Abstract
The two-fold aim of the paper is to unify and generalize on the one hand the double integrals of Beukers for ζ(2) and ζ(3), and of the second author for Euler’s constant γ and its alternating analog ln (4/π), and on the other hand the infinite products of the first author for e, of the second author for π, and of Ser for e γ. We obtain new double integral and infinite product representations of many classical constants, as well as a generalization to Lerch’s transcendent of Hadjicostas’s double integral formula for the Riemann zeta function, and logarithmic series for the digamma and Euler beta functions. The main tools are analytic continuations of Lerch’s function, including Hasse’s series. We also use Ramanujan’s polylogarithm formula for the sum of a particular series involving harmonic numbers, and his relations between certain dilogarithm values.
Similar content being viewed by others
References
Bailey, D.H., Borwein, P., Plouffe, S.: On the rapid computation of various polylogarithmic constants. Math. Comput. 66, 903–913 (1997)
Bateman, H., Erdelyi, A.: Higher Transcendental Functions, vol. 1. McGraw-Hill, New York (1953)
Berndt, B.C.: Ramanujan’s Notebooks, Parts I and IV. Springer, New York (1985, 1994)
Beukers, F.: A note on the irrationality of ζ(2) and ζ(3). Bull. Lond. Math. Soc. 11, 268–272 (1979)
Chapman, R.: A proof of Hadjicostas’s conjecture. Preprint; available at http://arXiv.org/abs/math/0405478 (2004)
Emery, M.: On a multiple harmonic power series. Preprint; available at http://arxiv.org/abs/math/0411267v2 (2004)
Finch, S.: Mathematical Constants. Cambridge University Press, Cambridge (2003)
Goldschmidt, C., Martin, J.B.: Random recursive trees and the Bolthausen-Sznitman coalescent. Electr. J. Probab. 10, 718–745 (2005)
Hadjicostas, P.: Some generalizations of Beukers’ integrals. Kyungpook Math. J. 42, 399–416 (2002)
Hadjicostas, P.: A conjecture-generalization of Sondow’s formula. Preprint; available at http://arXiv.org/abs/math/0405423 (2004)
Hadjicostas, P.: Personal communication (1 June 2004)
Hasse, H.: Ein Summierungsverfahren für die Riemannsche ζ-Reihe. Math. Z. 32, 458–464 (1930)
Lewin, L.: Polylogarithms and Associated Functions. Elsevier, New York (1981)
Lewin, L. (ed.): Structural Properties of Polylogarithms. Mathematical Surveys and Monographs, vol. 37. American Mathematical Society, Providence (1991)
Milnor, J.: On polylogarithms, Hurwitz zeta functions, and the Kubert identities. Enseign. Math. 29, 281–322 (1983)
Ramanujan, S.: Collected Papers of Srinivasa Ramanujan. Hardy, G.H., et al. (eds.) AMS/Chelsea, Providence (2000)
Ser, J.: Sur une expression de la function ζ(s) de Riemann. C. R. Acad. Sci. Paris Sér. I Math. 182, 1075–1077 (1926)
Somos, M.: Several constants related to quadratic recurrences. Unpublished note (1999)
Sondow, J.: Analytic continuation of Riemann’s zeta function and values at negative integers via Euler’s transformation of series. Proc. Am. Math. Soc. 120, 421–424 (1994)
Sondow, J.: Criteria for irrationality of Euler’s constant. Proc. Am. Math. Soc. 131, 3335–3344 (2003)
Sondow, J.: An infinite product for e γ via hypergeometric formulas for Euler’s constant γ. Preprint; available at http://arXiv.org/abs/math/0306008 (2003)
Sondow, J.: Double integrals for Euler’s constant and ln (4/π) and an analog of Hadjicostas’s formula. Am. Math. Mon. 112, 61–65 (2005)
Sondow, J.: A faster product for π and a new integral for ln (π/2). Am. Math. Mon. 112, 729–734 (2005)
Spanier, J., Oldham, K.B.: An Atlas of Functions. Hemisphere, New York (1987)
Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1996)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guillera, J., Sondow, J. Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent. Ramanujan J 16, 247–270 (2008). https://doi.org/10.1007/s11139-007-9102-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11139-007-9102-0