Abstract
Diabetes mellitus is constantly increasing worldwide. Vascular complications are the most common in the setting of long-standing disease, claiming the greatest burden in terms of morbidity and mortality. Glucotoxicity is involved in vascular damage through different metabolic pathways, such as production of advanced glycation end-products, activation of protein kinase C, polyol pathway activation and production of reactive oxygen species. Vascular complications can be classified according to the calibre of the vessels involved as microvascular (such as diabetic retinopathy, nephropathy and neuropathy) or macrovascular (such as cerebrovascular, coronary and peripheral artery disease). Previous studies showed that the severity of vascular complications depends on duration and degree of hyperglycaemia and, as consequence, early trials were designed to prove that intensive glucose control could reduce the number of vascular events. Unfortunately, results were not as satisfactory as expected. Trials showed good results in reducing incidence of microvascular complications but coronary heart diseases, strokes and peripheral artery diseases were not affected despite optimal glycemia control. In 2008, after the demonstration that rosiglitazone increases cardiovascular risk, FDA demanded stricter rules for marketing glucose-lowering drugs, marking the beginning of cardiovascular outcome trials, whose function is to demonstrate the cardiovascular safety of anti-diabetic drugs. The introduction of new molecules led to a change in diabetes treatment, as some new glucose-lowering drugs showed not only to be safe but also to ensure cardiovascular benefit to diabetic patients. Empaglifozin, a sodium-glucose cotransporter 2 inhibitor, was the first molecule to show impressing results, followed on by glucagon-like peptide 1 receptor agonists, such as liraglutide. A combination of anti-atherogenic effects and hemodynamic improvements are likely explanations of the observed reduction in cardiovascular events and mortality. These evidences have opened a completely new era in the field of glucose-lowering drugs and of diabetes treatment in particular with respect to vascular complications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Bibliography
Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME et al (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358:2545–2559. https://doi.org/10.1056/NEJMoa0802743
Adler AI, Stevens RJ, Manley SE et al (2003) Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 63:225–232. https://doi.org/10.1046/j.1523-1755.2003.00712.x
ADVANCE Collaborative Group, Patel A, MacMahon S et al (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358:2560–2572. https://doi.org/10.1056/NEJMoa0802987
Anand SS, Islam S, Rosengren A et al (2008) Risk factors for myocardial infarction in women and men: insights from the INTERHEART study. Eur Heart J 29:932–940. https://doi.org/10.1093/eurheartj/ehn018
Avogaro A, Albiero M, Menegazzo L, de Kreutzenberg S, Fadini GP (2011) Endothelial dysfunction in diabetes: the role of reparatory mechanisms. Diabetes Care 34(Suppl 2):S285–S290. https://doi.org/10.2337/dc11-s239
Beckman JA, Creager MA, Libby P (2002) Diabetes and atherosclerosis. JAMA 287:2570. https://doi.org/10.1001/jama.287.19.2570
Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM (2005) Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 54:146–151. https://doi.org/10.2337/diabetes.54.1.146
Boulton AJM, Vinik AI, Arezzo JC et al (2005) Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care 28:956–962. https://doi.org/10.2337/diacare.28.4.956
Buse JB, Ginsberg HN, Bakris GL et al (2007) Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care 30:162–172. https://doi.org/10.2337/dc07-9917
Cameron-Vendrig A, Reheman A, Siraj MA et al (2016) Glucagon-like peptide 1 receptor activation attenuates platelet aggregation and thrombosis. Diabetes 65:1714–1723. https://doi.org/10.2337/db15-1141
Cao Z, Cooper ME (2011) Pathogenesis of diabetic nephropathy. J Diabetes Investig 2:243–247. https://doi.org/10.1111/j.2040-1124.2011.00131.x
Chiasson J-L, Josse RG, Gomis R et al (2002) Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 359:2072–2077. https://doi.org/10.1016/S0140-6736(02)08905-5
Colayco DC, Niu F, McCombs JS, Cheetham TC (2011) A1C and cardiovascular outcomes in type 2 diabetes: a nested case-control study. Diabetes Care 34:77–83. https://doi.org/10.2337/dc10-1318
Cosentino F, Grant PJ, Aboyans V et al (2019) 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 41:255–323. https://doi.org/10.1093/eurheartj/ehz486
Currie CJ, Peters JR, Tynan A et al (2010) Survival as a function of HbA1c in people with type 2 diabetes: a retrospective cohort study. Lancet 375:481–489. https://doi.org/10.1016/S0140-6736(09)61969-3
De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM (2000) Endothelial dysfunction in diabetes. Br J Pharmacol 130:963–974. https://doi.org/10.1038/sj.bjp.0703393
Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S et al (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986. https://doi.org/10.1056/NEJM199309303291401
Dormandy JA, Charbonnel B, Eckland DJA et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet (Lond, Engl) 366:1279–1289. https://doi.org/10.1016/S0140-6736(05)67528-9
Duckworth W, Abraira C, Moritz T et al (2009) Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 360:129–139. https://doi.org/10.1056/NEJMoa0808431
Ference BA, Graham I, Tokgozoglu L, Catapano AL (2018) Impact of lipids on cardiovascular health. J Am Coll Cardiol 72:1141–1156. https://doi.org/10.1016/j.jacc.2018.06.046
Fong DS, Aiello LP, Ferris FL, Klein R (2004) Diabetic retinopathy. Diabetes Care 27:2540–2553. https://doi.org/10.2337/diacare.27.10.2540
Fox CS, Coady S, Sorlie PD et al (2007) Increasing cardiovascular disease burden due to diabetes mellitus: the Framingham Heart Study. Circulation 115:1544–1550. https://doi.org/10.1161/CIRCULATIONAHA.106.658948
Gæde P, Lund-Andersen H, Parving H-H, Pedersen O (2008) Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 358:580–591. https://doi.org/10.1056/NEJMoa0706245
Garcia-Ropero A, Santos-Gallego CG, Zafar MU, Badimon JJ (2019) Metabolism of the failing heart and the impact of SGLT2 inhibitors. Expert Opin Drug Metab Toxicol 15:275–285. https://doi.org/10.1080/17425255.2019.1588886
Gerstein HC, Colhoun HM, Dagenais GR et al (2019) Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394:121–130. https://doi.org/10.1016/S0140-6736(19)31149-3
Green JB, Bethel MA, Armstrong PW et al (2015) Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 373:232–242. https://doi.org/10.1056/NEJMoa1501352
Hadi HAR, Suwaidi JA (2007) Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag 3:853–876
Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234. https://doi.org/10.1056/NEJM199807233390404
Hernandez AF, Green JB, Janmohamed S et al (2018) Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392:1519–1529. https://doi.org/10.1016/S0140-6736(18)32261-X
Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW (2008) 10-year follow-up of intensive glucose Control in type 2 diabetes. N Engl J Med 359:1577–1589. https://doi.org/10.1056/NEJMoa0806470
Holman RR, Coleman RL, Chan JCN et al (2017) Effects of acarbose on cardiovascular and diabetes outcomes in patients with coronary heart disease and impaired glucose tolerance (ACE): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 5:877–886. https://doi.org/10.1016/S2213-8587(17)30309-1
Home PD, Pocock SJ, Beck-Nielsen H et al (2009) Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 373:2125–2135. https://doi.org/10.1016/S0140-6736(09)60953-3
Hong J, Zhang Y, Lai S et al (2013) Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care 36:1304–1311. https://doi.org/10.2337/dc12-0719
Huang ES, Liu JY, Moffet HH, John PM, Karter AJ (2011) Glycemic Control, complications, and death in older diabetic patients: the diabetes and aging study. Diabetes Care 34:1329–1336. https://doi.org/10.2337/dc10-2377
Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241:2035–2038. https://doi.org/10.1001/jama.241.19.2035
Khaw K-T, Wareham N, Bingham S et al (2004) Association of hemoglobin A1c with cardiovascular disease and mortality in adults: the European Prospective Investigation into Cancer in Norfolk. Ann Intern Med 141:413. https://doi.org/10.7326/0003-4819-141-6-200409210-00006
Kibel A, Selthofer-Relatic K, Drenjancevic I et al (2017) Coronary microvascular dysfunction in diabetes mellitus. J Int Med Res 45:1901–1929. https://doi.org/10.1177/0300060516675504
Kooy A, de Jager J, Lehert P et al (2009) Long-term effects of metformin on metabolism and microvascular and macrovascular disease in patients with type 2 diabetes mellitus. Arch Intern Med 169:616. https://doi.org/10.1001/archinternmed.2009.20
Kumar A, Fausto A, Robbins SL, Cotran RS (2010) Pathological basis of disease, 8th edn. Saunders Elsevier, Philadelphia
Lin J, Thompson TJ, Cheng YJ et al (2018) Projection of the future diabetes burden in the United States through 2060. Popul Health Metrics 16:1–9
Liu H, Dear AE, Knudsen LB, Simpson RW (2009) A long-acting glucagon-like peptide-1 analogue attenuates induction of plasminogen activator inhibitor type-1 and vascular adhesion molecules. J Endocrinol 201:59–66. https://doi.org/10.1677/JOE-08-0468
Lorenz M, Lawson F, Owens D et al (2017) Differential effects of glucagon-like peptide-1 receptor agonists on heart rate. Cardiovasc Diabetol 16:6. https://doi.org/10.1186/s12933-016-0490-6
Mach F, Baigent C, Catapano AL et al (2019) 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 41:111–188. https://doi.org/10.1093/eurheartj/ehz455
Magliano DJ, Islam RM, Barr ELM et al (2019) Trends in incidence of total or type 2 diabetes: systematic review. BMJ 366:l5003. https://doi.org/10.1136/bmj.l5003
Mann JFE, Ørsted DD, Brown-Frandsen K et al (2017) Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med 377:839–848. https://doi.org/10.1056/NEJMoa1616011
Marso SP, Hiatt WR (2006) Peripheral arterial disease in patients with diabetes. J Am Coll Cardiol 47:921–929. https://doi.org/10.1016/j.jacc.2005.09.065
Marso SP, Bain SC, Consoli A et al (2016a) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375:1834–1844. https://doi.org/10.1056/NEJMoa1607141
Marso SP, Daniels GH, Brown-Frandsen K et al (2016b) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375:311–322. https://doi.org/10.1056/NEJMoa1603827
Marso SP, McGuire DK, Zinman B et al (2017) Efficacy and safety of degludec versus glargine in type 2 diabetes. N Engl J Med 377:723–732. https://doi.org/10.1056/NEJMoa1615692
Maser RE, Mitchell BD, Vinik AI, Freeman R (2003) The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care 26:1895–1901. https://doi.org/10.2337/diacare.26.6.1895
Mentz RJ, Bethel MA, Merrill P et al (2018) Effect of once-weekly Exenatide on clinical outcomes according to baseline risk in patients with type 2 diabetes mellitus: insights from the EXSCEL Trial. J Am Heart Assoc 7:e009304. https://doi.org/10.1161/JAHA.118.009304
Morgan KP, Kapur A, Beatt KJ (2004) Anatomy of coronary disease in diabetic patients: an explanation for poorer outcomes after percutaneous coronary intervention and potential _target for intervention. Heart 90:732–738. https://doi.org/10.1136/hrt.2003.021014
Neal B, Perkovic V, Mahaffey KW et al (2017) Canaglifozin and cardiovascular and renal events in type 2 diabetes mellitus. N Engl J Med 377:644–657. https://doi.org/10.1056/NEJMoa1611925
Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471. https://doi.org/10.1056/NEJMoa072761
ORIGIN Trial Investigators, Gerstein HC, Bosch J et al (2012) Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med 367:319–328. https://doi.org/10.1056/NEJMoa1203858
Packer M (2018) Have dipeptidyl peptidase-4 inhibitors ameliorated the vascular complications of type 2 diabetes in large-scale trials? The potential confounding effect of stem-cell chemokines. Cardiovasc Diabetol 17:9. https://doi.org/10.1186/s12933-017-0648-x
Piepoli MF, Hoes AW, Agewall S et al (2016) 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 37:2315–2381. https://doi.org/10.1093/eurheartj/ehw106
Rask-Madsen C, King GL (2013) Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab 17:20–33. https://doi.org/10.1016/j.cmet.2012.11.012
Robles NR, Villa J, Gallego RH (2015) Non-proteinuric diabetic nephropathy. J Clin Med 4:1761–1773. https://doi.org/10.3390/jcm4091761
Roger VL, Go AS, Lloyd-Jones DM et al (2012) Heart disease and stroke statistics—2012 update. Circulation 125:e2–e220. https://doi.org/10.1161/CIR.0b013e31823ac046
Rosenstock J, Perkovic V, Johansen OE et al (2019) Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk. JAMA 321:69–79. https://doi.org/10.1001/jama.2018.18269
Sattar N, McLaren J, Kristensen SL, Preiss D, McMurray JJ (2016) SGLT2 inhibition and cardiovascular events: why did EMPA-REG outcomes surprise and what were the likely mechanisms? Diabetologia 59:1333–1339. https://doi.org/10.1007/s00125-016-3956-x
Sattar N, Petrie MC, Zinman B, Januzzi JL (2017) Novel diabetes drugs and the cardiovascular specialist. J Am Coll Cardiol 69:2646–2656. https://doi.org/10.1016/j.jacc.2017.04.014
Scirica BM, Bhatt DL, Braunwald E et al (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369:1317–1326. https://doi.org/10.1056/NEJMoa1307684
Selvin E, Marinopoulos S, Berkenblit G et al (2004) Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med 141:421–431. https://doi.org/10.7326/0003-4819-141-6-200409210-00007
Selvin E, Steffes MW, Zhu H et al (2010) Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med 362:800–811. https://doi.org/10.1056/NEJMoa0908359
Silverman MG, Ference BA, Im K et al (2016) Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions. JAMA 316:1289–1297. https://doi.org/10.1001/jama.2016.13985
Stern MP (1995) Diabetes and cardiovascular disease: the “common soil” hypothesis. Diabetes 44:369–374. https://doi.org/10.2337/diab.44.4.369
Stratton IM, Adler AI, Neil HA et al (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321:405–412. https://doi.org/10.1136/bmj.321.7258.405
Tavakoli M, Mojaddidi M, Fadavi H, Malik RA (2008) Pathophysiology and treatment of painful diabetic neuropathy. Curr Pain Headache Rep 12:192–197. https://doi.org/10.1007/s11916-008-0034-1
Tseng C-H (2004) Mortality and causes of death in a National Sample of diabetic patients in Taiwan. Diabetes Care 27:1605–1609. https://doi.org/10.2337/diacare.27.7.1605
U.S. Food and Drug Administration (2008) Guidance for industry diabetes mellitus – evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. Available at https://www.fda.gov/regulatoryinformation/search-fda-guidance-documents
U.S. Food and Drug Administration (2018) Guidance for industry: diabetes mellitus – evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes
UK Prospective Diabetes Study (UKPDS) Group (1998a) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853
UK Prospective Diabetes Study (UKPDS) Group (1998b) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352:854–865
University Group Diabetes Program (1976) A study of the effects of hypoglycemia agents on vascular complications in patients with adult-onset diabetes. VI. Supplementary report on nonfatal events in patients treated with tolbutamide. Diabetes 25:1129–1153. https://doi.org/10.2337/diab.25.12.1129
Uthman L, Baartscheer A, Schumacher CA et al (2018) Direct cardiac actions of sodium glucose cotransporter 2 inhibitors _target pathogenic mechanisms underlying heart failure in diabetic patients. Front Physiol 9:1575. https://doi.org/10.3389/fphys.2018.01575
Verma S, McMurray JJV (2018) SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia 61:2108–2117. https://doi.org/10.1007/s00125-018-4670-7
Verma S, Mazer CD, Yan AT et al (2019) Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease. Circulation 140:1693–1702. https://doi.org/10.1161/CIRCULATIONAHA.119.042375
Vijan S, Hayward RA (2003) Treatment of hypertension in type 2 diabetes mellitus: blood pressure goals, choice of agents, and setting priorities in diabetes care. Ann Intern Med 138:593–602. https://doi.org/10.7326/0003-4819-138-7-200304010-00018
Vijan S, Hayward RA, American College of Physicians (2004) Pharmacologic lipid-lowering therapy in type 2 diabetes mellitus: background paper for the American College of Physicians. Ann Intern Med 140:650. https://doi.org/10.7326/0003-4819-140-8-200404200-00013
Wallentin L, Becker RC, Budaj A et al (2009) Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 361:1045–1057. https://doi.org/10.1056/NEJMoa0904327
Wanner C, Inzucchi SE, Zinman B (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375:1799–1802. https://doi.org/10.1056/NEJMc1611290
White WB, Bakris GL, Bergenstal RM et al (2011) EXamination of CArdiovascular OutcoMes with AlogliptIN versus standard of CarE in patients with type 2 diabetes mellitus and acute coronary syndrome (EXAMINE). Am Heart J 162:620–626.e1. https://doi.org/10.1016/j.ahj.2011.08.004
Wiviott SD, Raz I, Bonaca MP et al (2019) Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380:347–357. https://doi.org/10.1056/NEJMoa1812389
Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128. https://doi.org/10.1056/NEJMoa1504720
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Maranta, F., Cianfanelli, L., Cianflone, D. (2020). Glycaemic Control and Vascular Complications in Diabetes Mellitus Type 2. In: Islam, M.S. (eds) Diabetes: from Research to Clinical Practice. Advances in Experimental Medicine and Biology(), vol 1307. Springer, Cham. https://doi.org/10.1007/5584_2020_514
Download citation
DOI: https://doi.org/10.1007/5584_2020_514
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-51088-6
Online ISBN: 978-3-030-51089-3
eBook Packages: MedicineMedicine (R0)