Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

_target-enrichment strategies for next-generation sequencing

An Erratum to this article was published on 01 June 2010

This article has been updated

Abstract

We have not yet reached a point at which routine sequencing of large numbers of whole eukaryotic genomes is feasible, and so it is often necessary to select genomic regions of interest and to enrich these regions before sequencing. There are several enrichment approaches, each with unique advantages and disadvantages. Here we describe our experiences with the leading _target-enrichment technologies, the optimizations that we have performed and typical results that can be obtained using each. We also provide detailed protocols for each technology so that end users can find the best compromise between sensitivity, specificity and uniformity for their particular project.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Approaches to _target enrichment.
Figure 2: Suitability of different _target-enrichment strategies to different combinations of _target size and sample number.
Figure 3: Uniformity of approaches to _target enrichment.
Figure 4: Coverage plot for array and solution hybrid capture, for 3.5 Mb of exonic _target and whole human exome.
Figure 5: Library prep optimizations for hybrid capture.

Similar content being viewed by others

Change history

  • 12 April 2010

    In the version of this article initially published, the publication date was incorrectly designated as 28 January 2009 instead of 28 January 2010. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

  3. Mardis, E.R. The impact of next-generation sequencing technology on genetics. Trends Genet. 24, 133–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Saiki, R.K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988). This paper was the first description of PCR, which, coupled to electrophoretic sequencing, is the primary conventional method for _targeted variation analysis.

    Article  CAS  PubMed  Google Scholar 

  6. Cho, R.J. et al. Genome-wide mapping with biallelic markers in Arabidopsis thaliana . Nat. Genet. 23, 203–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, D.G. et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077–1082 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Fredriksson, S. et al. Multiplex amplification of all coding sequences within 10 cancer genes by Gene-Collector. Nucleic Acids Res. 35, e47 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Meuzelaar, L.S., Lancaster, O., Pasche, J.P., Kopal, G. & Brookes, A.J. MegaPlex PCR: a strategy for multiplex amplification. Nat. Methods 4, 835–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Varley, K.E. & Mitra, R.D. Nested patch PCR enables highly multiplexed mutation discovery in candidate genes. Genome Res. 18, 1844–1850 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barnes, W.M. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc. Natl. Acad. Sci. USA 91, 2216–2220 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Craig, D.W. et al. Identification of genetic variants using bar-coded multiplexed sequencing. Nat. Methods 5, 887–893 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cronn, R. et al. Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res. 36, e122 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Harismendy, O. & Frazer, K. Method for improving sequence coverage uniformity of _targeted genomic intervals amplified by LR-PCR using Illumina GA sequencing-by-synthesis technology. Biotechniques 46, 229–231 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Hodges, E. et al. Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39, 1522–1527 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Okou, D.T. et al. Microarray-based genomic selection for high-throughput resequencing. Nat. Methods 4, 907–909 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Hamady, M., Walker, J.J., Harris, J.K., Gold, N.J. & Knight, R. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat. Methods 5, 235–237 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hamming, R. Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147–161 (1950).

    Article  Google Scholar 

  19. Ikegawa, S., Mabuchi, A., Ogawa, M. & Ikeda, T. Allele-specific PCR amplification due to sequence identity between a PCR primer and an amplicon: is direct sequencing so reliable? Hum. Genet. 110, 606–608 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Dressman, D., Yan, H., Traverso, G., Kinzler, K.W. & Vogelstein, B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc. Natl. Acad. Sci. USA 100, 8817–8822 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tawfik, D.S. & Griffiths, A.D. Man-made cell-like compartments for molecular evolution. Nat. Biotechnol. 16, 652–656 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Tewhey, R. et al. Microdroplet-based PCR enrichment for large-scale _targeted sequencing. Nat. Biotechnol. 27, 1025–1031 (2009). This paper describes the performance of the RainDance technology, which facilitates multiplex PCR by compartmentalizing primer pairs in distinct microdroplet populations that are then mixed and thermocycled in aggregate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dahl, F., Gullberg, M., Stenberg, J., Landegren, U. & Nilsson, M. Multiplex amplification enabled by selective circularization of large sets of genomic DNA fragments. Nucleic Acids Res. 33, e71 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Porreca, G.J. et al. Multiplex amplification of large sets of human exons. Nat. Methods 4, 931–936 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Dahl, F. et al. Multigene amplification and massively parallel sequencing for cancer mutation discovery. Proc. Natl. Acad. Sci. USA 104, 9387–9392 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Faruqi, A.F. et al. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification. BMC Genomics 2, 4 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Antson, D.O., Isaksson, A., Landegren, U. & Nilsson, M. PCR-generated padlock probes detect single nucleotide variation in genomic DNA. Nucleic Acids Res. 28, E58 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hardenbol, P. et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat. Biotechnol. 21, 673–678 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Lizardi, P.M. et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet. 19, 225–232 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Hardenbol, P. et al. Highly multiplexed molecular inversion probe genotyping: over 10,000 _targeted SNPs genotyped in a single tube assay. Genome Res. 15, 269–275 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nilsson, M. et al. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265, 2085–2088 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Landegren, U. et al. Molecular tools for a molecular medicine: analyzing genes, transcripts and proteins using padlock and proximity probes. J. Mol. Recognit. 17, 194–197 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Turner, E.H., Lee, C., Ng, S.B., Nickerson, D.A. & Shendure, J. Massively parallel exon capture and library-free resequencing across 16 genomes. Nat. Methods 6, 315–316 (2009). This paper demonstrates a substantially optimized protocol for using molecular inversion probes for exon capture that also enables library-free integration of multiplex capture and next-generation sequencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deng, J. et al. _targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat. Biotechnol. 27, 353–360 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, K. et al. Digital RNA allelotyping reveals tissue-specific and allele-specific gene expression in human. Nat. Methods 6, 613–618 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, J.B. et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324, 1210–1213 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Lovett, M., Kere, J. & Hinton, L.M. Direct selection: a method for the isolation of cDNAs encoded by large genomic regions. Proc. Natl. Acad. Sci. USA 88, 9628–9632 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parimoo, S., Patanjali, S.R., Shukla, H., Chaplin, D.D. & Weissman, S.M. cDNA selection: efficient PCR approach for the selection of cDNAs encoded in large chromosomal DNA fragments. Proc. Natl. Acad. Sci. USA 88, 9623–9627 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Albert, T.J. et al. Direct selection of human genomic loci by microarray hybridization. Nat. Methods 4, 903–905 (2007). This was one of three papers that described solid-phase, hybridization-based enrichment of _targeted sequences in shotgun DNA libraries using programmable microarrays.

    Article  CAS  PubMed  Google Scholar 

  40. Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel _targeted sequencing. Nat. Biotechnol. 27, 182–189 (2009). This paper was the first description of the method, now commercialized by Agilent, for solution-phase hybridization-based capture using complex libraries of RNA 'bait' to capture from a shotgun DNA 'pond' library.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hodges, E. et al. Hybrid selection of discrete genomic intervals on custom-designed microarrays for massively parallel sequencing. Nat. Protocols 4, 960–974 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18, 1851–1858 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bentley, D.R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Quail, M.A. et al. A large genome center's improvements to the Illumina sequencing system. Nat. Methods 5, 1005–1010 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. MacArthur, Q. Ayub and C. Tyler-Smith for their work on long PCR and subsequent analyses, P. Akan, A. Palotie, P. Tarpey, H. Arbury and M. Humphries for their work on hybrid capture and E. Sheridan for critical reading of the standard operating procedures. This work was supported by the Wellcome Trust grant WT079643 and by US National Institutes of Health National Human Genome Research Institute grants 5R21HG004749 and 5R01HL094976.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jay Shendure or Daniel J Turner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Protocols 1–6 (PDF 2929 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamanova, L., Coffey, A., Scott, C. et al. _target-enrichment strategies for next-generation sequencing. Nat Methods 7, 111–118 (2010). https://doi.org/10.1038/nmeth.1419

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1419

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
coding 1
Intern 3
iOS 1
Javascript 1
mac 1
os 12
text 1
twitter 1
Users 1
web 2