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Control genes, commonly defined as genes that are ubiquitously expressed at stable levels in different biological
contexts, have been used to standardize quantitative expression studies for more than 25 yr. We analyzed a
group of large mammalian microarray datasets including the NCI60 cancer cell line panel, a leukemia tumor
panel, and a phorbol ester induction time course as well as human and mouse tissue panels. Twelve
housekeeping genes commonly used as controls in classical expression studies (including GAPD, ACTB, B2M, TUBA,
G6PD, LDHA, and HPRT) show considerable variability of expression both within and across microarray datasets.
Although we can identify genes with lower variability within individual datasets by heuristic filtering, such genes
invariably show different expression levels when compared across other microarray datasets. We confirm these
results with an analysis of variance in a controlled mouse dataset, showing the extent of variability in gene
expression across tissues. The results show the problems inherent in the classical use of control genes in
estimating gene expression levels in different mammalian cell contexts, and highlight the importance of
controlled study design in the construction of microarray experiments.

[Supplemental material available online at http://genome.mcgill.ca/∼pdlee/control_genes and and http://www.
genome.org.]

Although DNA microarrays open the door to large-scale ex-
pression experiments (Lander 1999; Young 2000), a major
challenge facing these studies is the design of experimental
controls that will permit comparison of quantitative expres-
sion profiles obtained from diverse biological contexts. In tra-
ditional assays, standardization of mRNA levels has been
achieved by comparison to the level of a control gene, com-
monly defined as one that is ubiquitously expressed at stable
levels across many biological contexts. Methods of standard-
ization based on control genes have furthermore been used in
microarray and genomic studies (Khan et al. 1998; Beger et al.
2001). We reexamine the traditional concepts of controls in
expression experiments in the aim of determining appropri-
ate measures for the control of microarray experiments.

In an attempt to identify genes that are expressed at con-
stant levels across a wide range of biological contexts, we ana-
lyzed four published datasets that were prepared following
similar methods based on a single microarray technology (Af-
fymetrix oligonucleotide microarrays). The NCI60 dataset
(Butte et al. 2000) consists of microarray measurements of
gene expression in 60 cancer cell lines originating from nine
tissue types. A dataset obtained from patients with hemato-
logic malignancies (Golub et al. 1999) includes expression
profiles for multiple homogeneous acute lymphoblastic leu-
kemia (ALL) and acute myeloid leukemia (AML) tumor
samples. Temporal and developmental fluctuations in control
gene expression were assessed using a dataset obtained from
four cell lines following treatment with phorbol 12-myristate

13-acetate (TPA) (Tamayo et al. 1999). Finally, the Huge Index
dataset provides in vivo gene expression data for six human
tissues (Warrington et al. 2000).

RESULTS AND DISCUSSION
We initially studied the expression levels of 12 genes com-
monly used to normalize RNA levels measured by Northern
blots or RT-PCR. The expression levels for many of these genes
fluctuates dramatically both within and across datasets (Fig.
1). Within datasets, the maximum fold change (MFC, the ra-
tio of the maximum and minimum values observed within a
dataset) ranges from 1.3 for ACTB within the TPA induction
dataset to >300 for VIM in the NCI60 dataset (Table 1). All
commonly used control genes have an MFC of >2.0 in at least
one dataset. In addition, the observed coefficients of variation
(CVs) are frequently >0.5, reflecting the highly variable levels
of expression of these genes within datasets.

We next used a simple heuristic filter to identify sets of
genes showing lower variability. After excluding genes with
signal intensities below threshold and with an MFC <2, genes
were sorted and ranked according to their CVs. We use this
measure of variability because it compensates for the apparent
dependence of dispersion on signal (Novak et al. 2002). Simi-
lar results were obtained using alternate methods of estimat-
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Figure 1 Gene expression profiles of classic control genes examined
across multiple datasets: NCI60 cell line panel, ALL/AML tumor panel,
Huge Index, and TPA cell-line induction. Gene expression levels uni-
formly rescaled are plotted on the Y-axis; samples (ordered according
to their arrangement given in each respective study) are plotted on
the X-axis. All datasets with the exception of the Huge Index were
rescaled on the basis of mean intensity per scan.
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Figure 1 See legened on facing page.
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ing dispersion (data not shown). Of the housekeeping genes
analyzed, only GAPD and ACTB rank among the 100 genes
with the lowest variability; however, no traditional control
genes display consistently low variability across the four
datasets. Nine genes identified by filtering have CVs <0.7
across all four datasets (Table 2). These are not genes that have
commonly been used as controls, but include several ribo-
somal protein (RP) genes (including RPS27A, RPL19, RPL11,
RPS29, and RPS3). Even this set of genes shows differing
amounts of variability across datasets (Supplementary Fig. 1,
available online at http://genome.mcgill.ca/ ∼ pdlee/
control_genes and http://www.genome.org). For example, al-
though RPS27A has the lowest CV in the NCI60 and leukemia
datasets, its MFC ranges from 2.2 in the NCI60 dataset to 5.6
in the TPA induction dataset.

Our failure to identify control genes in the four expres-
sion datasets studied might occur if the microarray measure-
ments were associated with high levels of technical variabil-
ity. To assess whether the observed variation could be due to
technical variability rather than biological context, we exam-
ined expression levels in triplicate for RNA samples obtained
from liver, heart, lung, and brain of three male C57BL/6 mice
reared under identical conditions using MU11KA and B arrays
(Affymetrix) containing probe-sets for 11,000 mouse genes

and ESTs. The expression levels of traditional control genes
show greater variability among RNA samples obtained from
different tissues than among RNA obtained from the same
tissue harvested from different mice, or among identical RNA
samples hybridized to replicate microarrays (Fig. 2). To deter-
mine whether other genes displayed similar behavior, we per-
formed analysis of variance (ANOVA) on a per-gene basis to
determine the amount of observed variability that could be
attributed to differences among replicates, mice, or tissues.
Technical replicates using identical RNA samples hybridized
to three distinct arrays show the least amount of variability:
only 3% of genes display significant differences across repli-
cates (P < 0.05). Among biological replicates using RNA from
three individual mice, 5%–10% of genes show significant dif-
ferences (P < 0.05) after adjusting for variation between tis-
sues, and between technical replicates. In contrast, 81%–99%
of genes show significant variability (P < 0.05) among differ-
ent tissues after adjusting for the variability between technical
and biological replicates. This trend remains consistent re-
gardless of the filtering criteria or procedure used to select
genes (Table 3, Supplementary Fig. 3, available online at
http://genome.mcgill.ca/∼ pdlee/control_genes and http://
www.genome.org). ANOVA performed on the TPA induction
and NCI60 datasets similarly reveals greater variability in gene

Table 1. Traditional control genes across four datasets

Gene Description

NC160 AML/ALL Huge index TPA

MFC CV MFC CV MFC CV MFC CV

ACTB Actin, beta 7.8 0.39 3.5 0.32 1.3 0.11 4.6 0.35
ALDOA Aldolase A 8.2 0.37 5.7 0.48 2.9 0.37 2.9 0.31
G6PD Glucose-6-phosphate dehydrogenase 7.7 0.90 5.0 0.45 2 0.28 4.6 0.43
GAPD Glyceraldehyde-3-phosphate dehydrogenase 5.3 0.31 12.3 0.33 2 0.19 1.9 0.17
B2M Beta-2-microglobulin 25.6 0.58 14.0 0.42 3.4 0.27 4.6 0.49
PFKP Phosphofructokinase, platelet 12.4 0.68 >12 1.66 >96 0.08 14.0 0.56
PGK1 Phosphoglycerate kinase 1 6.5 0.44 6.8 0.36 N/A N/A 4.9 0.41
PGAM1 Phosphoglycerate mutase 1 (brain) 5.2 0.40 12.4 0.48 1.6 0.19 3.6 0.47
TUBA1 Tubulin, alpha 1 (testis specific) >50 1.09 53.7 0.78 3.1 0.84 6.7 0.46
HPRT1 Hypoxanthine phosphoribosyltransferase 1

(Lesch-Nyhan syndrome)
10.7 0.45 43.9 0.53 1.6 0.42 5.6 0.49

VIM Vimentin >300 0.68 12.7 0.42 3.8 0.41 28.9 0.94
LDHA Lactate dehydrogenase A 91.0 0.38 9.2 0.40 5.5 0.60 4.1 0.34

CV, coefficient of variation; MFC, maximum fold change; AML/ALL, acute myeloid leukemia/acute lymphoblastic leukemia panels; TPA, phorbol
12-myristate 13-acetate induction.

Table 2. Genes identified by filtering with CV less than 0.7 across all four datasets

Gene Description

NC160 AML/ALL Huge index TPA

MFC CV MFC CV MFC CV MFC CV

RPS27A Ribosomal protein S27a 2.2 0.17 3.2 0.19 3.1 0.37 5.6 0.61
RPL19 Ribosomal protein L19 3.2 0.24 2.6 0.19 2 0.21 2.6 0.29
HSPCA Heat shock 90kD protein 1, alpha 9.8 0.25 7.7 0.44 7.3 0.47 4.8 0.32
RPL11 Ribosomal protein L11 3.4 0.25 3.8 0.2 2.8 0.3 11.8 0.54
RPS29 Ribosomal protein S29 3.1 0.26 4.2 0.25 1.6 0.16 3.3 0.33
NONO Non-POU-domain-containing, octamer-binding 4 0.28 3.7 0.25 1.4 0.1 4.3 0.33
AAMP Angio-associated migratory cell protein 4 0.31 8.4 0.34 2.2 0.31 4.2 0.43
RPS3 Ribosomal protein S3 4.2 0.32 3.5 0.24 3.9 0.35 2.7 0.26
ARHGDIA Rho GDP dissociation inhibitor (GDI) alpha 7.6 0.38 7 0.29 1.4 0.15 3.8 0.31

CV, coefficient of variation; MFC, maximum fold change; AML/ALL, acute myeloid leukemia/acute lymphoblastic leukemia panels; TPA, phorbol
12-myristate 13-acetate induction.
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Figure 2 Replicate samples from four mouse tissues. RNA was extracted from the liver, heart, lung, and brain of three adult male C57BL/6 mice.
To assess technical variability, we divided the RNA from each tissue of one mouse and hybridized it in replicate to three separate arrays. To assess
biological variability, we hybridized RNA from identical tissues of three individual mice to three separate arrays. Points are arranged in the following
order for each tissue: mouse1-replicate1, mouse1-replicate2, mouse1-replicate3, mouse2-replicate1, mouse3-replicate1. Multiple probe sets,
present for Glud, Pgk1, Pgam1, and Ldh1, show consistency in measurements of expression levels across tissues. Other probe sets for Tuba1, Vim,
and B2m show a higher degree of variability, indicating issues inherent in probe design. Samples were normalized by mean intensity per scan.
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expression across different tissues than across different time
points, cell lines, or datasets (Supplementary Fig. 2 and
Supplementary Tables 1, 2, and 3, available online at http://
genome.mcgill.ca/ ∼ pdlee/control_genes and http://
www.genome.org). Performing our analysis using multiple
normalization methods did not impact our findings (Supple-
mentary Fig. 2 and Supplementary Table 4, available online at
http://genome.mcgill.ca/∼ pdlee/control_genes and http://
www.genome.org). These results indicate that the variability
in gene expression detected in this experiment is not due to
technical or intermouse variability, but rather due to the in-
herent differences in individual RNA levels present among
different tissue types.

It is possible that our failure to identify control genes
may result from data-filtering techniques that excluded RNA
species expressed at low copy number across a wide range of
tissues, or genes that are simply not present on the microar-
rays used in these studies. These issues may be addressed by
the future development of more sensitive complete genome
arrays. Despite this, our results clearly show that the expres-
sion levels of genes that have been commonly used as con-
trols in classical experiments vary significantly among differ-
ent cellular and experimental contexts. Furthermore, we fail
to identify mammalian genes that qualify as “control genes”
on the basis of a definition of ubiquitous and stable expres-
sion. Although some genes do appear quite stable in expres-
sion level within any one experiment, there do not appear to
be any genes expressed at stable levels across all four datasets
studied in this paper. Hence, the traditional use of individual
genes as normalization controls in experiments that compare
diverse biological tissues would lead to substantial errors in
the derived estimates of fold change in gene expression levels.
From inspection of the data, it is apparent that some tran-
scripts may serve as control genes for studies performed in a
single tissue context; however, these conclusions are limited
by a study design that does not address the effects of physi-
ologic regulation on the expression of these genes.

The unproven existence of control genes seems to have
achieved acceptance in part because of its conceptual simplic-
ity and practical limitations of the past. Recent studies have
expressed concern that individual genes or groups of genes
may serve as inadequate internal standards for measuring
RNA expression levels (Souaze et al. 1996; Savonet et al. 1997;

Ivell 1998; Serazin-Leroy et al. 1998; Oliveira et al. 1999;
Thellin et al. 1999; Suzuki et al. 2000; Wu and Rees 2000 );
Measures for data standardization and quality control in mi-
croarray databases are currently being reviewed by the MGED
working group on Microarray Data Annotations (www.
mged.org). The establishment of common frames of reference
requires a reexamination of assumptions inherent in the de-
sign of biological experiments. From these findings, we pro-
pose that all genes are differentially expressed in at least one
biological context and that the expression of every gene is
therefore context dependent. Given the absence of ubiquitous
control genes, variation in microarray expression studies
must instead be interpreted using statistical characteristics of
the data without preconceptions arising from the traditional
notions of internal control genes.

METHODS

Public Microarray Datasets
Microarray datasets for the NCI60 cancer cell line panel, the
ALL/AML tumors, and the TPA treatment in HL60, U937,
NB4, and Jurkat cell lines are available at http://www.
genome.wi.mit.edu/MPR/datasets. The human tissue expres-
sion profiles contained in the Huge Index dataset were ob-
tained at http://www.hugeindex.org/.

Mouse Microarray Dataset
Mouse tissues were obtained from three adult male C57BL/6
littermates. Mice were killed by cervical dislocation and the
tissues rapidly dissected and homogenized in Trizol reagent
(Life Technologies). Total cellular RNA was prepared accord-
ing to the manufacturer’s instructions and analyzed by non-
denaturing (1% agarose-1 � TBE) gel electrophoresis. Probes
for the microarray studies were prepared by priming 20 µg of
total RNA with 100 pmole of T7– (T) 24 primer (Genosys). The
RNA-primer mixture was denatured for 10 min at 70°C, and
then chilled on ice. First-strand cDNA was synthesized using
Superscript II reverse transcriptase (Life Technologies). Sec-
ond-strand synthesis was performed using RNAse H, DNA
polymerase I, and Escherichia coli DNA ligase (Life Technolo-
gies). Biotinylated riboprobes were prepared from the entire
cDNA reaction using the ENZO Bioarray High Yield RNA Tran-
script Labeling Kit (ENZO Diagnostics). The average probe
length was reduced by incubating the probe in 1X Fragmen-
tation Buffer for 35 min at 95°C. Hybridization was performed
at 45°C for 16–20 h using 15 µg of biotinylated probe. Fol-
lowing hybridization, the arrays were subjected to 10 low-
stringency washes and 4 high-stringency washes using a
GeneChip Fluidics Station 400 (Affymetrix). Bound probe was
detected by incubating arrays with SAPE (streptavidin phyco-
erthryin, Molecular Probes) and scanning the chips using a
GeneArray Scanner (Agilent). Scanned images were analyzed
using the GeneChip Analysis Suite 3.3 (Affymetrix). Full de-
tails of the microarray methods have been described previ-
ously (Novak et al. 2002).

Data Analysis
Traditional control genes analyzed in human datasets in-
cluded: �-actin (ACTB), �-2-microglobulin (B2M), phospho-
fructokinase (PFKP), phosphoglycerate kinase (PGK1), aldol-
ase A (ALDOA), phosphoglycerate mutase (PGAM), �-tubulin
(TUBA), glyceraldehyde-3 phosphate dehydrogenase (GAPD),
glucose-6 phosphate dehydrogenase (G6PD), lactate dehydro-
genase A (LDHA), hypoxanthine phosphoribosyltransferase
(HPRT), and vimentin (VIM). Traditional control genes ana-
lyzed in mouse datasets included asparagine synthetase
(Asns), phosphofructokinase (Pfkp), lactate dehydrogenase A
(Ldh1), vimentin (Vim), phosphoglycerate kinase (Pgk1), ubiq-

Table 3. Summary of ANOVA conducted on mouse dataset

Threshold

Number of genes
with expression
> threshold

Proportion of genes with
P-value < 0.05 when

following variables were
tested individually*

Replicate
(n = 3)

Mouse
(n = 3)

Tissue
(n = 4)

>0 6016 0.035 0.066 0.814
>20 963 0.031 0.086 0.978
>50 773 0.031 0.082 0.978
>100 440 0.030 0.098 0.980
>200 220 0.023 0.055 0.990

*General linear model tested on a per-gene basis (expression =
replicate + mouse + tissue). P values considered were calculated
for each variable individually having adjusted for the variation due
to the remaining variables (added-last test).
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uitin (Ubc), glucose-6 phosphate dehydrogenase (G6pd), phos-
phoglycerate mutase (Pgam1), �-2-microglobulin (B2m), glu-
tamate dehydrogenase (Glud), hypoxanthine phosphoribosyl-
transferase (Hprt), and �-tubulin (Tuba1). For accession
numbers, see Supplementary Table 5 (available online at
http://genome.mcgill.ca/∼ pdlee/control_genes and http://
www.genome.org).

Regression scaling was performed only on datapoints as-
signed a ‘P’ absolute call by the Affymetrix GeneChip soft-
ware: the absolute call estimates the hybridization quality for
an individual probe set on the basis of measures of back-
ground and signal dispersion. The regression scaling algo-
rithm has been described previously (Novak et al. 2002): it
uses normalization to the regression coefficient of the first
sample in each dataset. We rescaled datasets on the basis of
mean overall intensity per scan. Mean intensity was calcu-
lated on the genes with a minimum average difference of 50
and an absolute call of ‘P’ by the GeneChip algorithm.

Data manipulation and analysis was accomplished using
a variety of Perl and VBScripts in Microsoft Excel. Graphs were
created using R (http://www.r-project.org). ANOVA was per-
formed using SAS (SAS Institute Inc), testing the amount of
observed variability in expression of each gene resulting from
replicate (repeat hybridizations of the same RNA sample),
mouse (samples from three individual mice), or tissue
(samples from four different tissues); a general linear model
was used on a per-gene basis (PROC GLM). P values consid-
ered were calculated for each variable individually, having
adjusted for the variation resulting from remaining variables
(added-last test / SAS Type III F-Test). We conducted ANOVA
separately on subsets of the data meeting initial filtering cri-
teria of minimum expression levels of greater than 20, 50,
100, or 200 units across all 12 experiments. ANOVA results
must be interpreted with caution because the small sample
size makes assessments of normality and homoscedasticity
difficult. P values considered were for the added-last F-test
(testing each variable individually, having adjusted for all
other variables). Datasets, supplementary figures, tables, and
analytical scripts are available at http://genome.mcgill.ca/
∼pdlee/control_genes.
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