Abstract
We present in the work two intriguing results in the entanglement classification of a pure and true tripartite entangled state of 2 × M × N under stochastic local operation and classical communication: (i) the internal symmetric properties of the nonlocal parameters in the continuous entangled class; (ii) the analytic expression for the total numbers of the true and pure entangled class 2 × M × N states. These properties help better understand the nature of the 2 × M × N entangled system.
Similar content being viewed by others
References
Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000
Ding S C, Jin Z. Review on the study of entanglement in quantum computation speedup. Chin Sci Bull, 2007, 52: 2161–2166
Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement. Rev Mod Phys, 2009, 81: 865–942
Peres A. Separability criterion for density matrices. Phys Rev Lett, 1996, 77: 1413–1415
Horodecki M, Horodecki P, Horodecki R. Separability of mixed states: necessary and sufficient conditions. Phys Lett A, 1996, 223: 1–8
Wootters W K. Entanglement of formation of an arbitrary states of two qubits. Phys Rev Lett, 1998, 80: 2245–2248
Di Y M, Liu S P, Liu D D. Entanglement for a two-parameter class of states in a high-dimension bipartite quantum system. Sci China Phys Mech Astron, 2010, 53: 1868–1872
Dür W, Vidal G, Cirac J I. Three qubits can be entangled in two inequivalent ways. Phys Rev A, 2000, 62: 062314
Verstraete F, Dehaene J, De Moor B, et al. Four qubits can be entangled in nine different ways. Phys Rev A, 2002, 65: 052112
Lamata L, León J, Salgado D, et al. Inductive entanglement classification of four qubits under stochastic local operations and classical communication. Phys Rev A, 2007, 75: 022318
Chen L, Chen Y X. Range criterion and classification of true entanglement in a 2 × M × N system. Phys Rev A, 2006, 73: 052310
Chen L, Chen Y X, Mei Y X. Classification of multipartite entanglement containing infinitely many kinds of states. Phys Rev A, 2006, 74: 052331
Cornelio M F, de Toledo Piza A F R. Classification of tripartite entanglement with one qubit. Phys Rev A, 2006, 73: 032314
Cheng S, Li J L, Qiao C F. Classification of the Entangled States of 2 × N × N. J Phys A-Math Theor, 2010, 43: 055303
Li J L, Qiao C F. Classification of the entangled states 2 × M × N. arXiv: 1001.0078
Chitambar E, Miller C A, Shi Y Y. Matrix pencils and entanglement classification. J Math Phys, 2010, 51: 072205
Chitambar E, Miller C A, Shi Y Y. Comment on “Matrix pencils and entanglement classification”. arXiv: 0911.4058
Cheng S, Li J L, Qiao C F. Classification of the entangled state of 2×5×5 pure systems (in Chinese). J Grad School Chin Acad Sci, 2009, 3: 303–309
Sloane N J A. The on-line encyclopedia of integer sequences. www.research.att.com/~njas/sequences/, 2008
Author information
Authors and Affiliations
Corresponding author
Additional information
Recommended by LONG GuiLu (Editorial Board Member)
Rights and permissions
About this article
Cite this article
Li, X., Li, J., Liu, B. et al. The parametric symmetry and numbers of the entangled class of 2 × M × N system. Sci. China Phys. Mech. Astron. 54, 1471–1475 (2011). https://doi.org/10.1007/s11433-011-4395-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11433-011-4395-9