Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

_target identification and mechanism of action in chemical biology and drug discovery

Abstract

_target-identification and mechanism-of-action studies have important roles in small-molecule probe and drug discovery. Biological and technological advances have resulted in the increasing use of cell-based assays to discover new biologically active small molecules. Such studies allow small-molecule action to be tested in a more disease-relevant setting at the outset, but they require follow-up studies to determine the precise protein _target or _targets responsible for the observed phenotype. _target identification can be approached by direct biochemical methods, genetic interactions or computational inference. In many cases, however, combinations of approaches may be required to fully characterize on-_target and off-_target effects and to understand mechanisms of small-molecule action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism-of-action and _target identification in chemical genetics.
Figure 2: Illustration of stable isotope labeling and quantitative MS.
Figure 3: Illustrations of yeast genomic methods for _target-identification and mechanism-of-action studies.
Figure 4: Illustrations of RNAi-based methods for _target-identification and mechanism-of-action studies.
Figure 5: Illustration of computational inference methods for _target-identification and mechanism-of-action studies.
Figure 6: Illustration of a conceptual workflow for integrated _target-identification and mechanism-of-action studies.

Similar content being viewed by others

References

  1. Sundberg, S.A. High-throughput and ultra-high-throughput screening: solution- and cell-based approaches. Curr. Opin. Biotechnol. 11, 47–53 (2000).

    CAS  PubMed  Google Scholar 

  2. Mayr, L.M. & Bojanic, D. Novel trends in high-throughput screening. Curr. Opin. Pharmacol. 9, 580–588 (2009).

    CAS  PubMed  Google Scholar 

  3. Koehn, F.E. High impact technologies for natural products screening. Prog. Drug Res. 65, 175, 177–210 (2008).

    CAS  PubMed  Google Scholar 

  4. Lachance, H., Wetzel, S., Kumar, K. & Waldmann, H. Charting, navigating, and populating natural product chemical space for drug discovery. J. Med. Chem. 55, 5989–6001 (2012).

    CAS  PubMed  Google Scholar 

  5. Nielsen, T.E. & Schreiber, S.L. Towards the optimal screening collection: a synthesis strategy. Angew. Chem. Int. Edn Engl. 47, 48–56 (2008).

    CAS  Google Scholar 

  6. O'Connor, C.J., Beckmann, H.S. & Spring, D.R. Diversity-oriented synthesis: producing chemical tools for dissecting biology. Chem. Soc. Rev. 41, 4444–4456 (2012).

    CAS  Google Scholar 

  7. Swinney, D.C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).

    CAS  PubMed  Google Scholar 

  8. Terstappen, G.C., Schlupen, C., Raggiaschi, R. & Gaviraghi, G. _target deconvolution strategies in drug discovery. Nat. Rev. Drug Discov. 6, 891–903 (2007).

    CAS  PubMed  Google Scholar 

  9. García-García, M.J. et al. Analysis of mouse embryonic patterning and morphogenesis by forward genetics. Proc. Natl. Acad. Sci. USA 102, 5913–5919 (2005).

    PubMed  PubMed Central  Google Scholar 

  10. Muto, A. et al. Forward genetic analysis of visual behavior in zebrafish. PLoS Genet. 1, e66 (2005).

    PubMed  PubMed Central  Google Scholar 

  11. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    CAS  PubMed  Google Scholar 

  12. Pickart, M.A. et al. Genome-wide reverse genetics framework to identify novel functions of the vertebrate secretome. PLoS ONE 1, e104 (2006).

    PubMed  PubMed Central  Google Scholar 

  13. Ecker, A., Bushell, E.S., Tewari, R. & Sinden, R.E. Reverse genetics screen identifies six proteins important for malaria development in the mosquito. Mol. Microbiol. 70, 209–220 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mitchison, T.J. Towards a pharmacological genetics. Chem. Biol. 1, 3–6 (1994).

    CAS  PubMed  Google Scholar 

  15. Schreiber, S.L. Chemical genetics resulting from a passion for synthetic organic chemistry. Bioorg. Med. Chem. 6, 1127–1152 (1998).

    CAS  PubMed  Google Scholar 

  16. Inglese, J. et al. High-throughput screening assays for the identification of chemical probes. Nat. Chem. Biol. 3, 466–479 (2007).

    CAS  PubMed  Google Scholar 

  17. Macarron, R. et al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 10, 188–195 (2011).

    CAS  PubMed  Google Scholar 

  18. Wyatt, P.G., Gilbert, I.H., Read, K.D. & Fairlamb, A.H. _target validation: linking _target and chemical properties to desired product profile. Curr. Top. Med. Chem. 11, 1275–1283 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kauselmann, G., Dopazo, A. & Link, W. Identification of disease-relevant genes for molecularly-_targeted drug discovery. Curr. Cancer Drug _targets 12, 1–13 (2012).

    CAS  PubMed  Google Scholar 

  20. Stockwell, B.R. Chemical genetics: ligand-based discovery of gene function. Nat. Rev. Genet. 1, 116–125 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Stockwell, B.R. Exploring biology with small organic molecules. Nature 432, 846–854 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Clemons, P.A. Complex phenotypic assays in high-throughput screening. Curr. Opin. Chem. Biol. 8, 334–338 (2004).

    CAS  PubMed  Google Scholar 

  23. Schreiber, S.L. & Crabtree, G.R. The mechanism of action of cyclosporin A and FK506. Immunol. Today 13, 136–142 (1992).

    CAS  PubMed  Google Scholar 

  24. Harding, M.W., Galat, A., Uehling, D.E. & Schreiber, S.L. A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341, 758–760 (1989).

    CAS  PubMed  Google Scholar 

  25. Liu, J. et al. Inhibition of T cell signaling by immunophilin-ligand complexes correlates with loss of calcineurin phosphatase activity. Biochemistry 31, 3896–3901 (1992).

    CAS  PubMed  Google Scholar 

  26. Brown, E.J. et al. A mammalian protein _targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756–758 (1994).

    CAS  PubMed  Google Scholar 

  27. Yoshida, M., Nomura, S. & Beppu, T. Effects of trichostatins on differentiation of murine erythroleukemia cells. Cancer Res. 47, 3688–3691 (1987).

    CAS  PubMed  Google Scholar 

  28. Yoshida, M., Kijima, M., Akita, M. & Beppu, T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265, 17174–17179 (1990).

    CAS  PubMed  Google Scholar 

  29. Taunton, J., Hassig, C.A. & Schreiber, S.L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).

    CAS  PubMed  Google Scholar 

  30. McNamara, C. & Winzeler, E.A. _target identification and validation of novel antimalarials. Future Microbiol. 6, 693–704 (2011).

    CAS  PubMed  Google Scholar 

  31. Whitebread, S., Hamon, J., Bojanic, D. & Urban, L. Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discov. Today 10, 1421–1433 (2005).

    CAS  PubMed  Google Scholar 

  32. Xie, L. & Bourne, P.E. Structure-based systems biology for analyzing off-_target binding. Curr. Opin. Struct. Biol. 21, 189–199 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, S. et al. Self-renewal of embryonic stem cells by a small molecule. Proc. Natl. Acad. Sci. USA 103, 17266–17271 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Apsel, B. et al. _targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat. Chem. Biol. 4, 691–699 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ito, T. et al. Identification of a primary _target of thalidomide teratogenicity. Science 327, 1345–1350 (2010).

    CAS  PubMed  Google Scholar 

  36. Knight, Z.A., Lin, H. & Shokat, K.M. _targeting the cancer kinome through polypharmacology. Nat. Rev. Cancer 10, 130–137 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Burdine, L. & Kodadek, T. _target identification in chemical genetics: the (often) missing link. Chem. Biol. 11, 593–597 (2004).

    CAS  PubMed  Google Scholar 

  38. Zheng, X.S., Chan, T.F. & Zhou, H.H. Genetic and genomic approaches to identify and study the _targets of bioactive small molecules. Chem. Biol. 11, 609–618 (2004).

    CAS  PubMed  Google Scholar 

  39. Weinstein, J.N. et al. An information-intensive approach to the molecular pharmacology of cancer. Science 275, 343–349 (1997).

    CAS  PubMed  Google Scholar 

  40. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    CAS  PubMed  Google Scholar 

  41. Young, D.W. et al. Integrating high-content screening and ligand-_target prediction to identify mechanism of action. Nat. Chem. Biol. 4, 59–68 (2008).

    CAS  PubMed  Google Scholar 

  42. Fomina-Yadlin, D. et al. Small-molecule inducers of insulin expression in pancreatic alpha-cells. Proc. Natl. Acad. Sci. USA 107, 15099–15104 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cuatrecasas, P., Wilchek, M. & Anfinsen, C.B. Selective enzyme purification by affinity chromatography. Proc. Natl. Acad. Sci. USA 61, 636–643 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hirota, T. et al. Identification of small molecule activators of cryptochrome. Science 337, 1094–1097 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Brehmer, D., Godl, K., Zech, B., Wissing, J. & Daub, H. Proteome-wide identification of cellular _targets affected by bisindolylmaleimide-type protein kinase C inhibitors. Mol. Cell Proteomics 3, 490–500 (2004).

    CAS  PubMed  Google Scholar 

  46. Wissing, J. et al. Chemical proteomic analysis reveals alternative modes of action for pyrido[2,3-d]pyrimidine kinase inhibitors. Mol. Cell Proteomics 3, 1181–1193 (2004).

    CAS  PubMed  Google Scholar 

  47. Oda, Y. et al. Quantitative chemical proteomics for identifying candidate drug _targets. Anal. Chem. 75, 2159–2165 (2003).

    CAS  PubMed  Google Scholar 

  48. Wang, G., Shang, L., Burgett, A.W., Harran, P.G. & Wang, X. Diazonamide toxins reveal an unexpected function for ornithine delta-amino transferase in mitotic cell division. Proc. Natl. Acad. Sci. USA 104, 2068–2073 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ong, S.E. et al. Identifying the proteins to which small-molecule probes and drugs bind in cells. Proc. Natl. Acad. Sci. USA 106, 4617–4622 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fleischer, T.C. et al. Chemical proteomics identifies Nampt as the _target of CB30865, an orphan cytotoxic compound. Chem. Biol. 17, 659–664 (2010).

    CAS  PubMed  Google Scholar 

  51. Shiyama, T., Furuya, M., Yamazaki, A., Terada, T. & Tanaka, A. Design and synthesis of novel hydrophilic spacers for the reduction of nonspecific binding proteins on affinity resins. Bioorg. Med. Chem. 12, 2831–2841 (2004).

    CAS  PubMed  Google Scholar 

  52. Speers, A.E. & Cravatt, B.F. A tandem orthogonal proteolysis strategy for high-content chemical proteomics. J. Am. Chem. Soc. 127, 10018–10019 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. van der Veken, P. et al. Development of a novel chemical probe for the selective enrichment of phosphorylated serine- and threonine-containing peptides. Chembiochem. 6, 2271–2280 (2005).

    CAS  PubMed  Google Scholar 

  54. Fonoviisć, M., Verhelst, S.H., Sorum, M.T. & Bogyo, M. Proteomics evaluation of chemically cleavable activity-based probes. Mol. Cell Proteomics 6, 1761–1770 (2007).

    Google Scholar 

  55. Verhelst, S.H., Fonovic, M. & Bogyo, M. A mild chemically cleavable linker system for functional proteomic applications. Angew. Chem. Int. Ed. Engl. 46, 1284–1286 (2007).

    CAS  PubMed  Google Scholar 

  56. Evans, M.J., Saghatelian, A., Sorensen, E.J. & Cravatt, B.F. _target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nat. Biotechnol. 23, 1303–1307 (2005).

    CAS  PubMed  Google Scholar 

  57. Cisar, J.S. & Cravatt, B.F. Fully functionalized small-molecule probes for integrated phenotypic screening and _target identification. J. Am. Chem. Soc. 134, 10385–10388 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Park, J., Oh, S. & Park, S.B. Discovery and _target identification of an antiproliferative agent in live cells using fluorescence difference in two-dimensional gel electrophoresis. Angew. Chem. Int. Ed. Engl. 51, 5447–5451 (2012).

    CAS  PubMed  Google Scholar 

  59. Kawatani, M. et al. The identification of an osteoclastogenesis inhibitor through the inhibition of glyoxalase I. Proc. Natl. Acad. Sci. USA 105, 11691–11696 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Saxena, C. et al. Capture of drug _targets from live cells using a multipurpose immuno-chemo-proteomics tool. J. Proteome Res. 8, 3951–3957 (2009).

    CAS  PubMed  Google Scholar 

  61. Khersonsky, S.M. et al. Facilitated forward chemical genetics using a tagged triazine library and zebrafish embryo screening. J. Am. Chem. Soc. 125, 11804–11805 (2003).

    CAS  PubMed  Google Scholar 

  62. Kim, Y.K. & Chang, Y.T. Tagged library approach facilitates forward chemical genetics. Mol. Biosyst. 3, 392–397 (2007).

    CAS  PubMed  Google Scholar 

  63. Tao, S.C., Chen, C.S. & Zhu, H. Applications of protein microarray technology. Comb. Chem. High Throughput Screen. 10, 706–718 (2007).

    CAS  PubMed  Google Scholar 

  64. Lomenick, B., Olsen, R.W. & Huang, J. Identification of direct protein _targets of small molecules. ACS Chem. Biol. 6, 34–46 (2011).

    CAS  PubMed  Google Scholar 

  65. Chan, J.N. et al. _target identification by chromatographic co-elution: monitoring of drug-protein interactions without immobilization or chemical derivatization. Mol. Cell. Proteomics 11, M111.016642 (2012).

    PubMed  PubMed Central  Google Scholar 

  66. Aebersold, R. & Mann, M. Mass spectrometry–based proteomics. Nature 422, 198–207 (2003).

    CAS  PubMed  Google Scholar 

  67. Ong, S.E. & Mann, M. Mass spectrometry–based proteomics turns quantitative. Nat. Chem. Biol. 1, 252–262 (2005).

    CAS  PubMed  Google Scholar 

  68. Blagoev, B. et al. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat. Biotechnol. 21, 315–318 (2003).

    CAS  PubMed  Google Scholar 

  69. Ranish, J.A. et al. The study of macromolecular complexes by quantitative proteomics. Nat. Genet. 33, 349–355 (2003).

    CAS  PubMed  Google Scholar 

  70. Rix, U. & Superti-Furga, G. _target profiling of small molecules by chemical proteomics. Nat. Chem. Biol. 5, 616–624 (2009).

    CAS  PubMed  Google Scholar 

  71. Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics 1, 376–386 (2002).

    CAS  PubMed  Google Scholar 

  72. Daub, H. et al. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol. Cell 31, 438–448 (2008).

    CAS  PubMed  Google Scholar 

  73. Bendall, S.C. et al. Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol. Cell Proteomics 7, 1587–1597 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

    CAS  PubMed  Google Scholar 

  75. Ross, P.L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics 3, 1154–1169 (2004).

    CAS  PubMed  Google Scholar 

  76. Bantscheff, M. et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25, 1035–1044 (2007).

    CAS  PubMed  Google Scholar 

  77. Thompson, A. et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003); erratum 75, 4942 (2003); erratum 78, 4235 (2006).

    CAS  PubMed  Google Scholar 

  78. Hsu, J.L., Huang, S.Y., Chow, N.H. & Chen, S.H. Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 75, 6843–6852 (2003).

    CAS  PubMed  Google Scholar 

  79. Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A.J. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009).

    CAS  PubMed  Google Scholar 

  80. Mertins, P. et al. iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics. Mol. Cell Proteomics 11, M111.014423 (2012).

    PubMed  Google Scholar 

  81. Mortensen, P. et al. MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J. Proteome Res. 9, 393–403 (2010).

    CAS  PubMed  Google Scholar 

  82. Tsou, C.C. et al. MaXIC-Q Web: a fully automated web service using statistical and computational methods for protein quantitation based on stable isotope labeling and LC-MS. Nucleic Acids Res. 37, W661–W669 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Cox, J. et al. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    CAS  PubMed  Google Scholar 

  84. Margolin, A.A. et al. Empirical Bayes analysis of quantitative proteomics experiments. PLoS ONE 4, e7454 (2009).

    PubMed  PubMed Central  Google Scholar 

  85. Fabian, M.A. et al. A small molecule–kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 23, 329–336 (2005).

    CAS  PubMed  Google Scholar 

  86. Boutros, M. & Ahringer, J. The art and design of genetic screens: RNA interference. Nat. Rev. Genet. 9, 554–566 (2008).

    CAS  PubMed  Google Scholar 

  87. Perlstein, E.O., Ruderfer, D.M., Roberts, D.C., Schreiber, S.L. & Kruglyak, L. Genetic basis of individual differences in the response to small-molecule drugs in yeast. Nat. Genet. 39, 496–502 (2007).

    CAS  PubMed  Google Scholar 

  88. Pierce, S.E. et al. A unique and universal molecular barcode array. Nat. Methods 3, 601–603 (2006).

    CAS  PubMed  Google Scholar 

  89. Roemer, T. & Boone, C. Systems-level antimicrobial drug and drug synergy discovery. Nat. Chem. Biol. 9, 222–231 (2013).

    CAS  PubMed  Google Scholar 

  90. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    CAS  PubMed  Google Scholar 

  91. Wang, J. et al. Cellular phenotype recognition for high-content RNA interference genome-wide screening. J. Biomol. Screen. 13, 29–39 (2008).

    PubMed  Google Scholar 

  92. Eggert, U.S. et al. Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and _targets. PLoS Biol. 2, e379 (2004).

    PubMed  PubMed Central  Google Scholar 

  93. Guertin, D.A., Guntur, K.V., Bell, G.W., Thoreen, C.C. & Sabatini, D.M. Functional genomics identifies TOR-regulated genes that control growth and division. Curr. Biol. 16, 958–970 (2006).

    CAS  PubMed  Google Scholar 

  94. Knight, Z.A. & Shokat, K.M. Chemical genetics: where genetics and pharmacology meet. Cell 128, 425–430 (2007).

    CAS  PubMed  Google Scholar 

  95. Castoreno, A.B. et al. Small molecules discovered in a pathway screen _target the Rho pathway in cytokinesis. Nat. Chem. Biol. 6, 457–463 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wacker, S.A., Houghtaling, B.R., Elemento, O. & Kapoor, T.M. Using transcriptome sequencing to identify mechanisms of drug action and resistance. Nat. Chem. Biol. 8, 235–237 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    CAS  PubMed  Google Scholar 

  98. Iorio, F. et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc. Natl. Acad. Sci. USA 107, 14621–14626 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Feng, Y., Mitchison, T.J., Bender, A., Young, D.W. & Tallarico, J.A. Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds. Nat. Rev. Drug Discov. 8, 567–578 (2009).

    CAS  PubMed  Google Scholar 

  101. Wagner, B.K. & Clemons, P.A. Connecting synthetic chemistry decisions to cell and genome biology using small-molecule phenotypic profiling. Curr. Opin. Chem. Biol. 13, 539–548 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Haupt, V.J. & Schroeder, M. Old friends in new guise: repositioning of known drugs with structural bioinformatics. Brief. Bioinform. 12, 312–326 (2011).

    CAS  PubMed  Google Scholar 

  103. Koutsoukas, A. et al. From in silico _target prediction to multi-_target drug design: current databases, methods and applications. J. Proteomics 74, 2554–2574 (2011).

    CAS  PubMed  Google Scholar 

  104. Barrett, T. et al. NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Res. 35, D760–D765 (2007).

    CAS  PubMed  Google Scholar 

  105. Seiler, K.P. et al. ChemBank: a small-molecule screening and cheminformatics resource database. Nucleic Acids Res. 36, D351–D359 (2008).

    CAS  PubMed  Google Scholar 

  106. Wang, Y. et al. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 37, W623–W633 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Stegmaier, K. et al. Gene expression–based high-throughput screening (GE-HTS) and application to leukemia differentiation. Nat. Genet. 36, 257–263 (2004).

    CAS  PubMed  Google Scholar 

  108. Hieronymus, H. et al. Gene expression signature–based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 10, 321–330 (2006).

    CAS  PubMed  Google Scholar 

  109. Kim, Y.K. et al. Relationship of stereochemical and skeletal diversity of small molecules to cellular measurement space. J. Am. Chem. Soc. 126, 14740–14745 (2004).

    CAS  PubMed  Google Scholar 

  110. Paull, K.D. et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J. Natl. Cancer Inst. 81, 1088–1092 (1989).

    CAS  PubMed  Google Scholar 

  111. Zaharevitz, D.W. et al. Discovery and initial characterization of the paullones, a novel class of small-molecule inhibitors of cyclin-dependent kinases. Cancer Res. 59, 2566–2569 (1999).

    CAS  PubMed  Google Scholar 

  112. Marton, M.J. et al. Drug _target validation and identification of secondary drug _target effects using DNA microarrays. Nat. Med. 4, 1293–1301 (1998).

    CAS  PubMed  Google Scholar 

  113. Ganter, B. et al. Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J. Biotechnol. 119, 219–244 (2005).

    CAS  PubMed  Google Scholar 

  114. Fliri, A.F., Loging, W.T., Thadeio, P.F. & Volkmann, R.A. Biological spectra analysis: Linking biological activity profiles to molecular structure. Proc. Natl. Acad. Sci. USA 102, 261–266 (2005).

    CAS  PubMed  Google Scholar 

  115. Berg, E.L., Kunkel, E.J., Hytopoulos, E. & Plavec, I. Characterization of compound mechanisms and secondary activities by BioMAP analysis. J. Pharmacol. Toxicol. Methods 53, 67–74 (2006).

    CAS  PubMed  Google Scholar 

  116. Kauvar, L.M. et al. Predicting ligand binding to proteins by affinity fingerprinting. Chem. Biol. 2, 107–118 (1995).

    CAS  PubMed  Google Scholar 

  117. Campillos, M., Kuhn, M., Gavin, A.C., Jensen, L.J. & Bork, P. Drug _target identification using side-effect similarity. Science 321, 263–266 (2008).

    CAS  PubMed  Google Scholar 

  118. Dixon, S.L. & Villar, H.O. Bioactive diversity and screening library selection via affinity fingerprinting. J. Chem. Inf. Comput. Sci. 38, 1192–1203 (1998).

    CAS  PubMed  Google Scholar 

  119. Perlman, Z.E. et al. Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198 (2004).

    CAS  PubMed  Google Scholar 

  120. Carpenter, A.E. Image-based chemical screening. Nat. Chem. Biol. 3, 461–465 (2007).

    CAS  PubMed  Google Scholar 

  121. Chen, B., Wild, D. & Guha, R. PubChem as a source of polypharmacology. J. Chem. Inf. Model. 49, 2044–2055 (2009).

    CAS  PubMed  Google Scholar 

  122. Tanikawa, T. et al. Using biological performance similarity to inform disaccharide library design. J. Am. Chem. Soc. 131, 5075–5083 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Plouffe, D. et al. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc. Natl. Acad. Sci. USA 105, 9059–9064 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Wolpaw, A.J. et al. Modulatory profiling identifies mechanisms of small molecule-induced cell death. Proc. Natl. Acad. Sci. USA 108, E771–E780 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Cheng, T., Li, Q., Wang, Y. & Bryant, S.H. Identifying compound-_target associations by combining bioactivity profile similarity search and public databases mining. J. Chem. Inf. Model. 51, 2440–2448 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Petrone, P.M. et al. Rethinking molecular similarity: comparing compounds on the basis of biological activity. ACS Chem. Biol. 7, 1399–1409 (2012).

    CAS  PubMed  Google Scholar 

  127. Nidhi, Glick, M, Davies, J.W. & Jenkins, J.L. Prediction of biological _targets for compounds using multiple-category Bayesian models trained on chemogenomics databases. J. Chem. Inf. Model. 46, 1124–1133 (2006).

    PubMed  Google Scholar 

  128. Paolini, G.V., Shapland, R.H., van Hoorn, W.P., Mason, J.S. & Hopkins, A.L. Global mapping of pharmacological space. Nat. Biotechnol. 24, 805–815 (2006).

    CAS  PubMed  Google Scholar 

  129. Keiser, M.J. et al. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25, 197–206 (2007).

    CAS  PubMed  Google Scholar 

  130. Lounkine, E. et al. Large-scale prediction and testing of drug activity on side-effect _targets. Nature 486, 361–367 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Keiser, M.J. et al. Predicting new molecular _targets for known drugs. Nature 462, 175–181 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Gregori-Puigjané, E. et al. Identifying mechanism-of-action _targets for drugs and probes. Proc. Natl. Acad. Sci. USA 109, 11178–11183 (2012).

    PubMed  PubMed Central  Google Scholar 

  133. Laggner, C. et al. Chemical informatics and _target identification in a zebrafish phenotypic screen. Nat. Chem. Biol. 8, 144–146 (2012).

    CAS  Google Scholar 

  134. Oprea, T.I., Tropsha, A., Faulon, J.L. & Rintoul, M.D. Systems chemical biology. Nat. Chem. Biol. 3, 447–450 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hopkins, A.L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4, 682–690 (2008).

    CAS  PubMed  Google Scholar 

  136. Boran, A.D. & Iyengar, R. Systems pharmacology. Mt. Sinai J. Med. 77, 333–344 (2010).

    PubMed  PubMed Central  Google Scholar 

  137. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W. & Kanehisa, M. Prediction of drug-_target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24, i232–i240 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. He, Z. et al. Predicting drug-_target interaction networks based on functional groups and biological features. PLoS ONE 5, e9603 (2010).

    PubMed  PubMed Central  Google Scholar 

  139. Mei, J.P., Kwoh, C.K., Yang, P., Li, X.L. & Zheng, J. Drug-_target interaction prediction by learning from local information and neighbors. Bioinformatics 29, 238–245 (2013).

    CAS  PubMed  Google Scholar 

  140. Bach, S. et al. Roscovitine _targets, protein kinases and pyridoxal kinase. J. Biol. Chem. 280, 31208–31219 (2005).

    CAS  PubMed  Google Scholar 

  141. Kuai, L. et al. AAK1 identified as an inhibitor of neuregulin-1/ErbB4–dependent neurotrophic factor signaling using integrative chemical genomics and proteomics. Chem. Biol. 18, 891–906 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Raj, L. et al. Selective killing of cancer cells by a small molecule _targeting the stress response to ROS. Nature 475, 231–234 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Arastu-Kapur, S. et al. Nonproteasomal _targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. Clin. Cancer Res. 17, 2734–2743 (2011).

    CAS  PubMed  Google Scholar 

  144. Wen, Q. et al. Identification of regulators of polyploidization presents therapeutic _targets for treatment of AMKL. Cell 150, 575–589 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Winter, G.E. et al. Systems-pharmacology dissection of a drug synergy in imatinib-resistant CML. Nat. Chem. Biol. 8, 905–912 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Parsons, A.B. et al. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular _target pathways. Nat. Biotechnol. 22, 62–69 (2004).

    CAS  PubMed  Google Scholar 

  147. Perlstein, E.O. et al. Revealing complex traits with small molecules and naturally recombinant yeast strains. Chem. Biol. 13, 319–327 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health Genomics Based Drug Discovery–_target ID Project grant RL1HG004671, which is administratively linked to the US National Institutes of Health grants RL1CA133834, RL1GM084437 and UL1RR024924.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A Clemons.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenone, M., Dančík, V., Wagner, B. et al. _target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 9, 232–240 (2013). https://doi.org/10.1038/nchembio.1199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1199

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research
  NODES
admin 1
Association 1
INTERN 1
Note 1
Project 1
twitter 1