Abstract
We show that there are no complete 44-caps in AG(5, 3). We then use this result to prove that the maximal size for a cap in AG(6, 3) is equal to 112, and that the 112-caps in AG(6, 3) are unique up to affine equivalence.
Similar content being viewed by others
References
Barlotti, A.: Un’ estensione del teorema di Segre-Kustaanheimo. Boll. Un. Mat. Ital. 10, 96–98 (1955)
Bierbrauer, J., Edel, Y.: Bounds on affine caps. J. Combin. Des. 10, 111–115 (2002)
Bose, R.C.: Mathematical theory of the symmetrical factorial design. Sankhyā 8, 107–166 (1947)
Davis, B.L., Maclagan, D.: The card game set. Math. Intell. 25, 33–40 (2003)
Edel, Y., Bierbrauer, J.: 41 is the largest size of a cap in PG(4,4). Des. Codes Cryptogr. 16(2), 151–160 (1999)
Edel, Y., Ferret, S., Landjev, I., Storme, L.: The classification of the largest caps in AG(5, 3). J. Combin. Theory Ser. A 99, 95–110 (2002)
Hill, R.: On the largest size of cap in S 5,3. Atti Accad. Naz. Lincei Rend. 54, 378–384 (1973)
Hill, R.: Caps and codes. Discrete Math. 22, 111–137 (1978)
Hill, R.: On Pellegrino’s 20-caps in S4,3. Combinatorial Geometries and their Applications (Rome 1981). Ann. Discrete Math. 18, 443–448 (1983)
Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces: update 2001. In: Blokhuis A., Hirschfeld J.W.P., Jungnickel D., Thas J.A. (eds) Developments in Mathematics, vol. 3, Kluwer Academic Publishers. Finite Geometries, Proceedings of the Fourth Isle of Thorns Conference, Chelwood Gate, July 16–21. pp. 201–246 (2000).
Panella, G.: Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito. Boll. Un. Mat. Ital. 10, 507–513 (1955)
Pellegrino, G.: Sul massimo ordine delle calotte in S 4,3. Le Mathematiche 25, 149–157 (1971)
Qvist B.: Some remarks concerning curves of the second degree in a finite plane. Ann. Acad. Sci. Fenn. Ser. A 134, (1952).
Segre, B.: Sulle ovali nei piani lineari finiti. Atti Accad. Naz. Lincei Rend. 17, 1–2 (1954)
Segre, B.: Ovals in a finite projective plane. Can. J. Math. 7, 414–416 (1955)
Segre, B.: Le geometrie di Galois. Ann. Mat. Pura Appl. 48, 1–97 (1959)
Tits, J.: Ovoides et groupes de Suzuki. Arch. Math. 13, 187–198 (1962)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by J.D. Key.
Rights and permissions
About this article
Cite this article
Potechin, A. Maximal caps in AG (6, 3). Des. Codes Cryptogr. 46, 243–259 (2008). https://doi.org/10.1007/s10623-007-9132-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-007-9132-z