Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deep learning

Abstract

Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multilayer neural networks and backpropagation.
Figure 2: Inside a convolutional network.
Figure 3: From image to text.
Figure 4: Visualizing the learned word vectors.
Figure 5: A recurrent neural network and the unfolding in time of the computation involved in its forward computation.

Similar content being viewed by others

References

  1. Krizhevsky, A., Sutskever, I. & Hinton, G. ImageNet classification with deep convolutional neural networks. In Proc. Advances in Neural Information Processing Systems 25 1090–1098 (2012). This report was a breakthrough that used convolutional nets to almost halve the error rate for object recognition, and precipitated the rapid adoption of deep learning by the computer vision community.

    Google Scholar 

  2. Farabet, C., Couprie, C., Najman, L. & LeCun, Y. Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1915–1929 (2013).

    PubMed  Google Scholar 

  3. Tompson, J., Jain, A., LeCun, Y. & Bregler, C. Joint training of a convolutional network and a graphical model for human pose estimation. In Proc. Advances in Neural Information Processing Systems 27 1799–1807 (2014).

    Google Scholar 

  4. Szegedy, C. et al. Going deeper with convolutions. Preprint at http://arxiv.org/abs/1409.4842 (2014).

  5. Mikolov, T., Deoras, A., Povey, D., Burget, L. & Cernocky, J. Strategies for training large scale neural network language models. In Proc. Automatic Speech Recognition and Understanding 196–201 (2011).

    Google Scholar 

  6. Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine 29, 82–97 (2012). This joint paper from the major speech recognition laboratories, summarizing the breakthrough achieved with deep learning on the task of phonetic classification for automatic speech recognition, was the first major industrial application of deep learning.

    ADS  Google Scholar 

  7. Sainath, T., Mohamed, A.-R., Kingsbury, B. & Ramabhadran, B. Deep convolutional neural networks for LVCSR. In Proc. Acoustics, Speech and Signal Processing 8614–8618 (2013).

    Google Scholar 

  8. Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E. & Svetnik, V. Deep neural nets as a method for quantitative structure-activity relationships. J. Chem. Inf. Model. 55, 263–274 (2015).

    CAS  PubMed  Google Scholar 

  9. Ciodaro, T., Deva, D., de Seixas, J. & Damazio, D. Online particle detection with neural networks based on topological calorimetry information. J. Phys. Conf. Series 368, 012030 (2012).

    Google Scholar 

  10. Kaggle. Higgs boson machine learning challenge. Kaggle https://www.kaggle.com/c/higgs-boson (2014).

  11. Helmstaedter, M. et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500, 168–174 (2013).

    ADS  CAS  PubMed  Google Scholar 

  12. Leung, M. K., Xiong, H. Y., Lee, L. J. & Frey, B. J. Deep learning of the tissue-regulated splicing code. Bioinformatics 30, i121–i129 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Xiong, H. Y. et al. The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 6218 (2015).

    Google Scholar 

  14. Collobert, R., et al. Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011).

    MATH  Google Scholar 

  15. Bordes, A., Chopra, S. & Weston, J. Question answering with subgraph embeddings. In Proc. Empirical Methods in Natural Language Processing http://arxiv.org/abs/1406.3676v3 (2014).

    Google Scholar 

  16. Jean, S., Cho, K., Memisevic, R. & Bengio, Y. On using very large _target vocabulary for neural machine translation. In Proc. ACL-IJCNLP http://arxiv.org/abs/1412.2007 (2015).

    Google Scholar 

  17. Sutskever, I. Vinyals, O. & Le. Q. V. Sequence to sequence learning with neural networks. In Proc. Advances in Neural Information Processing Systems 27 3104–3112 (2014). This paper showed state-of-the-art machine translation results with the architecture introduced in ref. 72, with a recurrent network trained to read a sentence in one language, produce a semantic representation of its meaning, and generate a translation in another language.

    Google Scholar 

  18. Bottou, L. & Bousquet, O. The tradeoffs of large scale learning. In Proc. Advances in Neural Information Processing Systems 20 161–168 (2007).

    Google Scholar 

  19. Duda, R. O. & Hart, P. E. Pattern Classification and Scene Analysis (Wiley, 1973).

    MATH  Google Scholar 

  20. Schölkopf, B. & Smola, A. Learning with Kernels (MIT Press, 2002).

    MATH  Google Scholar 

  21. Bengio, Y., Delalleau, O. & Le Roux, N. The curse of highly variable functions for local kernel machines. In Proc. Advances in Neural Information Processing Systems 18 107–114 (2005).

    Google Scholar 

  22. Selfridge, O. G. Pandemonium: a paradigm for learning in mechanisation of thought processes. In Proc. Symposium on Mechanisation of Thought Processes 513–526 (1958).

    Google Scholar 

  23. Rosenblatt, F. The Perceptron — A Perceiving and Recognizing Automaton. Tech. Rep. 85-460-1 (Cornell Aeronautical Laboratory, 1957).

    Google Scholar 

  24. Werbos, P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard Univ. (1974).

    Google Scholar 

  25. Parker, D. B. Learning Logic Report TR–47 (MIT Press, 1985).

    Google Scholar 

  26. LeCun, Y. Une procédure d'apprentissage pour Réseau à seuil assymétrique in Cognitiva 85: a la Frontière de l'Intelligence Artificielle, des Sciences de la Connaissance et des Neurosciences [in French] 599–604 (1985).

    Google Scholar 

  27. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    ADS  MATH  Google Scholar 

  28. Glorot, X., Bordes, A. & Bengio. Y. Deep sparse rectifier neural networks. In Proc. 14th International Conference on Artificial Intelligence and Statistics 315–323 (2011). This paper showed that supervised training of very deep neural networks is much faster if the hidden layers are composed of ReLU.

    Google Scholar 

  29. Dauphin, Y. et al. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In Proc. Advances in Neural Information Processing Systems 27 2933–2941 (2014).

    Google Scholar 

  30. Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B. & LeCun, Y. The loss surface of multilayer networks. In Proc. Conference on AI and Statistics http://arxiv.org/abs/1412.0233 (2014).

    Google Scholar 

  31. Hinton, G. E. What kind of graphical model is the brain? In Proc. 19th International Joint Conference on Artificial intelligence 1765–1775 (2005).

    Google Scholar 

  32. Hinton, G. E., Osindero, S. & Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comp. 18, 1527–1554 (2006). This paper introduced a novel and effective way of training very deep neural networks by pre-training one hidden layer at a time using the unsupervised learning procedure for restricted Boltzmann machines.

    MathSciNet  MATH  Google Scholar 

  33. Bengio, Y., Lamblin, P., Popovici, D. & Larochelle, H. Greedy layer-wise training of deep networks. In Proc. Advances in Neural Information Processing Systems 19 153–160 (2006). This report demonstrated that the unsupervised pre-training method introduced in ref. 32 significantly improves performance on test data and generalizes the method to other unsupervised representation-learning techniques, such as auto-encoders.

  34. Ranzato, M., Poultney, C., Chopra, S. & LeCun, Y. Efficient learning of sparse representations with an energy-based model. In Proc. Advances in Neural Information Processing Systems 19 1137–1144 (2006).

    Google Scholar 

  35. Hinton, G. E. & Salakhutdinov, R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  36. Sermanet, P., Kavukcuoglu, K., Chintala, S. & LeCun, Y. Pedestrian detection with unsupervised multi-stage feature learning. In Proc. International Conference on Computer Vision and Pattern Recognition http://arxiv.org/abs/1212.0142 (2013).

    Google Scholar 

  37. Raina, R., Madhavan, A. & Ng, A. Y. Large-scale deep unsupervised learning using graphics processors. In Proc. 26th Annual International Conference on Machine Learning 873–880 (2009).

    Google Scholar 

  38. Mohamed, A.-R., Dahl, G. E. & Hinton, G. Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Lang. Process. 20, 14–22 (2012).

    Google Scholar 

  39. Dahl, G. E., Yu, D., Deng, L. & Acero, A. Context-dependent pre-trained deep neural networks for large vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20, 33–42 (2012).

    Google Scholar 

  40. Bengio, Y., Courville, A. & Vincent, P. Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Machine Intell. 35, 1798–1828 (2013).

    Google Scholar 

  41. LeCun, Y. et al. Handwritten digit recognition with a back-propagation network. In Proc. Advances in Neural Information Processing Systems 396–404 (1990). This is the first paper on convolutional networks trained by backpropagation for the task of classifying low-resolution images of handwritten digits.

    Google Scholar 

  42. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998). This overview paper on the principles of end-to-end training of modular systems such as deep neural networks using gradient-based optimization showed how neural networks (and in particular convolutional nets) can be combined with search or inference mechanisms to model complex outputs that are interdependent, such as sequences of characters associated with the content of a document.

    Google Scholar 

  43. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex. J. Physiol. 160, 106–154 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Felleman, D. J. & Essen, D. C. V. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    CAS  PubMed  Google Scholar 

  45. Cadieu, C. F. et al. Deep neural networks rival the representation of primate it cortex for core visual object recognition. PLoS Comp. Biol. 10, e1003963 (2014).

    Google Scholar 

  46. Fukushima, K. & Miyake, S. Neocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognition 15, 455–469 (1982).

    Google Scholar 

  47. Waibel, A., Hanazawa, T., Hinton, G. E., Shikano, K. & Lang, K. Phoneme recognition using time-delay neural networks. IEEE Trans. Acoustics Speech Signal Process. 37, 328–339 (1989).

    Google Scholar 

  48. Bottou, L., Fogelman-Soulié, F., Blanchet, P. & Lienard, J. Experiments with time delay networks and dynamic time warping for speaker independent isolated digit recognition. In Proc. EuroSpeech 89 537–540 (1989).

    Google Scholar 

  49. Simard, D., Steinkraus, P. Y. & Platt, J. C. Best practices for convolutional neural networks. In Proc. Document Analysis and Recognition 958–963 (2003).

    Google Scholar 

  50. Vaillant, R., Monrocq, C. & LeCun, Y. Original approach for the localisation of objects in images. In Proc. Vision, Image, and Signal Processing 141, 245–250 (1994).

    Google Scholar 

  51. Nowlan, S. & Platt, J. in Neural Information Processing Systems 901–908 (1995).

    Google Scholar 

  52. Lawrence, S., Giles, C. L., Tsoi, A. C. & Back, A. D. Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Networks 8, 98–113 (1997).

    CAS  PubMed  Google Scholar 

  53. Ciresan, D., Meier, U. Masci, J. & Schmidhuber, J. Multi-column deep neural network for traffic sign classification. Neural Networks 32, 333–338 (2012).

    PubMed  Google Scholar 

  54. Ning, F. et al. Toward automatic phenotyping of developing embryos from videos. IEEE Trans. Image Process. 14, 1360–1371 (2005).

    ADS  PubMed  Google Scholar 

  55. Turaga, S. C. et al. Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 22, 511–538 (2010).

    PubMed  MATH  Google Scholar 

  56. Garcia, C. & Delakis, M. Convolutional face finder: a neural architecture for fast and robust face detection. IEEE Trans. Pattern Anal. Machine Intell. 26, 1408–1423 (2004).

    Google Scholar 

  57. Osadchy, M., LeCun, Y. & Miller, M. Synergistic face detection and pose estimation with energy-based models. J. Mach. Learn. Res. 8, 1197–1215 (2007).

    Google Scholar 

  58. Tompson, J., Goroshin, R. R., Jain, A., LeCun, Y. Y. & Bregler, C. C. Efficient object localization using convolutional networks. In Proc. Conference on Computer Vision and Pattern Recognition http://arxiv.org/abs/1411.4280 (2014).

    Google Scholar 

  59. Taigman, Y., Yang, M., Ranzato, M. & Wolf, L. Deepface: closing the gap to human-level performance in face verification. In Proc. Conference on Computer Vision and Pattern Recognition 1701–1708 (2014).

    Google Scholar 

  60. Hadsell, R. et al. Learning long-range vision for autonomous off-road driving. J. Field Robot. 26, 120–144 (2009).

    Google Scholar 

  61. Farabet, C., Couprie, C., Najman, L. & LeCun, Y. Scene parsing with multiscale feature learning, purity trees, and optimal covers. In Proc. International Conference on Machine Learning http://arxiv.org/abs/1202.2160 (2012).

    Google Scholar 

  62. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Machine Learning Res. 15, 1929–1958 (2014).

    MathSciNet  MATH  Google Scholar 

  63. Sermanet, P. et al. Overfeat: integrated recognition, localization and detection using convolutional networks. In Proc. International Conference on Learning Representations http://arxiv.org/abs/1312.6229 (2014).

    Google Scholar 

  64. Girshick, R., Donahue, J., Darrell, T. & Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. Conference on Computer Vision and Pattern Recognition 580–587 (2014).

    Google Scholar 

  65. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proc. International Conference on Learning Representations http://arxiv.org/abs/1409.1556 (2014).

    Google Scholar 

  66. Boser, B., Sackinger, E., Bromley, J., LeCun, Y. & Jackel, L. An analog neural network processor with programmable topology. J. Solid State Circuits 26, 2017–2025 (1991).

    ADS  Google Scholar 

  67. Farabet, C. et al. Large-scale FPGA-based convolutional networks. In Scaling up Machine Learning: Parallel and Distributed Approaches (eds Bekkerman, R., Bilenko, M. & Langford, J.) 399–419 (Cambridge Univ. Press, 2011).

    Google Scholar 

  68. Bengio, Y. Learning Deep Architectures for AI (Now, 2009).

    MATH  Google Scholar 

  69. Montufar, G. & Morton, J. When does a mixture of products contain a product of mixtures? J. Discrete Math. 29, 321–347 (2014).

    MathSciNet  MATH  Google Scholar 

  70. Montufar, G. F., Pascanu, R., Cho, K. & Bengio, Y. On the number of linear regions of deep neural networks. In Proc. Advances in Neural Information Processing Systems 27 2924–2932 (2014).

    Google Scholar 

  71. Bengio, Y., Ducharme, R. & Vincent, P. A neural probabilistic language model. In Proc. Advances in Neural Information Processing Systems 13 932–938 (2001). This paper introduced neural language models, which learn to convert a word symbol into a word vector or word embedding composed of learned semantic features in order to predict the next word in a sequence.

    Google Scholar 

  72. Cho, K. et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proc. Conference on Empirical Methods in Natural Language Processing 1724–1734 (2014).

    Google Scholar 

  73. Schwenk, H. Continuous space language models. Computer Speech Lang. 21, 492–518 (2007).

    Google Scholar 

  74. Socher, R., Lin, C. C-Y., Manning, C. & Ng, A. Y. Parsing natural scenes and natural language with recursive neural networks. In Proc. International Conference on Machine Learning 129–136 (2011).

    Google Scholar 

  75. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. & Dean, J. Distributed representations of words and phrases and their compositionality. In Proc. Advances in Neural Information Processing Systems 26 3111–3119 (2013).

    Google Scholar 

  76. Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly learning to align and translate. In Proc. International Conference on Learning Representations http://arxiv.org/abs/1409.0473 (2015).

    Google Scholar 

  77. Hochreiter, S. Untersuchungen zu dynamischen neuronalen Netzen [in German] Diploma thesis, T.U. Münich (1991).

  78. Bengio, Y., Simard, P. & Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5, 157–166 (1994).

    CAS  PubMed  Google Scholar 

  79. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997). This paper introduced LSTM recurrent networks, which have become a crucial ingredient in recent advances with recurrent networks because they are good at learning long-range dependencies.

    CAS  PubMed  Google Scholar 

  80. ElHihi, S. & Bengio, Y. Hierarchical recurrent neural networks for long-term dependencies. In Proc. Advances in Neural Information Processing Systems 8 http://papers.nips.cc/paper/1102-hierarchical-recurrent-neural-networks-for-long-term-dependencies (1995).

    Google Scholar 

  81. Sutskever, I. Training Recurrent Neural Networks. PhD thesis, Univ. Toronto (2012).

    Google Scholar 

  82. Pascanu, R., Mikolov, T. & Bengio, Y. On the difficulty of training recurrent neural networks. In Proc. 30th International Conference on Machine Learning 1310–1318 (2013).

    Google Scholar 

  83. Sutskever, I., Martens, J. & Hinton, G. E. Generating text with recurrent neural networks. In Proc. 28th International Conference on Machine Learning 1017–1024 (2011).

    Google Scholar 

  84. Lakoff, G. & Johnson, M. Metaphors We Live By (Univ. Chicago Press, 2008).

    Google Scholar 

  85. Rogers, T. T. & McClelland, J. L. Semantic Cognition: A Parallel Distributed Processing Approach (MIT Press, 2004).

    Google Scholar 

  86. Xu, K. et al. Show, attend and tell: Neural image caption generation with visual attention. In Proc. International Conference on Learning Representations http://arxiv.org/abs/1502.03044 (2015).

    Google Scholar 

  87. Graves, A., Mohamed, A.-R. & Hinton, G. Speech recognition with deep recurrent neural networks. In Proc. International Conference on Acoustics, Speech and Signal Processing 6645–6649 (2013).

    Google Scholar 

  88. Graves, A., Wayne, G. & Danihelka, I. Neural Turing machines. http://arxiv.org/abs/1410.5401 (2014).

  89. Weston, J. Chopra, S. & Bordes, A. Memory networks. http://arxiv.org/abs/1410.3916 (2014).

  90. Weston, J., Bordes, A., Chopra, S. & Mikolov, T. Towards AI-complete question answering: a set of prerequisite toy tasks. http://arxiv.org/abs/1502.05698 (2015).

  91. Hinton, G. E., Dayan, P., Frey, B. J. & Neal, R. M. The wake-sleep algorithm for unsupervised neural networks. Science 268, 1558–1161 (1995).

    Google Scholar 

  92. Salakhutdinov, R. & Hinton, G. Deep Boltzmann machines. In Proc. International Conference on Artificial Intelligence and Statistics 448–455 (2009).

    Google Scholar 

  93. Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.-A. Extracting and composing robust features with denoising autoencoders. In Proc. 25th International Conference on Machine Learning 1096–1103 (2008).

    Google Scholar 

  94. Kavukcuoglu, K. et al. Learning convolutional feature hierarchies for visual recognition. In Proc. Advances in Neural Information Processing Systems 23 1090–1098 (2010).

    Google Scholar 

  95. Gregor, K. & LeCun, Y. Learning fast approximations of sparse coding. In Proc. International Conference on Machine Learning 399–406 (2010).

    Google Scholar 

  96. Ranzato, M., Mnih, V., Susskind, J. M. & Hinton, G. E. Modeling natural images using gated MRFs. IEEE Trans. Pattern Anal. Machine Intell. 35, 2206–2222 (2013).

    Google Scholar 

  97. Bengio, Y., Thibodeau-Laufer, E., Alain, G. & Yosinski, J. Deep generative stochastic networks trainable by backprop. In Proc. 31st International Conference on Machine Learning 226–234 (2014).

    Google Scholar 

  98. Kingma, D., Rezende, D., Mohamed, S. & Welling, M. Semi-supervised learning with deep generative models. In Proc. Advances in Neural Information Processing Systems 27 3581–3589 (2014).

    Google Scholar 

  99. Ba, J., Mnih, V. & Kavukcuoglu, K. Multiple object recognition with visual attention. In Proc. International Conference on Learning Representations http://arxiv.org/abs/1412.7755 (2014).

    Google Scholar 

  100. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

    ADS  CAS  PubMed  Google Scholar 

  101. Bottou, L. From machine learning to machine reasoning. Mach. Learn. 94, 133–149 (2014).

    MathSciNet  Google Scholar 

  102. Vinyals, O., Toshev, A., Bengio, S. & Erhan, D. Show and tell: a neural image caption generator. In Proc. International Conference on Machine Learning http://arxiv.org/abs/1502.03044 (2014).

    Google Scholar 

  103. van der Maaten, L. & Hinton, G. E. Visualizing data using t-SNE. J. Mach. Learn.Research 9, 2579–2605 (2008).

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute For Advanced Research (CIFAR), the National Science Foundation and Office of Naval Research for support. Y.L. and Y.B. are CIFAR fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann LeCun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14539

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics
  NODES
COMMUNITY 1
INTERN 21
twitter 1