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We introduce and create a framework for deriving probabilistic models of Information Retrieval.
The models are nonparametric models of IR obtained in the language model approach. We derive
term-weighting models by measuring the divergence of the actual term distribution from that
obtained under a random process. Among the random processes we study the binomial distribution
and Bose-Einstein statistics. We define two types of term frequency normalization for tuning term
weights in the document—query matching process. The first normalization assumes that documents
have the same length and measures the information gain with the observed term once it has been
accepted as a good descriptor of the observed document. The second normalization is related to the
document length and to other statistics. These two normalization methods are applied to the basic
models in succession to obtain weighting formulae. Results show that our framework produces
different nonparametric models forming baseline alternatives to the standard ¢f-~idf model.

Categories and Subject Descriptors: H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms: Algorithms, Experimentation, Theory

Additional Key Words and Phrases: Aftereffect model, BM25, binomial law, Bose—Einstein statis-
tics, document length normalization, eliteness, idf, information retrieval, Laplace, Poisson, proba-
bilistic models, randomness, succession law, term frequency normalization, term weighting

1. INTRODUCTION

The main achievement of this work is the introduction of a methodology for
constructing nonparametric models of Information Retrieval (IR). Like the lan-
guage model approach of IR [Ponte and Croft 1998]) in which the weight of a
word in a document is given by a probability, a nonparametric model is derived
in a purely theoretic way as a combination of different probability distributions.
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The advantage of having a nonparametric approach is that the derived models
do not need to be supported by any form of data-driven methodology, such as
the learning of parameters from a training collection, or using data smooth-
ing techniques. In addition to the feature that the constructed models do not
have parameters, the second important feature that results from our approach
is that different choices of probability distributions to be used in the frame-
work generate different IR models. Our framework was successfully used in the
TREC-10 (see Table III) Conference [Amati et al. 2001] and the model Bz L2
(see Table I) was shown to be one of the best performing runs at the WEB
track.

There are many models of IR based on probability theory [Damerau 1965;
Bookstein and Swanson 1974; Harter 1975a,b; Robertson and Sparck-Jones
1976; Cooper and Maron 1978; Croft and Harper 1979; Robertson et al. 1981;
Fuhr 1989; Turtle and Croft 1992; Wong and Yao 1995; Hiemstra and de Vries
2000; Ponte and Croft 1998], but “probabilistic models” have in general denoted
those models that use “relevance” as an element of the algebra of events and
possibly satisfy the Probability Ranking Principle (PRP). PRP asserts that doc-
uments should be ranked in decreasing order of the probability of relevance
to a given query. In this respect, our framework differs from foregoing models
in that relevance is not considered a primitive notion. Rather, we rank docu-
ments by computing the gain in retrieving a document containing a term of the
query. According to this foundational view, blind relevance feedback for query
expansion was used in TREC-10 only to predict a possible term frequency in
the expanded query [Carpineto and Romano 2000] (denoted by g¢f in formula
(43) of Section 4) and not used to modify the original term weighting.

Our framework has its origins in the early work on automatic indexing by
Damerau [1965], Bookstein and Swanson [1974], and Harter [1975a,b], who ob-
served that the significance of a word in a document collection can be tested by
using the Poisson distribution. These early models for automatic indexing were
based on the observation that the distribution of informative content words,
called by Harter “specialty words,” over a text collection deviates from the distri-
butional behavior of “nonspecialty” words. Specialty words, like words belong-
ing to a technical vocabulary, being informative, tend to appear more densely
in a few “elite” documents, whereas nonspecialty words, such as the words that
usually are included in a stop list, are randomly distributed over the collection.
Indeed, “nonspecialty” words are modeled by a Poisson distribution with some
mean A.

Hence one of the hypotheses of these early linguistic models is that an infor-
mative content word can be mechanically detected by measuring the extent to
which its distribution deviates from a Poisson distribution, or, in other words,
by testing the hypothesis that the word distribution on the whole document
collection does not fit the Poisson model.

A second hypothesis assumed by Harter’s model is that a specialty word
again follows a Poisson distribution but on a smaller set, namely, the set of the
elite documents, this time with a mean u greater than A. The notion of eliteness
was first introduced in Harter [1974, pp. 68—74]. According to Harter, the idea
of eliteness is used to reflect the level of treatment of a word in a small set



of documents compared with the rest of the collection. In the elite set a word
occurs to a relatively greater extent than in all other documents. Harter defines
eliteness through a probabilistic estimate which is interpreted as the proportion
of documents that a human indexer assesses elite with respect to a word ¢. In
our proposal we instead assume that the elite set of a word ¢ is simply the
set D; of documents containing the term. Indeed, eliteness, as considered in
Harter’s model, is a hidden variable, therefore the estimation of the value for
the parameter u is problematic. Statistical tests have shown that his model is
able to assign “sensible” index terms, although only a very small data collection,
and a small number of randomly chosen specialty words, are used.

Harter used the Poisson distribution only to select good indexing words and
not to provide indexing weights. The potential effectiveness of his model for
a direct exploitation in retrieval was explored by Robertson, van Rijsbergen,
Williams, and Walker [Robertson et al. 1981; Robertson and Walker 1994]
by plugging the Harter 2-Poisson model [Harter 1975a] into the Robertson—
Sparck-Jones probabilistic model [Robertson and Sparck-Jones 1976]. The con-
ditional probabilities p(E|R), p(E|R), p(E|R), p(E|R), where E was the elite
set, and R was the set of relevant documents, were substituted for the cardi-
nalities of the sets in the 2 x 2-cell contingency table of the probabilistic model.
The estimates of these conditional probabilities were derived from the 2-Poisson
model by means of the Bayes theorem [Titterington et al. 1985], thus deriving a
new probabilistic model that depends on the means A and u in the nonelite and
elite sets of documents, respectively. The model has been successfully extended
and then approximated by a family of limiting forms called BMs (BM for Best
Match) by taking into account other variables such as the within document—
term frequency and the document length [Robertson and Walker 1994].

A generalization of the 2-Poisson model as an indexing selection function,
the N-Poisson model, was given by Margulis [1992].

We incorporate frequency of words by showing that the weight of a term in a
document is a function of two probabilities Prob; and Probs which are related
by:

w = (1 — Probg) - (—logy Proby) = —log, Probi_Pmbz. (1)

The term weight is thus a decreasing function of both probabilities Prob; and
Probsy. The justification of this new weighting schema follows.

The distribution Prob; is derived with similar arguments to those used by
Harter. We suppose that words which bring little information are randomly
distributed on the whole set of documents. We provide different basic proba-
bilistic models, with probability distribution Prob,, that define the notion of
randomness in the context of information retrieval. We propose to define those
processes with urn models and random drawings as models of randomness. We
thus offer different processes as basic models of randomness. Among them we
study the binomial distribution, the Poisson distribution, Bose—Einstein statis-
tics, the inverse document frequency model, and a mixed model using Poisson
and inverse document frequency.
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these 1U people have not arrived together. Ve assume that there 1s a unitorm
probability that a person gets off at a particular floor. The probability that we
observe 4 people out of 10 leaving at a given arbitrary floor is

B(1024,10,4) = < 4 )p q° = 0.00000000019,
where p = 1/1024 and ¢ = 1023/1024.

We translate this toy problem into IR terminology by treating documents
as floors, and people as tokens of the same term. The term-independence as-
sumption corresponds to the fact that these people have not arrived together,
or equivalently that there is not a common cause which has brought all these
people at the same time to take that elevator. If F' is the total number of to-
kens of an observed term ¢ in a collection D of N documents, then we make
the assumption that the tokens of a nonspecialty word should distribute over
the N documents according to the binomial law. Therefore the probability of ¢f
occurrences in a document is given by

Proby(tf) = Prob; = B(N, F, tf) = ( f}) pq" T,

where p =1/N andg = (N —1)/N.

The Poisson model is an approximation of the Bernoulli model and is here
defined as in Harter’s work (if the probability Prob; in formulae (1) and (2) is
Poisson, then the basic model Prob; is denoted by P in the rest of the article).

Hence the words in a document with the highest probability Prob; of oc-
currence as predicted by such models of randomness are “nonspecialty” words.
Equivalently, the words whose probability Prob; of occurrence conforms most
to the expected probability given by the basic models of randomness are
noncontent-bearing words. Conversely, words with the smallest expected prob-
ability Prob, are those that provide the informative content of the document.

The component of the weight of formula (1):

Inf, = —log, Prob; (2)

is defined as the informative content Inf; of the term in the document. The
definition of amount of informative content as —log, P was given in semantic
information theory [Hintikka 1970] and goes back to Popper’s [1995] notion of
informative content and to Solomonoff’s and Kolmogorov’s Algorithmic Com-
plexity Theory [Solomonoff 1964a,b] (different from the common usage of the
notion of entropy of information theory, Inf; was also called the entropy func-
tion in Solomonoff [1964a]). — log, P is the only function of probability that is
monotonically decreasing and additive with respect to independent events up
to a multiplicative factor [Cox 1961; Willis 1970]. Prob; is a function of the
within document—term frequency ¢f and is the probability of having by pure
chance (namely, according to the chosen model of randomness) #f occurrences
of a term ¢ in a document d. The smaller this probability is, the less its tokens



are distributed in conformity with the model of randomness and the higher the
informative content of the term. Hence, determining the informative content of
a term can be seen as an inverse test of randomness of the term within a docu-
ment with respect to the term distribution in the entire document collection.

The second probability, Probs of Formula 1, is obtained by observing only the
set of all documents in which a term occurs (we have defined such a set as the
elite set of the term).

Proby is the probability of occurrence of the term within a document with
respect to its elite set and is related to the risk, 1 — Probg, of accepting a term
as a good descriptor of the document when the document is compared with the
elite set of the term. Obviously, the less the term is expected in a document
with respect to its frequency in the elite set (namely, when the risk 1 — Probs is
relatively high), the more the amount of informative content Inf; is gained with
this term. In other words, if the probability Probs of the word frequency within
a document is relatively low with respect to its elite set, then the actual amount
of informative content carried by this word within the document is relatively
high and is given by the weight in formula (1).

To summarize, the first probability Prob; of term occurrence is obtained from
an “ideal” process. These “ideal” processes suitable for IR are called models of
randomness. If the expected probability Prob; turns out to be relatively small,
then that term frequency is highly unexpected according to the chosen model
of randomness, and thus it is not very probable that one can obtain such a term
frequency by accident.

The probability Probs is used instead to measure a notion of information
gain which in turn tunes the informative content as given in formula (1). Probs
is shown to be a conditional probability of success of encountering a further
token of a given word in a given document on the basis of the statistics on the
elite set.

An alternative way of computing the informative content of a term within
a document was given by Popper [1995] and extensively studied by Hintikka
[1970]. In the context of our framework, Popper’s formulation of informative
content is:

Infy =1 — Prob,.

Under this new reading the fundamental formula (1) can be seen as the product
of two informative content functions, the first function Inf; being related to the
whole document collection D and the second one Inf; to the elite set of the term:

w = Inf] - Infs. 3)

We have called the process of computing the information gain through the factor
1 — Probs of formula (1) the first normalization of the informative content. The
first normalization of the informative content shares with the language model
of Ponte and Croft [1998] the use of a risk probability function. The risk involved
in a decision produces a loss or a gain that can be explained in terms of utility
theory. Indeed, in utility theory the gain is directly proportional to the risk or
the uncertainty involved in a decision. In the context of IR, the decision to be
taken is the acceptance of a term in the observed document as a descriptor for



a potentially relevant document: the higher the risk, the higher the gain, and
the lower the frequency of that term in the document, in comparison to both
the length of the document and the relative frequency in its elite set.

A similar idea based on risk minimization for obtaining an expansion of the
original query can be found in Lafferty and Zhai [2001]. In this work some loss
functions (based on relevance and on a distance-similarity measure) together
with Markov chains are used to expand queries.

So far, we have introduced two probabilities: the probability Prob; of the
term given by a model of randomness and the probability Probs of the risk of
accepting a term as a document descriptor. Our term weight w of formula (1) is
a function of four random variables:

w=wF,tf,n,N),

where #f is the within document—term occurrence frequency, N is the size of the
collection, n is the size of the elite set of the term, and F is the total number
of occurrences in its elite set (which is obviously equal to the total number of
occurrences in the collection by definition of elite set). However, the size of tf
depends on the document length: we have to derive the expected term frequency
in a document when the document is compared to a given length (typically the
average document length). We determine the distribution that the tokens of
a term follow in the documents of a collection at different document lengths.
Once this distribution is obtained, the normalized term frequency ¢fn is used
in formula (1) instead of the nonnormalized #f. We have called the process of
substituting the normalized term frequency for the actual term frequency the
second normalization of the informative content.
One formula we have derived and successfully tested is:

l
tfn = tf - log, (1 + av‘lg ) , (4)
where avg_l and [ are the average length of a document in the collection and
the length of the observed document, respectively.

Our term weight w in formula (1) is thus a function of six random variables:

w=wF,tfh,n, N)=w(F,tf,n,N,L,avg_l).

1.1 Probabilistic Framework

Our probabilistic framework builds the weighting formulae in sequential steps.

1. First, a probability Prob; is used to define a measure of informative con-
tent Inf; in Equation (2). We introduce five basic models that measure Inf;.
Two basic models are approximated by two formulae each, and thus we provide
seven weighting formulae: I(F') (for Inverse term Frequency), I(n) (for Inverse
document frequency where n is the document frequency), I(n.) (for Inverse ex-
pected document frequency where n, is the document frequency that is expected
according to a Poisson), two approximations for the binomial distribution, D (for
divergence) and P (for Poisson), and two approximations for the Bose—Einstein
statistics, G (for geometric) and Bg (for Bose—Einstein).



2. Then the first normalization computes the information gain when accept-
ing the term in the observed document as a good document descriptor. We in-
troduce two (first) normalization formulae: L and B. The first formula derives
from Laplace’s law of succession and takes into account only the statistics of
the observed document d. The second formula B is obtained by a ratio of two
Bernoulli processes and takes into account the elite set E of a term. Laplace’s
law of succession is a conditional probability that provides a solution to the
behavior of a statistical phenomenon called an apparent aftereffect of sampling
by statisticians. It may happen that a sudden repetition of success of a rare
event, such as the repeated encountering of a given term in a document, in-
creases our expectation of further success to almost certainty. Laplace’s law of
succession gives an estimate of such a high expectation. Therefore Laplace’s
law of succession is one of the candidates for deriving the first normalization
formula. The information gain will be directly proportional to the amount of
uncertainty (1 — Probs) in choosing the term as a good descriptor. Another can-
didate can be provided similarly with the first normalization B, which computes
the incremental rate of probability of further success under a Bernoulli process.

3. Finally, we resize the term frequency in light of the length of the document.
We test two hypotheses.

H1. Assuming we can represent the term frequency within a document
as a density function, we can take this to be a uniform distribution; that is,
the density function of the term frequency is constant. The H1 hypothesis is a
variant of the verbosity principle of Robertson [Robertson and Walker 1994].

H2. The density function of the term frequency is inversely proportional to
the length.

In Section 2 we introduce the seven basic models of randomness. In Section 3
we introduce the notion of aftereffect in information retrieval and discuss how
the notion is related to utility theory. We define the first normalization of the
informative content and produce the first baselines for weighting terms. In
Section 4 we go on to refine the weighting schemas by normalizing the term
frequency in the document to the average document length of the collection.
Experiments are discussed in Section 8.

2. MODELS OF RANDOMNESS

Our framework has five basic IR models for the probability Prob; in formula (1).
the binomial model, the Bose—Einstein model, the #f-idf (the probability that
combines the within document—term frequency with the inverse document
frequency in the collection), tf-itf (the probability that combines the within
document—term frequency with the inverse term frequency in the collection),
and tf-expected_idf models (the probability combining the within document—
term frequency with the inverse of the expected document frequency in the
collection). We then approximate the binomial model by two other models, that
is, the Poisson model P and the divergence model D. We also approximate the
Bose—Einstein model with two other limiting formulae, the geometric distribu-
tion G and the model Bg.



2.1 The Bernoulli Model of Randomness: The Limiting Models P and D

We make the assumption that the tokens of a nonspecialty word should dis-
tribute over the N documents according to the binomial law. The probability of
tf occurrences in a document is given by

Proby(tf) = B(N, F,tf) = <f};> pitgF—i,

where p =1/N and ¢ = (N — 1)/N.

The expected relative frequency of the term in the collection is A = F/N.
Equation (5) is that used by Harter to define his Poisson model. The informative
content of ¢ in a document d is thus given by

Inf(tf) = —log, [( f]'c) ptqu_tf} . 5)

The reader may notice that the document frequency n (the number of different
documents containing the term) is not used in this model.

To compute the cumbersome formula (5) we approximate it assuming that p
is small. We apply two limiting forms of Equation (5), each of them associated
with an error. Unfortunately, in IR errors can make a nontrivial difference to
the effectiveness of retrieval. IR deals with very small probabilities in everyday
life equivalent to 0 and the probability from the elevator example given in the
introduction would be very small but nontrivial in IR. We do not yet know to
what extent errors may influence the effectiveness of the model.

The first approximation of the Bernoulli process is the Poisson process; the
second is obtained by means of the information-theoretic divergence D.

Assuming that the probability p decreases towards 0 when N increases, but
A = p - F is constant, or moderate, a “good” approximation of Equation (5) is
the basic model P and is given by

Inf,(tf) = —logy BN, F, tf)
1 e—)»)\’tf

T %82 g 6)

~ —if -logy A + X - logg e + log,(tf 1)

¢ 1
if - log, {+ (A + th — tf) -logs e + 0.5 - logy (27 - tf).

2

2

The value A is both the mean and the variance of the distribution. The basic
model P of relation (6) is obtained through Stirling’s formula which approxi-
mates the factorial number as:

11 = Vor - tftf+0.5e—tfe(12-tf+ nt (7

For example, the approximation error for 100! is “only” 0.08%.
The formula (5) can alternatively be approximated as follows [Renyi 1969]
(to obtain approximation (8) Renyi used Stirling’s formula),

9-F-D($,p)

@r - tf (1 — )2’

B(N, F,tf) ~



where ¢ = f/F, p = 1/N, and D(¢,p) = ¢ -logap/p + (1 — ¢) -
log, (1 — ¢)/(1 — p)) is called the divergence of ¢ from p.
The informative content gives the basic model D:

Infy(tf) ~ F - D(¢, p) + 0.51log, (27 - tf(1 — ¢)). (8)

We show in the following sections that the two approximations P and D are
experimentally equivalent under the Probability Ranking Principle [Robertson
1986]. Hence, only a refinement of Stirling’s formula or other types of normal-
izations can improve the effectiveness of the binomial model. We emphasize
once again that, besides N which does not depend on the choice of the docu-
ment and the term, the binomial model is based on both term frequency #f in
the document and the total number F' of term occurrences in the collection, but
not on the term document frequency n.

2.2 The Bose—-Einstein Model of Randomness

Now suppose that we randomly place the F' tokens of a word in N documents.
Once the random allocation of tokens to documents is completed, this event is
completely described by its occupancy numbers: tf1, ..., {fy, where tf;, stands
for the term frequency of the word in the £th document.

Every N -tuple satisfying the equation

th+ - +tfy=F 9)

is a possible configuration of the occupancy problem [Feller 1968]. The number
s1 of solutions of Equation (9) is given by the binomial coefficient:

o — N+F-1\ IN+F-1)
' F T (N-DIF!
Now, suppose that we observe the £th document and that the term frequency
is tf. Then a random allocation of the remaining F' — ¢f tokens in the rest of the

collection of N — 1 documents is described by the same equation with N — 1
terms:

(10)

th+ - +th 1 +tha+ - +tfy =F —tf. (11)

The number sy of solutions of Equation (11) is given by
N-1+(F —-t)-1 (N +F —tf—2)!
SS9 = = .
F —tf (N — 2U(F — )
In Bose—Einstein statistics the probability Prob; (¢f) that an arbitrary document
contains exactly #f occurrences of the term ¢ is given by the ratio ss/s;. That is,

N-F—tf-2
F —tf _ (N+F —tf-2)/FI(N - 1)!
<N+F - 1> T (F —tHN —2UN +F -1
F

(12)

Prob;(tf) = ( (13)

Equation (13) reduces to
F—-tf+1)-...-F-(N-1)
(N+F—-tf-1)-...-(N+F-1)

Prob,(tf) =



Note that both numerator and denominator are made up of a product of #/'+ 1

terms. Hence
F -1 F 1 1
N N ) N N

F tf+1 F 1\’
<1+N—T>'...~(1+N—N>

If we assume that N > #f, then (¢(/ —%k)/N ~ 0 and (A +1)/N ~ O for &k =
0,...,t#f and Equation (14) reduces to

Probi(tf) = (14)

F F <F>tf
SN ) -
Proby(tf) ~ . F ) FN F\TT
(o) (rw) (k)
F \7
. F
_ |- NF _ (15)

14— 14 o
TN TN

Let A = F /N be the mean of the frequency of the term ¢ in the collection D,
then the probability that a term occurs #f times in a document is

1 A \7

The right-hand side of Equation (16) is known as the geometric distribution
with probability p = 1/(1+ ). The model of randomness based on (16) is called
G, (G stands for Geometric):

e () (7))

1 A

The geometric distribution is also used in the Ponte—Croft [1998] model. How-
ever, in their model A is the mean frequency F'/n of the term with respect to the
number n of documents in which the term ¢ occurs [Ponte and Croft 1998, p. 277]
compared to A = F /N in ours. A second difference with respect to our Bose—
Einstein model, is that in Ponte—Croft’s model the geometric distribution p(¢)
is used to define a correcting exponent R; ; = 1 — p(¢) of the probability of the
term in the document (compared to —log Prob; in ours). Their exponent R; 4
computes (according to their terminology) the risk of using the mean as a point
estimate of a term ¢ being drawn from a distribution modeling document d.

Ifinstead we were to assume A = F'/n as was done in the Ponte—Croft model,
then Equation (16) could still be considered as a limiting form of the Bose—
Einstein statistics, as in general #f is small with respect to n.

The second operational model associated with the Bose—Einstein statistics
is constructed by approximating the factorials by Stirling’s formula. Starting

Inf,(tf)



from formula (13) we obtain the model Bg:

(N+F —tf—2!FI(N -1)
(F —t )N +F —1)!
= —logy(N — 1) — logy(e)
+f(N+F -1,N+F —tf—2)— f(F,F —tf) (18)

Infi(tf) = log,

where
f(n,m) = (m + 0.5) - log, (%) +(n—m)-logyn.

We show that in our experiments Bg and G are indistinguishable under differ-
ent types of normalization. This confirms that G and Bg are good approxima-
tions of the Bose—Einstein statistics, since G and Bg have been derived by two
completely different approximation hypotheses of the Bose—Einstein statistics.

2.3 The tf-idf and tf-itf Models of Randomness

The probability Prob,(¢f ) is obtained by first computing the unknown proba-
bility p of choosing a document at random and then computing the probability
of having ¢f occurrences of ¢ in that document.

Using a Bayesian approach we assume that there is some true or a priori
distribution (prior) of probabilities over documents with unknown probability
p of occurrence. The Bayes Rule provides a way of calculating the a posteri-
ori probability distribution. If P(X = p|N) is the prior and n is the number
of documents out of N containing the term, then we obtain the a posteriori
probability

P(X = p|N)P(n|N, p)
Y., PX =pIN)P(IN, p)’

Let the probability P(n|p, N) of obtaining n out of N when X = p be

N n N-n
(5 )pra

The a posteriori probability distribution depends heavily on the prior. However,
if N is large, then the a posteriori probability, independently of the prior, con-
denses more and more around the maximum likelihood estimate (n/N) and also
the relative document frequency n/N maximizes the a posteriori probability.
The prior distribution becomes less and less important as the sample becomes
larger and larger.

If the prior is a uniform prior probability independent of p, then the a pos-
teriori probability according to Bayes’ Rule is given by Laplace’s so-called Law
of Succession:

P(X =p|n,N) =

n+1

N+2
If the prior is assumed to be of the beta form, that is, with the density function
proportional to p*g? [Good 1968; van Rijsbergen 1977], where o, 8 > —1,



a posteriori probability according to Bayes’ Rule is given by

n+1l+4+a«
N+2+a+p8

In the INQUERY system the parameter values « and g are set to —0.5. In
the absence of evidence (i.e., when the collection is empty and N = 0), for
a = B = —0.5 the a posteriori probability p has the maximum uncertainty value
0.5. In this article we also set the values of « and 8 to —0.5. The probability of
randomly choosing a document containing the term is thus

n+0.5

N+1°
We suppose that any token of the term is independent of all other tokens both
of the same and different type, namely, the probability that a given document
contains tf tokens of the given term is

n+0.5>tf

Prob(tf) = <N+ 1

Hence we obtain the basic model I(n):

N+1
Infy(tf) = if - log, ﬁtw (19)

A different computation can be obtained from Bernoulli’s law in Equation (5).
Let n, be the expected number of documents containing the term under the
assumption that there are F' tokens in the collection. Then

N -1\*
ne=N - -Prob(tf #0) =N -(1-B(N,F,0) =N - 1—( N ) )

The third basic model is the tf-Expected_idf model I (n.):

N+1
Infitf) =tf -1 . 20
nfitp = tf-logy o 20)
Now, 1— B(N, F,0) ~ 1 —eF/N by the Poisson approximation of the binomial,
and 1—e /N ~ F/N with an error of order O((F/N)>?). By using this approxi-
mation, the probability of having one occurrence of a term in the document can
be given by the term frequency in the collection assuming that F /N is small;

namely,
if
Prob(tf) = (]Fv> .

Again from the term independence assumption, we obtain with a smoothing of
the probability, the ¢f-itf basic model I(F),
N+1

F
Infi(tf) = tf - log, F105 N small or moderate . (21)

A generalization of the I(F) was given by Kwok [1990] with the ICTF Weights
(the Inverse Collection Term Frequency Weights), in the context of the stan-
dard probabilistic model using relevance feedback information [Robertson and



Sparck-Jones 1976]. Kwok reported that the ICTF performed much better than
Salton’s IDF model [Salton and Buckley 1988]. We show that in our experi-
ments I(F') and I(n,) behave similarly and independently with different types
of normalization.

3. FIRST NORMALIZATION N1: RESIZING THE INFORMATIVE CONTENT
BY THE AFTEREFFECT OF SAMPLING

Suppose that we are searching for tokens of a term and after a long unsuccessful
search we find a few of them in a portion of a document. It is quite likely that
we have finally reached a document in which we expect increased success in our
search. The more we find, the higher is the expectation. This expectation is given
by Probs(#f) in formula (1), and has been called by statisticians an apparent
aftereffect of future sampling [Feller 1968, pp. 118-125]. There are several
models for the aftereffect: one of these is the law of succession of Laplace [Good
1968]. The intuition underlying the aftereffect in IR is that the greater the
term frequency #f of a term in a document, the more the term is contributing to
discriminating that document.

If tf is large then the probability that the term may select a relevant docu-
ment is high. The fact that ¢f is large depends on the length of the document.
Moreover, relevant documents may have different lengths and we cannot pre-
dict the size of a relevant document. Therefore we assume for the moment that
the length of a relevant document is of arbitrary and large size. In Section 4
we show how to normalize the actual document length / to a given length.
When enlarging the actual size of a relevant document to an arbitrary large
size, the chance of encountering a new token of the observed term increases in
accordance with the size ¢f of already observed tokens.

We thus assume that the probability that the observed term contributes to
select a relevant document is high, if the probability of encountering one more
token of the same term in a relevant document is similarly high. We reason that
a high expectation of encountering one more occurrence is due to some under-
lying semantic cause and should not be simply accidental. The probability of a
further success in encountering a term is thus a conditional probability that ap-
proaches 1 as ¢f increases and becomes large. On the contrary, if successes were
brought about by pure chance, then the conditional probability would rather
approach 0 as #f increases and becomes large. We need, however, a method to
estimate this conditional probability.

We assume that the probability Probs(tf) is related only to the “elite set” of
the term, which is defined to be the set D; of all documents containing the term.
We also assume that the probability Probs(¢f) in formula (1) is obtained by a
conditional probability p(¢f + 1|tf, d) of having one more occurrence of ¢ in the
document d and that p(¢f + 1|¢f, d) is obtained by an aftereffect model.

This probability is computed in the next two sections.

3.1 The Normalization L

The first model of Probs(#f) is given by Laplace’s law of succession. The law
of succession in this context is used when we have no advance knowledge of



how many tokens of a term should occur in a relevant document of arbitrary
large size. The Laplace model of aftereffect is explained in Feller [1968]. The
probability p(¢f + 1|¢f, d) is close to (¢f + 1)/(¢f + 2) and does not depend on the
document length.

Laplace’s law of succession is thus obtained by supposing the following.

The probability Probs(tf) modeling the aftereffect in the elite set in for-
mula (1) is given by the conditional probability of having one more token of
the term in the document (i.e., passing from ¢f observed occurrences to #f + 1)
assuming that the length of a relevant document is very large.

tf+1
tf+2
Similarly, if #f > 1 then Probs(tf) can be given by the conditional probability of

having tf occurrences assuming that ¢/ — 1 have been observed. Equation (22)
with ¢f — 1 instead of ¢f leads to the following equation,

Proby(tf) = (22)

tf
Equations (1) and (23) give the normalization L:
1
weight (t,d) = —— - Infi(f). (24)

tf+1

In our experiments, which we do not report here for the sake of space, re-
lation (23) seems to perform better than relation (22), therefore we refer to
formula (24) as the First Normalization L of the informative content.

3.2 The Normalization B

The second model of Proby(tf) is slightly more complex than that given by re-
lation (23). The conditional probability of Laplace’s law computes directly the
aftereffect on future sampling. The hypothesis about aftereffect is that any
newly encountered token of a term in a document is not obtained by accident.
If we admit that accident is not the cause of encountering new tokens then the
probability of encountering a new token must increase. Hence, the aftereffect
on the future sampling is obtained by a process whose probability of obtaining
a newly encountered token is inversely related to that which would be obtained
by accident. In other words, the aftereffect of sampling in the elite set yields
a distribution that departs from one of the “ideal” schemes of randomness we
described before. Therefore, we may model this process by Bernoulli. However,
a sequence of Bernoulli trials is known to be a process characterized by a com-
plete lack of memory (lack of aftereffect): previous successes or failures do not
influence successive outcomes. The lack of memory does not allow us to use
Bernoulli trials, as, for example, in the ideal urn model defined by Laplace, the
conditional probability would be p(¢f+ 1|¢f, d ), and this conditional probability
would be constant.

To obtain the estimate Probs with Bernoulli trials we use the following urn
model. We add a new token of the term to the collection, thus having F + 1 to-
kens instead of F'. We then compute the probability B(n, F' + 1,¢f + 1) that



this new token falls into the observed document, thus having a within
document—term frequency ¢f + 1 instead ¢f. The process B(n, F + 1,¢f + 1) is
thus that of obtaining one more token of the term ¢ in the document d out
of all n documents in which ¢ occurs when a new token is added to the elite
set. The comparison (B(n, F + 1,tf + 1))/(B(n, F,{f)) of the new probability
B(n, F + 1,tf + 1) with the previous one B(n, F, tf) tells us whether the prob-
ability of encountering a new occurrence is increased or diminished by our
random urn model.

Therefore, we may talk in this case of an incremental rate o of term occurrence
in the elite set rather than of probability Probs of term occurrence in the elite
set, and we suppose that the incremental rate of occurrence is

_ B, F,f)-Bn,F+1,6f+1) _ . B F+1u+1)
“= B(n, F, tf) - B(n, F,tf)

where (B(n, F' + 1,tf+ 1))/(B(n, F, tf)) is the ratio of two Bernoulli processes.
If the ratio

(25)

Bn,F +1,tf+1)
B(n, F,tf)

is smaller than 1, then the probability of the document receiving at random the
new added token increases. In conclusion, the larger tf, the less accidental one
more occurrence of the term is, therefore the less risky it is to accept the term as
a descriptor of a potentially relevant document. (B(n, F' +1, ¢f +1))/(B(n, F, tf))
is a ratio of two binomials given by Equation (5) (but using the elite set with
p=1/ninstead of p = 1/N):

_ B(n,F +1,tf +1) F+1
N YA R N ) (26)
The Equations (26) and (31) give
. _ B, F+1,tf+1) _ F+1
weight (¢,d) = Bn, F.1f) InfiGf) = D) Y Infitf). (27

The relation (27) is studied in the next sections and we discuss the results in
the concluding sections.

3.3 Relating Prob, to Prob,

In this subsection we provide a formal derivation of the relationship between
the elite set and statistics of the whole collection; that is, we show how the two
probabilities Probs and Prob; are combined. We split the informative content of
aterm into a 2 x 2 contingency table built up of the events accept/not accept(-ing)
the term as document descriptor, and relevance/not relevance of the document.
Let us assume that a term ¢ belongs to a query g. We assume that if the term
t also occurs in a document then we accept it as a descriptor for a potentially
relevant document (relevant to the query ¢). A gain and a loss are thus obtained
by accepting the term query ¢ as a descriptor of a potentially relevant document.
The gain is the amount of information we really get from the fact that the
document will be actually relevant. The gain is thus a fraction of Infi(¢f); what



is not gained from Infi(¢f) is the loss in the case that the document will turn
out to be not relevant. This translates into the equation

gain + loss = Inf,(tf). (28)
We weight the term by computing only the expected gain; namely,
weight (¢,d) = gain.

The conditional probability Probs(tf) of occurrence of the term ¢ is related to
the odds in the standard way (the higher its probability the smaller the gain):

loss

P =,
roba(tf) gain + loss

(29)

From Equation (29) the loss is
loss = Probsy(tf) - Infy(@f). (30)
For scoring documents we use only the gain, which from (28) and (30) is
weight (t,d) = gain = Inf,(tf) — loss
= (1 — Proba(tf)) - Inf1(tf). (31

As an example, let us consider the term “progress” which occurs 22,789 times in
a collection containing 567,529 documents. Let us use the Poisson model P for
computing the amount of information Inf; and use Laplace’s law of succession to
compute the loss and gain of accepting the term as a descriptor for a potentially
relevant document. We have two cases: the term frequency in the document is
equal to 0 or not. In the second case suppose ¢f = 11 as an example. We have
the following contingency table.

Accept (¢(f =11) Not Accept (¢ = 0)
Rel gainy = 6.9390 lossy = 0.04015

Not Rel | loss; =69.3904 gaing =0

Inf, = 76.3295 Infy = 0.04015

First we compute the amount of information Inf; = 76.3295 as given by
formula (6) with ¢/ = 11 and 1 — Proby(tf)=1-(10/11) = 0.0909 from (23); then
gaini is obtained by multiplying these two values. Similarly, loss; = 0.9090 -
76.3295 = 69.3904.

When #f = 0 we reject the term; that is, the term is assumed to be not a
descriptor of a potentially relevant document. In other words, by rejecting the
term we have a gain when the term “progress” is not important for predicting
the relevance of the document. According to Laplace’s law of succession the gain
is 0, and the loss is very small.

4. SECOND NORMALIZATION N2: RESIZING THE TERM FREQUENCY
BY DOCUMENT LENGTH

Taking into account document length, the average document length has been
shown to enhance the effectiveness of IR systems. Also, document length was
shown to be dependent on relevance [Singhal et al. 1996]. According to the



experimental results contained in Singhal et al. [1996] a good score function
should retrieve documents of different lengths with their chance of being re-
trieved being similar to their likelihood of relevance. For example, the BM 25
matching function of Okapi:

Z(k1+1)tf_(k3+1)-qtflo (r+05(N —-n—-—R+r+0.5)
K +i)  Gs+qif) 22 (R—r+05)n—r+05)

) (32)
te@

where

—R is the number of documents known to be relevant to a specific topic;

—r is the number of relevant documents containing the term;

—qlf is the frequency of the term within the topic from which @ was derived;

—1I and avg_l are, respectively, the document length and average document
length;

—K is k(1= b) + bl /(avg 1));

—Fk1, b, and k3 are parameters that depend on the nature of the queries and
possibly on the database; and

—Fk1 and b are set by default to 1.2 and 0.75, respectively; k3 is often set to 1000
(effectively infinite). In TREC 4 [Robertson et al. 1996] £; was in the range
[1, 2] and b in the interval [0.6, 0.75], respectively.

By using the default parameters above (k1 = 1.2 and b = 0.75), the baseline
unexpanded BM25 ranking function, namely, without any information about
documents relevant to the specific query, (R =r = 0) is:

2.2 -tf 1001 - gtf N -n+05

[ ) 089
te 0.3+09— + tf 1000 + qtf n+0.5
avg_l

(33)

The INQUERY ranking formula [Allan et al. 1996] uses the same normalization
factor of the baseline unexpanded BM25 with £; = 2 and 6 = 0.75, and ¢tf = 1:

N +05
tf log,
I Toa N+ 1) (34)
tf+05+15— 08N+
avg_l
Hence, the BM25 length normalization ¢fn,
tin =T - tf, (35)
where T is
1
T = > (36)
tf+03+09. ——
f+ + avg_l

is a simple but powerful and robust type of normalization of #f. The BM25 length
normalization is related to Equations (24).

Indeed, tf+ 0.3+ 0.9 - (avg_l/l) = tf + k1 when the document has the length
[ =avgl.



Table I. Models are Made Up of Three Components?

Basic Models Formula
P Poisson approximation of the binomial model (6)
D Approximation of the binomial model with the divergence 8
G Geometric as limiting form of Bose—Einstein a7
Bg Limiting form of Bose—Einstein (19)
I(n,) Mixture of Poisson and inverse document frequency (20)
I(n) Inverse document frequency (19)
I(F) Approximation of I(n,) (21)
First Normalization
L Laplace’s law of succession (23)
B Ratio of two Bernoulli processes (26)

Second (Length) Normalization
H1 Uniform distribution of the term frequency (41)
H2 The term frequency density is inversely related to the length (42)

2For example, Bg B2 uses the limiting form of Bose—Einstein formula (19), normalized by the
incremental rate of the Bernoulli process of formula (26) and whose within document-term
frequency is normalized by formula (42).

The normalization factor T in Equation (36) generates models
weight (t,d) = T - Infi(f). (37)

Moreover, if the basic model Infi(¢f)in (37) is I (n) or I(F') of relations (19) or (21)
as shown in Table I, then from the normalization T' we obtain the randomness
model given in Equation (24) up to the parameter K;. We provide a formal
derivation of BM25 in Section 6.

Our next concern is to introduce an additional methodology that can normal-
ize the random variables #f to a given length of the document. In other words,
we would like to obtain the expected number of tokens of a term in a document
and in the collection if the lengths of the documents in the collection were equal
to a fixed value, for example, to their average length.

The probabilistic models of randomness are based on the term-independence
assumption. When tokens of the same term occur densely within a portion of
text we may detect term dependence by a monotonically decreasing function of
the probability of obtaining this density by randomness. We can explain and
measure formally how improbable that density is by chance, but this formal
model does not give us any insight (as far as we know) into the distribution
of document lengths. It is thus difficult to express how improbable or why we
obtain a specific length of observed document. How to compare #f tokens in
a document of length /1 with ¢f tokens in a document of length /s is not yet
derivable in our framework. Hence, for the moment we can only make some
hypotheses on how to compare different term frequencies and test them. We use
a Bayesian methodology to choose the hypothesis for term frequency correction
which is best from the empirical point of view.

We make two initial assumptions on how to resize term frequencies according
to the length of the documents and we evaluate them. This assumption is similar
to the “verbosity hypothesis” of Robertson [Robertson and Walker 1994], which



states that the distribution of term frequencies in a document of length [ is
a 2-Poisson with means A - (I /avg_l) and u - (I Javg_l), where A and u are the
original means related to the observed term as discussed in the Introduction
and avg_l is the average length of documents.

We define a density function p(l) of the term frequency, and then for each
document d of length [(d ) we compute the term frequency on the same interval
[[(d),l(d)+Al] ofgiven length Al as anormalized term frequency. Al can be cho-
sen as either the median or the mean avg_ [ of the distribution. The mean min-
imizes the mean squared error function Y.~ (Al —1(d))%/N, and the median
minimizes the mean absolute error function Zf\il(Al —1(d))/N. Experiments
show that the normalization with Al = avg_l is the most appropriate choice.

H1. The distribution of a term is uniform in the document. The term fre-
quency density p(/) is a constant p

p(l):c-’;f=p, 38)

where c is a constant.
H2. Theterm frequency density p(/) is a decreasing function of the length /.

We made two assumptions H1 and H2 on the density p(/) but other choices
are equally possible. We think that this crucial research issue should be exten-
sively studied and explored. According to hypothesis H1 the normalized term
frequency tfn is

1(d)+avg_1
tfn = / o)dl = p-avg.l =c-tf- V&L (39)
1(d) ld)
whereas, according to the hypothesis H2,
1(d)+avg-1 1(d)+avg-1
tfn =/ p()dl =c - tf - A _ .t 1og, (1 n ‘”’gl> . (40)
1) @) ! l(d)

To determine the value for the constant ¢ we assume that if the effective length
of the document coincides with the average length, that is, [(d) = avg_l, then
the normalized term frequency #/n is equal to ¢f. The constant ¢ is 1 under the
hypothesis H1 and ¢ = 1/log, 2 = log, e under the hypothesis H2:

1
tfn = tf - ‘;’fl) (41)
tfn = tf-logye - log, (1 + allzi_)l) =tf-log, (1 + allfi_)l ) . (42)

We substitute uniformly #/n of Equations (41) or (42) for #f in weight (t,d) of
Equations (24) and (27).

We are now ready to provide the retrieval score of each document of the
collection with respect to a query. The query is assumed to be a set of indepen-
dent terms. Term-independence translates into the additive property of gain of
Equation (31) over the set of terms occurring both in the query and in the ob-
served document. We obtain the final matching function of relevant documents



under the hypothesis of the uniform substitution of ¢fn for ¢f and the hypothesis
H1lor H2:

R(g,d) ="y weight(t,d) =) qif (1 — Probs(tfn)) - Infy(tfn), ~ (43)

teq teq

where gtf is the multiplicity of term-occurrence in the query.

5. NOTATIONS

The normalizing factor N1 of Inf;(¢f ) in Equation (24) is denoted L (for Laplace),
and that in Equation (27) is denoted B (for Binomial). Models of IR are obtained
from the basic models P, D, I(n), I(F'), and I(n.), B and G applying either
the first normalization N1 (L or B) and then the second normalization N2
(i.e., substituting in (27) tfn for ¢f). Models are represented by a sequence XYZ
where X is one of the notations of the basic models, Y is one of the two first
normalization factors, and Z is either 1 or 2 according the second normalization
H1 or H2. For example, PB1 is the Poisson model P with the normalization
factor N1 of (27) with the uniform substitution #fn for ¢f(¢,d) according to
hypothesis H1, and Bg L2 is the Bose—Einstein model By in (19) with the first
normalization factor N1 of (24) with the uniform substitution ¢fn for ¢f(¢,d)
according to hypothesis H2.

6. A DERIVATION OF THE UNEXPANDED RANKING FORMULA BM25
AND OF THE INQUERY FORMULA

The normalization of the term frequency of the ranking formula BM25 can
be derived by the normalization L2, and therefore both BM25 and INQUERY
[Allan et al. 1996] formulae are strictly related to the model I(n)L2:
tfn N+1

ImL2: —— S
(n) itk 225105

(44)

where
avg_l

ifn = tf - logy (1 + ) and k1 =1,2.

Let 21 = 1 and let us introduce the variable x = /avg_l. Then
th tf
thh+1 1
i+ logy(x + 1) — log, x

Let us carry out the Taylor series expansion of the function

1
logy(x + 1) — logy x

glx) =

at the point x = 1. Its derivative is

/ _ 10g29 ) gZ(x)
g =—""7T1



Table II. The Probability ®(8) Is the Probability Computed by the Binomial
Distribution that a Random Document Has Length |({ /avg.l) — 1| <1ina
Collection with Mean avg.l and Variance o2

Documents :
Collection TREC avg.l o B=avgl/oc ®dB) |l/avgl)—1] <1
Disks 1,2 1,2,3 209.6 776.2 0.27 0.61 0.89
Disks 4,5 6 265.5 11494 0.23 0.59 0.91
Disks 4,5 7,8 246.5 707.2 0.35 0.64 0.90
(no CR)
From g(1) =1 and g'(1) = logye - 0.5 we obtain
ZiC tf
i+l 1+1 0.5 ! 1)+0 ! 1 :
t 05 —— — —
reasiose05 (G 1) +0( (G 1) )
t,
= lf ; N (45)
tf+0.2786 + 0.7213 - —+O — =1
vg l avg_l
The expansion of (45) in tfn/(tfn + 1) with error O(( Javg.l — 1)?) gives
tf
tf+1+logye-0.5 ! lo e-(83—2log,e) ! -1 i
22 . avg_l 22 g2 _l
_ tf
B l 1%
tf + 0.2580 + 0.7627 - 71—00207 avg ]

The INQUERY normalization factor of formula (34) is obtained with the param-
eter k1 = 2 which corresponds to the application of Laplace’s law of succession
as stated in formula (22) (with coefficients 0.5572 and 1.4426 instead of 0.5
and 1.5).

The O((( /avg_-l)—1)?)in (45) is small when |(l /avg_l)— 1| < 1. Itis interest-
ing to estimate the probability that the length / of a random document satisfies
such a relation. By applying the Central Limit Theorem to the random variable
! with mean avg_l and variance o2, the discrepancy ! — avg.l < o - p for every
fixed value B8 converges to the value ®(8) given by the normal distribution ®. If
we set B = avg_l /o the relation |(I /avg_l) — 1| < 1is satisfied. Thus the approx-
imation (45) should hold when the standard deviation o is close to the mean
avg_l. In practice, the expected number of documents satisfying the constraint
| /Javg.l) — 1| < 1, given by the Central Limit Theorem, is smaller than the
actual number, as shown in Table II. The effectiveness of the approximation
is also confirmed by our experiments, not reported here, that have shown that
the BM 25 formula with its parameters set as in formula (45) has the same
performance of I(n)L2.



7. EXPERIMENTS

We used two test collections of TREC (Text REtrieval Conference). The first
test collection is on disks 1 and 2; the second collection is on both disks 4 and 5.
For the first test collection we used the topics of TREC-1 through TREC-3
(50 topics each), and for the second collection we used the topics of TREC-6
through TREC-8 (50 topics each).

Disks 1 and 2 for TREC-1 through TREC-3 experiments consist of about
2 Gbytes of data, of about 528,000 documents from the Department of En-
ergy Abstracts, the Federal Register, the Associated Press Newswire, and the
Ziff-Davis collections. Disks 1 and 2 contain (after the use of the stop list)
138,743,975 pointers (a pointer is the unit piece of information of the inverted
file that contains the pair “term—document” information and the relative within
document term frequency). We used the compression techniques of Witten et al.
[1999] to represent the inverted file in a compressed format. The space required
by the compressed inverted file for disks 1 and 2 is 96 Mbytes, that is, 11.4 bits
per pointer. The average length of a document from disks 1 and 2 is 210 tokens
(tokens from the stop list were not computed).

The TREC-6 test collection consists of about 2.1 Gbytes of data, of about
556,000 documents, from the Congressional Record, Financial Register, Finan-
cial Times, Foreign Broadcast Information Service, and LA Times collections.
Differently from TREC-6, in TREC-7 and TREC-8, the collection CR (about
28,000 transcripts from the Congressional Record) was not indexed. Disks 4 and
5 contain 147,625,088 pointers. The space occupied by the compressed inverted
file for disks 4 and 5 is 103 Mbytes; that is, the inverted file needs 11.2 bits per
pointer. The average length of a document on disks 4 and 5 is 265 tokens. This
average length decreases to 246 without indexing the CR collection. Indeed, the
CR document length average is much longer than the document average length
of other collections (624 tokens per document).

The text in the fields that was human-assigned was not indexed for use in
the experiments.

Each of the 50 topics consists of three fields: a title (from one to three words), a
description (one or two sentences), and a narrative (a paragraph listing specific
criteria for accepting or rejecting a document). In our experiments we used all
these three fields. We used Porter’s stemming algorithm and a stop list of 235
words.

We tested the basic models with first and second normalization and com-
pared them with model BM 25 of Okapi as defined by formula (33). To find
the noninterpolated average measure of precision (Chris Buckley proposed this
measure which was first used in TREC-2 [Harman 1993]) for each query and
for each ith retrieved relevant document the exact precision Prob; is first com-
puted (i.e., i /r, where r is the document position in the rank); then the average
precision for the query is obtained (i.e., >, Prob;/R, where R is the number
of relevant documents in the collection) and finally one obtains the mean of
the average precision over all topics. The noninterpolated average precision
for the 11 levels of recall is shown in Tables IV through VII, X, and XI by
AvgPr, the precision at 5, 10, 30, 100, and R (R-precision) retrieved documents,



Table III. Comparison of Models with TREC-10 Data?

Method  Official run  AvPrec  Prec-at-10  Prec-at-20  Prec-at-30
Model Performance Without Query Expansion

BgL2 0.1788 0.3180 0.2730 0.2413
I(n)L2 0.1725 0.3180 0.2740 0.2353
I(n.)L2 fubOlne 0.1790 0.3240 0.2720 0.2440
Bg B2 0.1881 0.3280 0.2980 0.2487
I(n)B2 fub01idf 0.1900 0.3360 0.2880 0.2580
I(n.)B2 0.1902 0.3340 0.2860 0.2580
Model Performance with Query Expansion
BgL2 fub01be2 0.2225 0.3440 0.2860 0.2513
I(n)L2 0.1973 0.3200 0.2730 0.2380
I(n.)L2 fub01ne2 0.1962 0.3280 0.2760 0.2507
BgB2 0.2152 0.3400 0.2870 0.2527
I1(n)B2 0.2052 0.3380 0.2970 0.2680
I(n.)B2 0.2041 0.3360 0.2990 0.2660

aThe first normalization L2 is superior to B2 only if combined with model Bg and
query expansion. Model By performs in general very well in combination with the
query expansion technique.

where R is the number of relevant documents for each query, denoted by Pr5,
Pri10, Pr30, Pr100, and R-Pr, respectively. We use / and avg_l as the length of
a document and the average number of tokens in a document in the collection,
respectively.

We submitted at TREC-10 four runs as shown in Table III to compare re-
trieval with or without query expansion.

Because of the size of the collection (10 Gbytes for about 1,600,000 Web
documents), and as we had very limited storage capabilities, we reduced the
size of the inverted files and performed some document and word pruning.
Specifically, we indexed with single terms only, ignoring punctuation and case.
The whole text was indexed except for HTML tags, which were removed from
documents. Pure single keyword indexing was performed, and link information
was not used. We removed 2897 documents with more than 10,000 words and
57,031 documents with less than 10 words. Also, we removed 86,146 documents
containing more than 50% of unrecognized English words. In all, we removed
118,087 documents. Words contained in less than 11 documents, that were
apparently exclusively misspelled words, were not included for the indexing.
Words containing more than 3 consecutive equal characters or longer than 20
characters were also deleted. In this way, the number of distinct words in the
collection was only 293,484. We used a very limited stop list and did not perform
word stemming at all.

Word and document pruning together with the absence of stemming has ob-
viously produced data characteristics largely different from those which would
have been obtained had we followed the same indexing process as with the pre-
vious TREC data. As a consequence, we have introduced a parameter c in order
to correct the resulting average length of the collection:

c-avg.l

tfn = tf-log, <1+ z

) (withc="17). (46)



Table IV. The Best Precision Values Are in Bold. I(n,)B2 and Its Approximation I(F)B2
Have the Best Average Precision and Precision at 5 Documents Retrieved. The Two
Limiting Forms of Bose—Einstein Model, GB2 and Bg B2, Have Best
Precision at 10. BM25 Has Best Precision for High Recall

Disks 1 and 2 of TREC 1, Topics 51-100. Relevant Documents: 16386
Models AvegPr Pr5 Pr10 Pr30 Pr100 R-Pr Rel Ret
I(F)B1 0.1989 0.6200 0.5660 0.4973 0.3886 0.2813 7128
I(F)L1 0.1933 0.5760 0.5760 0.4853 0.3814 0.2751 6993
I(F)B2 0.2103 0.6400 0.5740 0.5333 0.4038 0.2878 7396
I(F)L2 0.2068 0.6200 0.5700 0.5127 0.3978 0.2843 7300

I(n)B1 0.1911 0.6040 0.5740 0.5027 0.3798 0.2675 6928
I(n)L1 0.1968 0.5920 0.5600 0.5013 0.3908 0.2787 7034
I(n)B2 0.2003 0.6280 0.5900 0.5200 0.3964 0.2781 7123
I(n)L2 0.2077 0.6200 0.5800 0.5193 0.4030 0.2863 7267

I(n.)B1 0.1985 0.6240 0.5660 0.4987 0.3882 0.2795 7109
I(n.)L1 0.1946 0.5800 0.5420 0.4907 0.3856 0.2764 7006
I(n.)B2 0.2098 0.6440 0.5860 0.5327 0.4054 0.2865 7395
I(n,)L2 0.2073 0.6200 0.5720 0.5153 0.4004 0.2852 7307

GB1 0.1984 0.6120 0.5820 0.5093 0.3934 0.2782 7144
GL1 0.1968 0.5920 0.5560 0.4953 0.3878 0.2771 7093
GB2 0.2041 0.6320 0.5980 0.5193 0.3974 0.2816 7274
GL2 0.2047 0.6280 0.5660 0.5107 0.3952 0.2856 7232
BgB1 0.1984 0.6120 0.5820 0.5093 0.3934 0.2782 7144
BgL1 0.1968 0.5920 0.5560 0.4953 0.3878 0.2771 7093
Bg B2 0.2042 0.6320 0.5980 0.5193 0.3974 0.2816 7276
BgL2 0.2047 0.6280 0.5660 0.5107 0.3952 0.2856 7232
PB1 0.1696 0.5360 0.5020 0.4587 0.3536 0.2517 6404
PL1 0.1741 0.5360 0.5300 0.4593 0.3562 0.2572 6442
PB2 0.2003 0.6000 0.5900 0.5127 0.3970 0.2755 7094
PL2 0.2065 0.6360 0.5780 0.5087 0.4056 0.2861 7124
DB1 0.1695 0.5360 0.5000 0.4587 0.3536 0.2513 6404
DL1 0.1741 0.5360 0.5300 0.4587 0.3562 0.2572 6442
DB2 0.2003 0.6000 0.5900 0.56127 0.3970 0.2755 7094
DL2 0.2065 0.6360 0.5780 0.5087 0.4056 0.2861 7124
BM?25 0.2091 0.6240 0.5740 0.5260 0.4080 0.2882 7307
8. RESULTS

Our results show that all these models are robust with respect to different data
sets. Notwithstanding the fact that we do not have parameters, models are
shown to have a performance in most TREC experiments better than BM25
(TREC-10 included). In the following we discuss the results shown in Tables III
through XI.

1. There is no convincing evidence or argument in favor of either normal-
ization B or L. The results of TREC-7 (Table X) are confirmed on TREC-8
(Table XI) and similarly, the relative performance of the models in TREC-1



Table V. The Best Precision Values are in Bold. I(n.)L2 and Its Approximation I(F)L2
Have the Best Average Precision and Precision at 5 Documents Retrieved. The Standard
idf-tf Model with Laplace’s Law of Succession I(n)L2 Has the Best Precision at 30. BM25

Has the Best Precision at High Recall Values and the Highest Precision at 10

Disks 1 and 2 of TREC 2, Topics 101-150. Relevant Documents: 11645
Models AvegPr Pr5 Pr10 Pr30 Pr100 R-Pr Rel Ret
I(F)B1 0.2320 0.5640 0.5180 0.4800 0.4090 0.3069 6356
I(F)L1 0.2333 0.5720 0.5420 0.4853 0.4026 0.3116 6322
I(F)B2 0.2413 0.5640 0.5440 0.4960 0.4134 0.3142 6464
I(F)L2 0.2456 0.5880 0.5540 0.5087 0.4160 0.3208 6497

I(n)B1 0.2225 0.5480 0.5160 0.4780 0.4028 0.3006 6261
I(n)L1 0.2364 0.5680 0.5440 0.5047 0.4130 0.3148 6380
I(n)B2 0.2262 0.5600 0.5200 0.4907 0.4086 0.3037 6258
I(n)L2 0.2439 0.5560 0.5420 0.5147 0.4224 0.3187 6472

I(n.)B1 0.2325 0.5560 0.5260 0.4873 0.4110 0.3093 6410
I(n.)L1 0.2348 0.5720 0.5460 0.4920 0.4050 0.3137 6349
I(n.)B2 0.2406 0.5600 0.5420 0.4993 0.4154 0.3155 6483
I(n,)L2 0.2456 0.5960 0.5540 0.5087 0.4176 0.3219 6503

GB1 0.2329 0.5440 0.5280 0.4833 0.4112 0.3094 6392
GL1 0.2379 0.5800 0.5540 0.4980 0.4074 0.3178 6392
GB2 0.2336 0.5400 0.5220 0.4947 0.4106 0.3089 6320
GL2 0.2417 0.5800 0.5440 0.5120 0.4142 0.3177 6391
BgB1 0.2329 0.5440 0.5280 0.4833 0.4112 0.3094 6392
BgL1 0.2379 0.5800 0.5540 0.4980 0.4074 0.3179 6392
Bg B2 0.2336 0.5400 0.5220 0.4947 0.4106 0.3089 6321
BgL2 0.2418 0.5800 0.5440 0.5120 0.4144 0.3181 6391
PB1 0.1951 0.5280 0.5060 0.4667 0.3772 0.2780 5769
PL1 0.2089 0.5640 0.5260 0.4700 0.3836 0.2892 5924
PB2 0.2223 0.5760 0.5420 0.4940 0.4144 0.3039 6232
PL2 0.2383 0.5880 0.5540 0.5000 0.4194 0.3223 6402
DB1 0.1951 0.5280 0.5060 0.4660 0.3772 0.2776 5769
DL1 0.2089 0.5640 0.5260 0.4693 0.3836 0.2892 5924
DB2 0.2223 0.5760 0.5420 0.4940 0.4144 0.3039 6232
DL2 0.2383 0.5880 0.5540 0.5000 0.4196 0.3223 6403
BM25 0.2455 0.5720 0.5560 0.5087 0.4252 0.3230 6523

through TREC-3 (see Tables IV, V, VI) shows similar trends. In TREC-1 through
TREC-3, L2 is in general superior to B2 independently of the basic model used,
whereas in TREC-7, TREC-8, and TREC-10 (see Tables X, XI, III), B2 is in
general superior to L2 independently of the basic model used. The notable ex-
ception is the Poisson model P: L1 and L2 perform in general better than B2.

It is interesting to observe that results of TREC-6 (Table VII) (whose test bed
uses the additional collection CR containing long documents) are significantly
different from all other TREC experiments. This allows us to conjecture but
not to assert that the statistics of the collection (e.g., number of unique terms,
mean and variance of document length) may have more effect on the relative



Table VI. The Best Precision Values Are in Bold. I(n,)L2 and Its Approximation I(F)L2
Have the Best Average Precision. The Two Approximations of the Bernoulli Model, PL2
and DL2, Have the Highest Precision at 5 Documents Retrieved. The Standard idf-¢f
Model with Laplace’s Law of Succession I(n)L2 Has the Best Precision at 30. BM25
Has the Best Precision at High Recall Values and the Highest Precision at 10

Disks 1 and 2 of TREC 3, Topics 151-200. Relevant Documents: 9805
Models AvegPr Pr5 Pr10 Pr30 Pr100 R-Pr Rel Ret
I(F)B1 0.2565 0.6960 0.6520 0.5320 0.3776 0.3217 5437
I(F)L1 0.2675 0.6960 0.6560 0.5367 0.3832 0.3336 5460
I(F)B2 0.2644 0.7160 0.6620 0.5380 0.3846 0.3254 5516
I(F)L2 0.2765 0.7440 0.6660 0.5540 0.3902 0.3390 5524

I(n)B1 0.2439 0.6800 0.6400 0.5193 0.3694 0.3100 5320
I(n)L1 0.2669 0.7080 0.6740 0.5367 0.3870 0.3329 5535
1(n)B2 0.2480 0.7000 0.6540 0.5307 0.3714 0.3114 5315
I(n)L2 0.2716 0.7280 0.6720 0.5500 0.3926 0.3325 5524

I(n.)B1 0.2569 0.7000 0.6540 0.5313 0.3820 0.3223 5454
I(n.)L1 0.2682 0.6880 0.6580 0.5420 0.3826 0.3348 5483
I(n.)B2 0.2637 0.7080 0.6680 0.5400 0.3848 0.3258 5514
I(n.)L2 0.2767 0.7320 0.6720 0.5533 0.3906 0.3379 5543

GB1 0.2548 0.6880 0.6580 0.5227 0.3746 0.3182 5436
GL1 0.2681 0.6960 0.6800 0.5393 0.3842 0.3343 5495
GB2 0.2527 0.7040 0.6520 0.5260 0.3750 0.3165 5373
GL2 0.2682 0.7120 0.6680 0.5447 0.3818 0.3303 5446
BgB1 0.2548 0.6920 0.6580 0.5220 0.3746 0.3182 5436
BgL1 0.2681 0.6960 0.6780 0.5393 0.3840 0.3343 5495
Bg B2 0.2527 0.7040 0.6520 0.5260 0.3750 0.3165 5373
BgL2 0.2683 0.7120 0.6680 0.5447 0.3820 0.3303 5446
PB1 0.2107 0.5800 0.5400 0.4667 0.3330 0.2821 4990
PL1 0.2314 0.6280 0.5800 0.4873 0.3466 0.3056 5092
PB2 0.2459 0.7120 0.6660 0.5267 0.3744 0.3093 5336
PL2 0.2705 0.7520 0.6780 0.5573 0.3934 0.3274 5490
DB1 0.2107 0.5800 0.5400 0.4667 0.3330 0.2821 4990
DL1 0.2314 0.6280 0.5800 0.4873 0.3466 0.3056 5092
DB2 0.2459 0.7120 0.6660 0.5273 0.3744 0.3093 5336
DL2 0.2706 0.7520 0.6780 0.5573 0.3934 0.3274 5490
BM?25 0.2754 0.7320 0.6840 0.5587 0.3960 0.3352 5586

performance of models than the content of the submitted topics. However, we
tried a small experiment which begins to corroborate such an hypothesis. We
used the topics of TREC-6 on the collection used in TREC-7 and TREC-8 (with-
out indexing the collection CR). In order to compare the two Tables VII and
VIII we considered the means of different precision values and of the number
of retrieved documents in Table VIII and computed the variation rates with
respect to the values of Table VII and then normalized to the mean values.
Results show that the normalization B increases average precision and more
significantly the early precision, whereas L slightly increases the precision for



Table VII. The Best Precision Values Are in Bold. I(n.)L2 and Its Approximation I(F)L2
Have the Best Average Precision. The Standard ¢f-idf Model with Laplace’s Law of
Succession I(n)L2 Has the Highest Precision at 5 Documents Retrieved. I(n,)B1,
Namely, the idf and Poisson Mixture Model Together with the Uniform Distribution
Hypothesis on Term Frequency H1 and the Bernoulli Normalization B, Has the Best
Performance at Higher Recall Values

Disks 4 and 5 of TREC 6, Topics 301-350. Relevant Documents: 4611

Models AvegPr Pr5 Pr10 Pr30 Pr100 R-Pr Rel Ret
I(F)B1 0.2457 0.5160 0.4580 0.3427 0.2162 0.2885 2667
I(F)L1 0.2557 0.5400 0.4420 0.3293 0.2074 0.2979 2640
I(F)B2 0.2482 0.5240 0.4840 0.3367 0.2092 0.2863 2651
I(F)L2 0.2597 0.5400 0.4600 0.3267 0.2058 0.2962 2595
I(n)B1 0.2381 0.5280 0.4620 0.3413 0.2144 0.2794 2607
I(n)L1 0.2560 0.5520 0.4480 0.3327 0.2090 0.3017 2654
I(n)B2 0.2362 0.5440 0.4640 0.3327 0.2062 0.2730 2546
I(n)L2 0.2544 0.5760 0.4840 0.3333 0.2126 0.2887 2594
I(n,)B1 0.2479 0.5280 0.4640 0.3487 0.2182 0.2940 2689
I(n.)L1 0.2557 0.5560 0.4700 0.3427 0.2164 0.2950 2654
I(n,)B2 0.2488 0.5480 0.4860 0.3393 0.2112 0.2855 2638
I(n.)L2 0.2600 0.5480 0.4620 0.3313 0.2086 0.2931 2595
GB1 0.2458 0.5480 0.4700 0.3473 0.2124 0.2883 2653
GL1 0.2567 0.5400 0.4620 0.3367 0.2116 0.3051 2623
GB2 0.2414 0.5320 0.4720 0.3333 0.2058 0.2797 2566
GL2 0.2548 0.5400 0.4560 0.3253 0.2074 0.2879 2538
B B1 0.2452 0.5480 0.4680 0.3467 0.2120 0.2878 2652
BgL1 0.2562 0.5400 0.4620 0.3353 0.2114 0.3045 2622
B B2 0.2410 0.5320 0.4720 0.3327 0.2058 0.2791 2565
BgL2 0.2546 0.5400 0.4560 0.3253 0.2072 0.2879 2537
PB1 0.2032 0.4600 0.4140 0.3100 0.1878 0.2445 2307
PL1 0.2243 0.4760 0.4260 0.3247 0.2000 0.2642 2452
PB2 0.2183 0.5040 0.4440 0.3113 0.1870 0.2509 2373
PL2 0.2424 0.5320 0.4560 0.3300 0.2010 0.2778 2497
DB1 0.2027 0.4600 0.4120 0.3100 0.1878 0.2440 2306
DL1 0.2238 0.4760 0.4260 0.3240 0.1998 0.2636 2451
DB2 0.2178 0.5040 0.4440 0.3107 0.1868 0.2503 2372
DL2 0.2421 0.5320 0.4560 0.3300 0.2008 0.2778 2496
BM25 0.2440 0.5600 0.4700 0.3233 0.2032 0.2834 2511

high values of recall (R-precision included). Model G is the most sensitive to
the effect of the normalization process.

2. The Poisson model PL2 has a good performance for early precision early in
the ranking (precision at five documents retrieved). As for the average precision,
the performance is good in TREC-1 through TREC-3 (see Tables IV through VI),
less satisfactory in TREC-6 and TREC-7 (see Tables VII, X), and unsatisfactory
in TREC-8 (Table XI) (but in TREC-8 PL2 has the best performance for preci-
sion at five documents retrieved). Instead, the normalization B2 seems to work

poorly with P.



Table VIII. The Best Precision Values Are in Bold. Removing Long Documents from the
Collection Has Positive Effects on the Approximation G of the Bose—Einstein
Model and on the Term Frequency Normalization B

Disks 4 and 5 Without CR Collection, Topics 301-350 of TREC 6. Rel. Doc.: 4290

Models AvegPr Pr5 Pr10 Pr30 Pr100 R-Pr Rel Ret
I(n)B1 0.2550 0.5240 0.4600 0.3420 0.2130 0.2906 2535
I(n)L1 0.2689 0.5320 0.4540 0.3380 0.2112 0.3089 2568
I(n)B2 0.2581 0.5560 0.4680 0.3320 0.2036 0.2866 2470
I(n)L2 0.2705 0.5560 0.4840 0.3267 0.2088 0.3004 2510
I(n.)B1 0.2648 0.5400 0.4480 0.3393 0.2176 0.3025 2615
I(n,)L1 0.2711 0.5320 0.4500 0.3320 0.2058 0.3154 2545
I(n.)B2 0.2662 0.5680 0.4680 0.3373 0.2100 0.2991 2566
I(n,)L2 0.2751 0.5440 0.4620 0.3213 0.2044 0.3129 2493
GB1 0.2615 0.5400 0.4500 0.3407 0.2118 0.2997 2576
GL1 0.2714 0.5400 0.4540 0.3327 0.2070 0.3169 2527
GB2 0.2605 0.5560 0.4740 0.3340 0.2038 0.2893 2502
GL2 0.2707 0.5440 0.4540 0.3247 0.2028 0.3018 2444
PB1 0.2170 0.4640 0.4060 0.3073 0.1842 0.2566 2271
PL1 0.2373 0.4600 0.4220 0.3187 0.1960 0.2750 2373
PB2 0.2338 0.5160 0.4400 0.3073 0.1868 0.2653 2318
PL2 0.2569 0.5160 0.4480 0.3213 0.1972 0.2882 2417
BM25 0.2584 0.5200 0.4560 0.3167 0.1978 0.2943 2420

Table IX. Best Performing Models for Each Test Collection and for Different Precision
Measures. The Basic Probability Models I(F'), D, and Bg Are Not Considered Here, as
They Do Not Differ Significantly from Their Alternative Approximations I(n.), P, and
G, Respectively

TREC  AvegPr Pr5 Pr10 Pr30 Pr100 R-Pr Rel Ret
1 I(n,)B2 I(n,)B2 GB2 I(n,)B2 BM25 BM?25 I(n,)B2
2 I(n.)L2  I(n,)L2 BM25 I(n)L2 BM?25 BM25 BM25

3 I(n,)L2  PL2 BM25 BM25 BM25 I(n.)L2  BM?25

6 I(n.)L2  I(n)L2 I(n,)B2 I(n,)B1 I(n,)Bl1 GL1 I(n,)B1
7 In,)B2 In,)B2 I(n,)B2 1(n.)B2 GB1 I(n.)B2  I(n.)B2
8 I(n,)B2 PL2 In,)B2 In.B2 In,)B2 In.,B2 I(n,)B2

3. Model G with both normalizations B2 and L2 has a good performance in
all TREC experiments. G’s performance depends on the choice of the normal-
ization B2 (better in TREC-7 and TREC-8; see Tables X and XI) and L2 (better
in TREC-1 through TREC-3, TREC-6, and TREC-10; see Tables IV through VII
and III). Surprisingly, our experiments with TREC-10 show that By L2 is the
model which best combines with the query expansion technique. Indeed, Bg L2

with query expansion was the best performing run at TREC-10.

4. The model I(n,) works well with both normalizations B2 and L2. We
observe also that I(n,) performance depends on the choice of the normalization
B2 which is better in TREC-1, TREC-7, TREC-8, and TREC-10 (see Tables IV,
X, XI, and III) or L2 which is better in TREC-2, TREC-3, and TREC-6 (see

Tables V through VII).



Table X. The Best Precision Values Are in Bold. I(n.)L2 and Its Approximation I(¥)L2
Have the Highest Precision at Different Recall Levels

Disks 4 and 5 of TREC 7, Topics 351-400. Relevant Documents: 4674
Models AvegPr Pr5 Pr10 Pr30 Pr100 R-Pr Rel Ret
I(F)B1 0.2352 0.5720 0.4960 0.3700 0.2370 0.2785 2876
I(F)L1 0.2180 0.5320 0.4780 0.3553 0.2170 0.2586 2777
I(F)B2 0.2484 0.5800 0.5200 0.3813 0.2374 0.2869 2883
I(F)L2 0.2312 0.5400 0.5000 0.3647 0.2158 0.2711 2796

I(n)B1 0.2191 0.5240 0.4720 0.3413 0.2116 0.2625 2531
I(n)L1 0.2225 0.5520 0.4920 0.3620 0.2230 0.2659 2828
I(n)B2 0.2337 0.5520 0.4840 0.3467 0.2164 0.2700 2540
I(n)L2 0.2360 0.5400 0.4960 0.3687 0.2278 0.2763 2845

I(n.)B1 0.2352 0.5680 0.4960 0.3700 0.2382 0.2778 2861
I(n.)L1 0.2184 0.5440 0.4760 0.3553 0.2176 0.2601 2782
I(n.)B2 0.2482 0.5800 0.5100 0.3813 0.2386 0.2874 2881
I(n.)L2 0.2320 0.5400 0.4980 0.3613 0.2174 0.2717 2810

GB1 0.2364 0.5720 0.5000 0.3760 0.2390 0.2787 2859
GL1 0.2196 0.5360 0.4720 0.3527 0.2166 0.2640 2770
GB2 0.2463 0.5720 0.5100 0.3753 0.2350 0.2847 2858
GL2 0.2315 0.5520 0.4880 0.3587 0.2174 0.2713 2780
BgB1 0.2361 0.5720 0.5000 0.3760 0.2390 0.2787 2859
BgL1 0.2196 0.5360 0.4720 0.3527 0.2166 0.2640 2770
Bg B2 0.2462 0.5720 0.5100 0.3753 0.2350 0.2847 2858
BgL2 0.2315 0.5520 0.4880 0.3580 0.2174 0.2713 2780
PB1 0.1914 0.4840 0.4300 0.3407 0.2126 0.2434 2526
PL1 0.1944 0.4640 0.4480 0.3440 0.2092 0.2465 2584
PB2 0.2194 0.5200 0.5020 0.3533 0.2208 0.2624 2669
PL2 0.2212 0.5120 0.4880 0.3607 0.2194 0.2634 2743
DB1 0.1914 0.4840 0.4300 0.3407 0.2126 0.2434 2526
DL1 0.1944 0.4640 0.4480 0.3440 0.2092 0.2465 2584
DB2 0.2194 0.5200 0.5020 0.3533 0.2206 0.2624 2669
DL2 0.2212 0.5120 0.4880 0.3607 0.2194 0.2634 2743
BM?25 0.2274 0.5320 0.4880 0.3540 0.2152 0.2643 2676

5. The model I(n) works similarly to I(n.) but always performs slightly less
well than I(n,).

6. By comparing the results from the models that are approximations or
limiting forms of one theoretical basic model, we may observe that they are
indistinguishable. We do not need to distinguish between the models P and D
for the binomial basic model nor between the models G and By for the Bose—
Einstein basic model. Similarly, we may observe that I(F) and I(n.) do not
differ significantly in the experiments. Since I(F') can be considered as an ap-
proximation of I(n.), the experiments show that we may reduce the seven basic
models (P, D, G, Bg, I(n,), I(F), and I(n)) to four: P, G, I(n.), and I(n).

7. The term frequency normalization H2 of formula (42) seems to be superior
to the term frequency normalization H1 of formula (41). Indeed, given any



Table XI. The Best Precision Values Are in Bold. Similarly to TREC-7, I(n.)L2 and its
Approximation I(F)L2 Have the Highest Precision at Different Recall Levels,
Except for the Poisson Model PL2 Which has the Highest Precision at 5

Disks 4 and 5 of TREC 8, Topics 401-450. Relevant Documents: 4728
Models AvegPr Pr5 Pr10 Pr30 Pr100 R-Pr Rel Ret
I(F)B1 0.2734 0.5400 0.4820 0.3820 0.2496 0.3135 3135
I(F)L1 0.2645 0.5280 0.4860 0.3700 0.2416 0.3103 3067
I1(F)B2 0.2833 0.5520 0.5060 0.3967 0.2528 0.3280 3189
I(F)L2 0.2767 0.5240 0.4860 0.3840 0.2448 0.3179 3095

I(n)L1 0.2681 0.5120 0.5000 0.3787 0.2444 0.3164 3046
I(n)B1 0.2664 0.5240 0.4740 0.3880 0.2524 0.3221 3000
I(n)B2 0.2763 0.5520 0.4980 0.3900 0.2528 0.3235 3038
I(n)L2 0.2792 0.5360 0.5040 0.3927 0.2492 0.3233 3073

I(n.)B1 0.2735 0.5320 0.4960 0.3807 0.2504 0.3286 3142
I(n.)L1 0.2664 0.5240 0.4840 0.3707 0.2420 0.3114 3061
I(n.)B2 0.2841 0.5520 0.5080  0.3967 0.2532  0.3295 3178
I(n.)L2 0.2769 0.5200 0.4940 0.3887 0.2452 0.3171 3067

GB1 0.2757 0.5360 0.4800 0.3880 0.2494 0.3292 3142
GL1 0.2667 0.5120 0.4840 0.3727 0.2416 0.3146 3031
GB2 0.2826 0.5440 0.5040 0.3960 0.2514 0.3290 3153
GL2 0.2757 0.5280 0.4860 0.3887 0.2438 0.3183 3032
BgB1 0.2757 0.5400 0.4800 0.3880 0.2494 0.3292 3142

BgL1 0.2669 0.5120 0.4860 0.3727 0.2416 0.3146 3031
Bg B2 0.2827 0.5440 0.5040 0.3960 0.2514 0.3290 3153
BgL2 0.2758 0.5280 0.4880 0.3887 0.2438 0.3183 3032

PB1 0.2379 0.5240 0.4800 0.3520 0.2246 0.2905 2838
PL1 0.2350 0.5120 0.4700 0.3553 0.2232 0.2898 2829
PB2 0.2559 0.5560 0.4980 0.3847 0.2360 0.3060 2948
PL2 0.2562 0.5680 0.4880 0.3780 0.2374 0.3044 2923
DB1 0.2379 0.5240 0.4800 0.3520 0.2246 0.2905 2839
DL1 0.2350 0.5120 0.4700 0.3553 0.2232 0.2898 2829
DB2 0.2559 0.5560 0.4980 0.3840 0.2358 0.3060 2948
DL2 0.2562 0.5680 0.4880 0.3780 0.2374 0.3044 2923

BM?25 0.2716 0.5400 0.4980 0.3827 0.2464 0.3181 3083

model X € {P, G, I(n), I(n.)} and any normalization Y € {L, B}, the model XY2
performs better than its analogous XY 1. There are some exceptions, especially
in the experiment of TREC—-6 for high values of recall (Pr30, Pr100, R-Pr, and
for the relevant number retrieved) as shown by Tables IX and VII.

9. CONCLUSIONS

We create a framework for generating nonparametric information retrieval
models. We construct a weighting formula that is a combination of three differ-
ent probabilities. The first and basic probability models are obtained from urn
models with random drawings. We compute a second probability, the probability



of relevance of a term in its “elite set.” This provides a normalization factor on
the weighting formula. Finally, a probability related to the length of a document
is constructed to resize the cardinality of the term frequency in the document.
Two initial hypotheses about the distribution of document length are tested.

We use the basic probability models to derive for IR, a Bernoulli model, the
tf-idf model I(n), the tf-itf model I(F'), and the model I(n.) which is a mixture
of the Poisson and the idf models. Two workable approximations of Bernoulli’s
model are introduced: the Poisson model P and the information-theoretic ap-
proximation model D. These two approximation models perform equally under
all normalizations (L1, B1, L2, and B2).

The other basic model is Bose—Einstein. Two approximations of the Bose—
Einstein model are also introduced: the geometric model G and Bg. These two
approximation models perform equally under all normalizations (L1, B1, L2,
and B2).

All models are compared to the BM25 formula, which is frequently used
by many participants of TREC. I(n.)B2 and I(n.)L2 are shown to be superior
at many recall levels and in average precision. Experiments show that the
model I(n,) and I(F') perform similarly. I(n,) is shown to perform better than
the standard idf model I(n) under all normalizations. We conclude that the
document frequency can be replaced by the term frequency in the collection in
general in any weighting formula.

B2, L2 are shown to be universal normalization factors, in the sense that the
normalization works independently of models and independently of variation
in document length. L2 is less sensitive to the variation of document length. On
the other hand, when the variation is moderate B2 seems to perform better. The
normalization factor B2, containing both the document frequency and the term
frequency, derives formally from the Bernoulli process and from the standard
axioms of utility theory.

Our models are formally derived and they do not contain parameters that
must be learned from the actual data.

Future work will investigate the relative strengths and weaknesses of each
model with query expansion. Moreover, further experiments should be per-
formed to assess the effect on performance of word stemming, document prun-
ing, and word pruning and to include these factors as explicit variables within
the framework.
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