | 28.93 | + | 28.67 | + | 29.78 | + | 29.78 ± 0.58 | 29.29 | + | 26.78 | + | Und | + | 28.04 ± 1.77 |
4 | + | 29.81 | + | 30.53 | + | 26.96 | + | 29.10 ± 1.89 | 29.31 | + | 26.96 | + | Und | + | 28.14 ± 1.66 |
5 | + | 30.27 | + | 30.7 | + | 27.21 | + | 29.39 ± 1.90 | 29.47 | + | 27.21 | + | Und | + | 28.34 ± 1.60 |
6 | + | 30.43 | + | 30.97 | + | 27.33 | + | 29.58 ± 1.96 | 29.65 | + | 27.33 | + | Und | + | 28.49 ± 1.64 |
7 | + | 30.54 | + | 31.11 | + | 27.41 | + | 29.69 ± 1.99 | 29.76 | + | 27.41 | + | Und | + | 28.59 ± 1.66 |
8 | + | 31.12 | + | 31.53 | + | 28.25 | + | 30.37 ± 1.79 | 30.37 | + | 28.25 | + | Und | + | 29.31 ± 1.50 |
9 | + | 31.44 | + | 31.92 | + | 28.54 | + | 30.61 ± 1.83 | 30.61 | + | 28.54 | + | Und | + | 29.58 ± 1.46 |
10 | + | 31.81 | + | 32.16 | + | 28.63 | + | 30.63 ± 1.94 | 30.63 | + | 28.63 | + | Und | + | 29.63 ± 1.41 |
11 | + | 32.09 | + | 32.39 | + | 28.83 | + | 30.87 ± 1.97 | 30.65 | + | 28.83 | + | Und | + | 29.74 ± 1.29 |
12 | + | 32.12 | + | 32.48 | + | 28.87 | + | 31.16 ± 1.99 | 30.67 | + | 28.87 | + | Und | + | 29.77 ± 1.27 |
13 | + | 32.15 | + | 32.55 | + | 29.12 | + | 31.27 ± 1.88 | 30.84 | + | 29.12 | + | Und | + | 29.98 ± 1.22 |
14 | + | 32.25 | + | 32.93 | + | 29.33 | + | 31.50 ± 1.91 | 30.91 | + | 29.33 | + | Und | + | 30.12 ± 1.12 |
15 | + | 32.59 | + | 33.29 | + | 29.4 | + | 31.76 ± 2.07 | 31.31 | + | 29.4 | + | Und | + | 30.36 ± 1.35 |
16 | + | 32.68 | + | 33.46 | + | 29.43 | + | 31.86 ± 2.14 | 31.82 | + | 29.43 | + | Und | + | 30.63 ± 1.69 |
17 | + | 32.79 | + | 33.52 | + | 29.63 | + | 31.91 ± 2.07 | 31.91 | + | 29.63 | + | Und | + | 30.77 ± 1.61 |
18 | + | 33.05 | + | 33.86 | + | 30.56 | + | 32.49 ± 1.72 | 31.96 | + | 30.56 | + | Und | + | 31.26 ± 0.99 |
19 | + | 33.32 | + | 33.92 | + | 30.7 | + | 32.65 ± 1.71 | 32.23 | + | 30.7 | + | Und | + | 31.47 ± 1.08 |
20 | + | 33.65 | + | 34.06 | + | 31.11 | + | 32.94 ± 1.60 | 32.39 | + | 31.11 | + | Und | + | 31.75 ± 0.91 |
21 | + | 33.66 | + | 34.1 | + | 32.32 | + | 33.56 ± 0.93 | 32.62 | + | 32.82 | + | Und | + | 32.76 ± 0.14 |
22 | + | 33.94 | + | 34.66 | + | 32.38 | + | 33.66 ± 1.17 | 36.43 | + | 32.38 | + | Und | + | 34.41 ± 2.86 |
23 | + | 34.36 | + | 34.71 | + | 33.67 | + | 34.25 ± 0.53 | 36.66 | + | 32.85 | − | Und | + | 34.76 ± 2.69 |
24 | + | 35.35 | + | N/A | − | 33.67 | + | 34.51 ± 1.19 | 36.69 | + | 33.67 | − | Und | + | 35.18 ± 2.14 |
25 | − | 36.96 | − | N/A | − | 37.27 | − | 37.12 ± 0.22 | 37.71 | − | 37.27 | − | Und | − | 37.49 ± 0.31 |
26 | − | N/A | − | N/A | − | N/A | − | N/A | − | N/A | − | Und | − | ||
27 | − | N/A | − | N/A | − | N/A | − | N/A | − | N/A | − | Und | − | ||
28 | − | N/A | − | N/A | − | N/A | − | N/A | − | N/A | − | Und | − | ||
29 | − | N/A | − | N/A | − | N/A | − | N/A | − | N/A | − | Und | − | ||
30 | − | N/A | − | N/A | − | N/A | − | N/A | − | N/A | − | Und | − | ||
31 | − | N/A | − | N/A | − | N/A | − | N/A | − | N/A | − | Und | − | ||
32 | − | N/A | − | N/A | − | N/A | − | N/A | − | N/A | − | Und | − |
Sample | qPCR Probe Protocol | qPCR SYBR Green Protocol | ||||
---|---|---|---|---|---|---|
Repeatability | Reproducibility | Repeatability | Reproducibility | |||
Assay 1 | Assay 2 | Assay 1 | Assay 2 | |||
1 | 5.19 | 2.45 | 4.13 | 3.02 | 2.47 | 2.49 |
2 | 3.19 | 4.85 | 3.76 | 2.73 | 2.28 | 2.35 |
3 | 2.64 | 2.18 | 2.18 | 2.50 | 0.99 | 1.78 |
4 | 2.92 | 3.94 | 3.13 | 4.07 | 0.79 | 2.67 |
5 | 2.81 | 1.99 | 2.37 | 2.36 | 0.47 | 1.98 |
6 | 3.06 | 3.82 | 3.10 | 2.44 | 0.44 | 1.96 |
7 | 3.08 | 3.63 | 3.11 | 3.47 | 4.22 | 3.46 |
8 | 3.04 | 2.16 | 2.36 | 3.75 | 3.52 | 3.26 |
9 | 3.06 | 3.09 | 2.80 | 3.32 | 1.73 | 2.47 |
10 | 3.88 | 4.16 | 3.71 | 4.92 | 4.82 | 4.37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzo, D.; Taddei, A.; Da Lio, D.; Nugnes, F.; Barra, E.; Stefani, L.; Bartolini, L.; Griffo, R.V.; Spigno, P.; Cozzolino, L.; et al. Identification of the Red-Necked Longhorn Beetle Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae) with Real-Time PCR on Frass. Sustainability 2020, 12, 6041. https://doi.org/10.3390/su12156041
Rizzo D, Taddei A, Da Lio D, Nugnes F, Barra E, Stefani L, Bartolini L, Griffo RV, Spigno P, Cozzolino L, et al. Identification of the Red-Necked Longhorn Beetle Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae) with Real-Time PCR on Frass. Sustainability. 2020; 12(15):6041. https://doi.org/10.3390/su12156041
Chicago/Turabian StyleRizzo, Domenico, Andrea Taddei, Daniele Da Lio, Francesco Nugnes, Eleonora Barra, Luciana Stefani, Linda Bartolini, Raffaele V. Griffo, Paola Spigno, Lucia Cozzolino, and et al. 2020. "Identification of the Red-Necked Longhorn Beetle Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae) with Real-Time PCR on Frass" Sustainability 12, no. 15: 6041. https://doi.org/10.3390/su12156041
APA StyleRizzo, D., Taddei, A., Da Lio, D., Nugnes, F., Barra, E., Stefani, L., Bartolini, L., Griffo, R. V., Spigno, P., Cozzolino, L., Rossi, E., & Garonna, A. P. (2020). Identification of the Red-Necked Longhorn Beetle Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae) with Real-Time PCR on Frass. Sustainability, 12(15), 6041. https://doi.org/10.3390/su12156041