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Promoters are important regulatory elements that contain the necessary sequence features for cells to initiate tran-
scription. To functionally characterize a large set of human promoters, we measured the transcriptional activities of 4575
putative promoters across eight cell lines using transient transfection reporter assays. In parallel, we measured gene
expression in the same cell lines and observed a significant correlation between promoter activity and endogenous gene
expression (r = 0.43). As transient transfection assays directly measure the promoting effect of a defined fragment of DNA
sequence, decoupled from epigenetic, chromatin, or long-range regulatory effects, we sought to predict whether a pro-
moter was active using sequence features alone. CG dinucleotide content was highly predictive of ubiquitous promoter
activity, necessitating the separation of promoters into two groups: high CG promoters, mostly ubiquitously active, and
low CG promoters, mostly cell line–specific. Computational models trained on the binding potential of transcriptional
factor (TF) binding motifs could predict promoter activities in both high and low CG groups: average area under the
receiver operating characteristic curve (AUC) of the models was 91% and exceeded the AUC of CG content by an average
of 23%. Known relationships, for example, between HNF4A and hepatocytes, were recapitulated in the corresponding cell
lines, in this case the liver-derived cell line HepG2. Half of the associations between tissue-specific TFs and cell line–specific
promoters were new. Our study underscores the importance of collecting functional information from complementary
assays and conditions to understand biology in a systematic framework.

[Supplemental material is available online at http://www.genome.org. The gene expression data from this study have been
submitted to the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession no. GSE21045.]

Regulation of transcription is critical in every biological process,

from embryonic development to stress response (Kadonaga 1998).

Sequence elements and nuclear proteins, including core promoter

elements, enhancers, repressors, chromatin factors, and epigenetic

modifications, interact to regulate the expression of genes. These

interactions have been revealed through a large variety of meth-

odologies, including global measurements of transcripts in differ-

ent cell types (Carninci et al. 2005; Harrow et al. 2006; Wakaguri

et al. 2007), studies of proteins binding to DNA (The ENCODE

Project Consortium 2007; Johnson et al. 2007), measurements of

enhancers in reporter genes in mice (Pennacchio et al. 2006),

measurements of DNA methylation (Weber et al. 2007; Brunner

et al. 2009), and others (Trinklein et al. 2003; Cooper et al. 2006;

The ENCODE Project Consortium 2007). Of the sequence ele-

ments that affect gene expression, transcriptional promoters have

been the most widely studied in both prokaryotes and eukaryotes

(Myers et al. 1986). Although the lengths and sequence contents

of extended promoters vary, core sequence elements are usually

contained in a short sequence, from ;100 bp upstream to ;100 bp

downstream of the transcription start site (TSS).

Promoters contain short sequence features, or motifs, to which

transcription factors (TFs) bind and regulate transcription (Myers

et al. 1986; Johnson et al. 2005; Cooper et al. 2006; Brown et al.

2007; The ENCODE Project Consortium 2007; Johnson et al. 2007;

Lin et al. 2007). Large-scale efforts to identify and characterize hu-

man promoters are typically transcript-based, including aligning

full-length cDNA sequences to the genome (Imanishi et al. 2004),

mapping 59 ends by CAGE tags (Shiraki et al. 2003), and performing

gene expression microarray analyses (Su et al. 2002, 2004). These

methods measure transcript abundance in steady state and can be

performed in a highly parallel fashion, but do not determine the

activity of the cis-acting motifs directly.

A direct method for characterizing functional promoter se-

quences is the transient transfection promoter activity assay. In

this method (Myers et al. 1986; Trinklein et al. 2003; Cooper et al.

2006), a putative promoter sequence is fused in a plasmid con-

struct with a reporter gene, such as luciferase, and the recombinant

plasmid is transfected into mammalian tissue culture cells. This

method is advantageous in that it measures the function of

a specified DNA fragment and thus directly connects sequence

features with transcription output, albeit only the cloned portion

of the promoter is assayed. This method removes the promoter

from its native genomic context, such that long-range regulatory

elements are mostly missing, and although plasmids develop some

chromatin structure when transfected, the chromatin structures of

promoters on such constructs are clearly not in the same form or

context, nor at the same amount, as the chromatin structures of

endogenous genes and promoters in the chromosome. Nevertheless,
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transient transfection reporter assays often yield tissue-specific

information (Cooper et al. 2006), and the promoter activity as-

say remains a useful method for promoter identification and

characterization.

Here, our goal was to build a comprehensive model of the

sequence features that drive human promoter function and tissue

specificity by combining extensive experimental and computa-

tional analyses. First, we used the transient transfection reporter

assay to measure the activities of 4575 putative human promoters,

comprising ;5% of the promoters in the genome, in eight im-

mortalized human tissue culture cell lines. In parallel, we measured

endogenous transcripts from about 20,000 genes from each of

these cell lines. We analyzed the sequence features that drive

cell line–specific gene expression by examining the effects of all

known TF motifs. Because we are interested in TFs that contribute

to promoter activity, our modeling strategy is formulated to iden-

tify motifs that best correlate with promoter activity or the ex-

pression of the downstream gene. For many of the cell lines tested,

we found motifs associated with expression specific to only that

cell line. Half of the motifs that we identified in our computational

screen are recognized by TFs known to function in the corre-

sponding cell type. Thus, our approach can identify key compo-

nents of transcriptional regulatory networks.

Results

Promoter activity and gene expression data

To predict putative TSSs in silico, we first used published data that

describe human transcribed sequences, such as full-length cDNAs

and 59-end cDNA sequence tags (Carninci et al. 2005; Ruan et al.

2007; Wakaguri et al. 2007), which specify TSSs when aligned

to the genome. We aligned a database of more than 250,000

human cDNAs and predicted about 37,000 gene models, with

about 22,000 gene models represented by two or more cDNAs. We

then used the 59 ends defined by these data sets to formulate

a confidence score for the TSS of each gene model. Generally, lower

scores produced fewer positives, but these potentially contain

novel uncharacterized promoter types. We selected 4575 of

these TSS predictions (2083 had low

TSS scores defined as below 20) and built

plasmids containing the promoters driv-

ing a luciferase reporter gene for transient

transfection experiments. These plasmids

contained, on average, 1000 bp of DNA

spanning the putative promoter, from

;900 bp upstream of the TSS to ;100 bp

downstream of the TSS, but lacking the

translation start site, so that the luciferase

protein would be translated from its own

AUG. These plasmids contain nearly all of

the putative promoters on human chro-

mosome 7, as well as 2266 promoters

from various genes across the genome.

We then performed transient transfection

experiments in triplicate for each pro-

moter construct in eight immortalized

human cell lines (HT1080, G402, T98G,

HCT116, HeLa, HepG2, AGS, and U87MG).

The averaged promoter activities are in-

cluded in Supplemental Data S2. Cell

lines were chosen to represent a variety of

parent tissue types, from hepatocyte (HepG2) to neuroblastoma

(T98G). For detailed descriptions of each cell line, see Supple-

mental Table T1.

To complement the transient transfection data, we measured

the expression of 20,589 genes in each of the eight cell lines

(Supplemental Data S2). This provides a molecular phenotype and

measures the steady-state transcript levels in each of the cell lines

under endogenous conditions. The distributions of both promoter

activity and endogenous gene expression scores were bimodal, and

we defined thresholds for each assay at the trough of their re-

spective distributions indicated by vertical dashed lines in Figure 1.

The threshold for active promoters was set at log2(promoter ac-

tivity score) = 0 (Fig. 1A), corresponding to a promoter activity

score of 1, the point at which the luciferase signal exceeds the

signal of negative controls in the same experiment. Likewise, the

threshold for endogenous gene expression was set at log2(gene

expression score) = 7 (Fig. 1B), roughly corresponding to the

maximum intensities of the internal negative probes built into

the expression microarrays (i.e., probes that should not hybridize

to any sequence in the human genome).

The TSS confidence score was a strong predictor of the average

promoter activity in the eight cell lines (Pearson correlation co-

efficient r = 0.51, P-value < 2.2 3 10�16). Because low scoring pu-

tative promoters have scarce cDNA evidence, we termed the 2083

promoters with scores of less than 20 as putatively novel. Transient

transfection assays revealed that 1082 (67%) of these novel pro-

moters were active in at least one cell line, contributing ;30%

more promoters to the current repertoire of human transcriptional

promoters (3067) in chromosome 7 and a few other regions from

which we isolated these fragments (Fig. 2).

DNA sequence and epigenetic contributions to endogenous
gene expression

To quantify the relationship between promoter activity and endog-

enous gene expression, we identified all genes that lacked a known

alternative TSS in RefSeq annotation and could be unambiguously

matched with the promoters in our data set (Supplemental Fig.

F1). The Pearson correlation coefficient (r) between the averaged

Figure 1. Distribution of transient transfection promoter activities and endogenous gene expression
scores in eight cell lines. (A) The threshold for active promoters in the transfection assay is set at
log2(promoter activity score) = 0, corresponding to the point where promoter activity scores exceed the
scores of negative control sequences. (B) The threshold for expressed genes is set at log2(gene expres-
sion score) = 7, corresponding to the trough of the bimodal distributions displayed in all eight cell lines.

Genome Research 891
www.genome.org

Sequence features in human promoters

 Cold Spring Harbor Laboratory Press on January 9, 2025 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


promoter activity and averaged endogenous expression levels

across cell lines for these 1188 promoter–gene pairs is 0.43 (Sup-

plemental Fig. F2; Supplemental Table T2), compared with 6.5 3

10�4 for randomly matched promoters and genes (P-value < 2.2 3

10�16). This result is in agreement with our previous study with

a smaller number of promoters, where the correlation between

promoter activity and endogenous RNA transcript levels (as de-

termined by quantitative RT-PCR) was 0.53 (Cooper et al. 2006).

To investigate the possibility that DNA methylation might

partially explain the discrepancy between promoter activity and

endogenous expression, we integrated Methyl-seq data in HCT116

cells (Brunner et al. 2009) with the data on matched promoters and

genes. The Methyl-seq technique combines DNA digestion by

a methyl-sensitive enzyme with next-generation DNA sequencing

to identify regions that lack DNA methylation throughout the

human genome. Overall, the Pearson correlation coefficient be-

tween endogenous expression and promoter activity in HCT116

cells is 0.32 (P-value < 2.2 3 10�16), and the correlation between

endogenous expression and lack of methylation in the promoter

region is 0.38 (P-value < 2.2 3 10�16). The partial correlation co-

efficient between the lack of DNA methylation and endogenous

expression, given promoter activity as measured by transfection

experiments, was 0.23, indicating that lack of DNA methylation

may provide additional information beyond promoter activity

toward predicting endogenous gene expression.

Sequence features and the effect of CG dinucleotides

As the transient transfection assay directly measures the ability of

specific DNA segments to drive transcription, it is especially suit-

able for identifying active TF motifs and specific sequence features

that are encoded in the assayed promoters. We found that CG

content alone is highly predictive of ubiquitous promoter activity,

with r = 0.75 and area under the receiver operating characteristic

(ROC) curve (AUC = 94%), surpassing the contribution of any

single TF motif. Note that an AUC of 100% represents the ideal

discriminator, and an AUC of 50% represents a random discrimi-

nator. This statistic characterizes the trade-off between the sensi-

tivity and specificity of a discriminant model.

Normalized CG content (defined in Methods) of the 4575

promoters displayed a bimodal distribution (Fig. 3), similar to the

distribution of a previously reported genome-wide set of human

promoters (Saxonov et al. 2006). We separated the promoters into

high CG (HCG) and low CG (LCG) classes at the trough of the

distribution of normalized CG content (Fig. 3) and found that

grouping promoters into two classes substantially decreased the

predictive ability of CG content on ubiquitous promoter activity.

For HCG promoters, r = 0.22 and AUC = 60.8%; for LCG promoters,

r = 0.5 and AUC = 77.5%. In all subsequent analyses, we considered

the performance of CG content as the baseline against which our

motif predictions are compared.

HCG promoters tend to be ubiquitously active, whereas LCG

promoters tend to be cell line–specific and contain a variant of the

TATA box motif (consensus: TATAAA). Promoters that were active

in the transfection assay in all eight cell lines were dominated by

HCG promoters (91%; 719/789), whereas only 9% (70/789) of the

LCG promoters were active in all cell lines. For those promoters

that were active in only one cell line, only 21.7% (105/483) were

HCG and 78.3% (378/483) were LCG. Similar results were observed

among matched promoters and genes. These findings are consis-

tent with previous reports associating LCG promoters with tissue-

specific genes and HCG promoters with housekeeping genes that

are constitutively active across all tissues (Saxonov et al. 2006).

Many novel promoters were cell line–specific and served as

important training examples for predicting motif modules that

regulate cell line–specific promoter activity. Among the novel

promoters confirmed by the promoter activity data, 66.8% (723/

1082) had low CG dinucleotide content, compared with only

24.7% (491/1985) in known promoters (Supplemental Fig. F3).

Novel promoters tended to be active in fewer cell lines, with 26.7%

(289/1082) being specifically active in only one cell line. Only 11%

(114/1082) of novel promoters were active in all eight cell lines.

This trend was most pronounced among novel LCG promoters

(P-value < 2.2 3 10�16) and also significant among novel HCG

promoters (P-value = 1.85 3 10�5).

Figure 2. Binary encoding of promoter activity patterns. Active pro-
moters were encoded with the number 1, and inactive promoters were
encoded with the number 0.

Figure 3. Distribution of normalized CG dinucleotide content among
4575 promoters. The normalized CG dinucleotide content is defined as
the ratio of observed over expected number of CG dinucleotides (see
Methods). LCG promoters have normalized CG content <0.5 and HCG
promoters have normalized CG content > 0.5.
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Predicting ubiquitous and cell line–specific active promoters

Using support vector machines (SVMs), we designed discriminative

models to predict whether a promoter would be active or inactive

based on the set of TF motifs. We designated promoters that were

active in eight cell lines as ubiquitous, and promoters that were ac-

tive in only one cell line as cell line–specific. The promoter activities

of cell line–specific promoters are plotted in Figure 4. TF motifs, were

represented by position specific scoring matrices (PSSMs), which we

collected from three sources: the TRANSFAC database (Matys et al.

2006), our previous analyses on the human genome (Wei et al. 2006;

Lin et al. 2007; Xi et al. 2007), and a catalog of mammalian motifs

detected by evolutionary conservation (Xie et al. 2005), in total 691

motifs. Because multiple instances of the same motif can be present

in a promoter, we used the algorithm Clover (Frith et al. 2004) to

obtain a composite score for each motif in each promoter, quanti-

fying the equilibrium binding potential of a TF to a promoter

according to a thermodynamic model (for details, see Methods).

We assumed that HCG and LCG promoters as well as ubiqui-

tous and cell line–specific promoters were regulated by different cis-

regulatory codes, and designed separate SVM models for each pro-

moter set. We did not analyze promoter sets that had fewer than 20

promoters because there would be insufficient instances to produce

a robust model evaluation criterion by fivefold cross-validation.

Most cell line–specific models originated from the LCG promoter

class. In total, we considered nine promoter sets: two sets for HCG

promoters (Ubiquitous and HeLa-specific) and seven sets for LCG

promoters (Ubiquitous, U87MG-, AGS-, HepG2-, HeLa-, HCT116-,

and T98G-specific).

As the combinatorial examination of all 691 TF motifs would

be computationally intractable, we first ranked motifs by their

individual AUCs and then added them sequentially until there was

no improvement on the AUC. We also attempted more complex

feature selection strategies such as recursive feature elimination

(Guyon et al. 2002) and RSVM (Zhang et al. 2006), but they pro-

duced overall lower AUC scores than those produced by simply

adding motifs according to their ranks. Cumulative AUC and in-

dividual motif ranks are provided in Supplemental Data S3. All

nine models performed well, with an average AUC of 92.8% for the

ubiquitous models and 90.4% for the cell line–specific models. The

average AUC was also significantly higher compared with the av-

erage AUC using CG content alone (Table 1).

Ubiquitous models required fewer TF motifs to achieve a high

AUC than did cell line–specific models. Only 27 motifs were re-

quired in the HCG ubiquitous model, and only six motifs were re-

quired in the LCG ubiquitous model. In contrast, the number of

motifs required in the cell line–specific models ranged from 23–163

motifs, with an average of 89 motifs per model. This suggests that

the complex regulation of cell line–specific promoter activity may

require many TFs, whereas a few key TFs can adequately regulate

ubiquitous promoters. Cell line–specific promoters likely contain

a variety of activators, repressors, insulators, and other motifs that

provide contextual information for specific regulation.

Cis-regulatory module discovery

Next, we sought to identify groups of co-occurring motifs, or cis-

regulatory modules that were most informative of cell line–specific

activity. The TFs that bind to cis-regulatory motifs are thought to

interact cooperatively to drive promoter function (Johnson et al.

2005). Therefore, a thorough characterization of these modules is

a key step for understanding gene regulatory networks. We found

that our models maintained high predictive ability with modules

containing as few as four motifs. The performance of these mod-

ules exceeded that of CG dinucleotide counts by an average of

23.2% AUC (Table 2).

Each model identified unique subsets of TFs that regulate cell

line–specific promoter activity. Several TFs known to regulate ac-

tivity in specific tissue types were recapitulated in the corresponding

models. For example, HNF4A in liver (Watt et al. 2003) and CREB in

brain (Mantamadiotis et al. 2002; Gass and Riva 2007; Han et al.

2007) were specific to the HepG2-specific (i.e., hepatocyte-derived)

model and the T98G-specific (i.e., neuronal cell–derived) model,

respectively. Half (13/26) of the motifs in the four-motif modules

corresponded to TFs that are supported by published reports with

regards to tissue specificity, and 19.1% (five of 26) of the motifs were

potentially novel as they did not associate with a TF known to be

specific for the corresponding tissue types.

Predicting ubiquitous and cell line–specific expressed genes

Computational strategies to discover TFs that regulate tissue-specific

transcription have typically relied on gene expression data derived

from microarray hybridization experiments (Smith et al. 2006,

2007; Davies et al. 2007). Likewise, we compared our results from

promoter activity assays with the endogenous gene expression

measurements we performed on the same eight cell lines (Supple-

mental Tables T3, T4). The models that were trained and tested on

promoter activity performed better than models that were trained

and tested on gene expression (each with cross-validation). The

average AUC above CG content was 35.3% for the promoter activity

models, compared with 26.1% for the gene expression models. This

is most pronounced in ubiquitous models, where the performances

of four-TF modules above and beyond CG content were 24% and

13.4% for the ubiquitous HCG and LCG promoter activity models,

respectively (Table 2). In contrast, the AUC of the corresponding

models trained and tested on endogenous gene expression data did

not exceed 6% (Supplemental Table T3).

Comparing the literature support of specific TF motifs, we

found that 28% (nine of 32) of the TFs identified in our endogenous

gene expression analyses were supported by published reports,

lower than the 50% (13/26) reported for the promoter activity

analysis. The promoter activity assay is more appropriate for se-

quence-based modeling than endogenous expression, because the

promoter activity assay directly measures the activity of a known

fragment of DNA, whereas gene expression data can be additionally

influenced by chromatin structure, regulation in trans, RNA stabil-

ity, transcription elongation regulation, and epigenetic mecha-

nisms. Motifs that are not included in the cloned promoter con-

struct or act in trans to the motifs in the promoter, however, cannot

be included in such analysis.

Discussion
In this study, we functionally validated the activities of putative

human promoters, identified novel promoters, and characterized

ubiquitous and cell line–specific transcriptional mechanisms by

modeling how cis-regulatory motif enrichment could predict

promoter activity. Transient transfection measures the promoting

activity that corresponds to a defined DNA sequence, while en-

dogenous gene expression is additionally influenced by chromatin

states and long-range elements. Ubiquitously active promoters

tend to have high CG content and are regulated by few TFs, while

cell line–specific promoters tend to have low CG content and are
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Figure 4. Promoter activities of cell line–specific promoters. Cell line–specific promoters are mainly active at medium levels (orange) and rarely active at
high (red) levels in the cell line of interest, but the tissue specificities of all promoters are clearly distinguishable by eye. High CpG promoters are indicated
by blue bars in the left margin.
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regulated by many different TFs. A model demonstrating these

regulatory modes is illustrated in Figure 5.

Interestingly, ubiquitous HCG promoters require more regu-

latory elements than ubiquitous LCG promoters. This difference

could be explained by the notion of a default state for promoters,

leading them to require different combinations of activating and

repressive TFs. Low CG promoters may default to the ubiquitously

off state and only require a few strong activators to become active

across several cell types. In contrast, high CG promoters may default

to the ubiquitously active state and require motifs for both acti-

vating and repressive TFs to discriminate between ubiquitously ac-

tive and ubiquitously inactive states in our computational models.

Indeed, there is a mixture of well-characterized activators (Ets, Sp1,

Nrf-1, E2F) and repressors (Nf-mE1, ETV7, Ap4, NRSF) among the

27 motifs that are most discriminating in the high CG promoter

models. In contrast, all six motifs that are most discriminating for

the low CG promoter models have primarily activating functions

(Sp1, EGR, CACC-BF, GABP, Churchill, and NF-kB). The complete

list of motifs is provided in Supplemental Data 3.

The contribution of core promoters to ubiquitous or tissue-

specific transcription is largely determined by the presence of a few

key sequence elements, most of which are associated with known

TFs. The list of TFs in Table 2 can be used to prioritize future chro-

matin immunoprecipitation (ChIP) experiments to be performed in

the appropriate tissue types. Indeed, the promoters we predicted

to be ubiquitously active in all eight cell lines overlap the ChIP hits

of many general TFs for which ChIP data are available, such as SP1

and E2F1 (analysis not shown). The sequence features we used were

composite scores characterizing TF binding potential along the

entire promoter, and further studies would be necessary to map the

Table 1. AUCs of best performing models using the promoter activity data set

Model
No. of

promoters
Percent AUC of

best model
Percent AUC of best

model � percent AUC (CG)
No. of motifs by
maximum AUC

No. of motifs by
minimum P-value P-value

HCG
HeLa 43 99.7 45.6 112 60 1.25 3 10�3

Ubiquitous 201 93.1 32.3 27 13 1.43 3 10�4

LCG
U87MG 77 89.6 41.1 163 23 3.90 3 10�2

AGS 61 79.1 11.7 37 37 1.68 3 10�2

HepG2 29 98.6 57.8 135 91 8.27 3 10�3

HeLa 109 82.9 28.5 23 23 5.71 3 10�3

HCT116 44 87.4 31.8 81 81 8.00 3 10�3

T98G 33 95.7 53.9 50 50 3.99 3 10�3

Ubiquitous 70 92.5 15 6 6 8.56 3 10�4

The numbers of positive (foreground) examples used to train and test our models by fivefold cross-validation are reported in column 2. A corresponding
number of negative (background) examples were used for each of the models. The AUC for each model is reported in column 3, and the performance
above and beyond CG dinucleotide content is reported in column 4. We sequentially added motif features to find the minimal number of motifs that
produced the highest AUC score, reported in column 5. Similar results were obtained optimizing for lowest P-value (column 6) using a background
empirical cumulative distribution function of our test statistic (AUC) derived from randomly sampling motif combinations across five cross-validated trials
(80 motif combinations 3 5 trials 3 10 samples = 4000 data points). The optimized P-values are reported in column 7.

Table 2. Cis-regulatory modules discovered using the promoter activity data set
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HCG
HeLa 90 36.8 X X X X
Ubiquitous 85 24 Xa Xa Xa Xa

LCG
U87MG 71 22.5 X Xa Xa Xa

AGS 74.3 6.9 X X X Xa

HepG2 75.7 34.9 Xa Xa Xa X
HeLa 74.3 19.9 X X X X
HCT116 68 12.4 Xa X X X
T98G 79.5 37.7 X Xa X Xa

Ubiquitous 90 13.4 Xa Xa X X

The predictive AUCs were still high (column 3 and 4) even though modules were limited to only four motifs for each model. Many of the motifs for cell
line–specific models were also unique to each cell type.
aHalf of the motifs were supported by literature as being important for development in the corresponding tissue type.
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exact locations of the functional TF binding sites. Mutagenesis ex-

periments can then be performed to test and validate the predicted

motif associations. As our promoters are large (;1 kb) and contain

multiple TF binding sites, mutagenesis of multiple binding sites and

their combinations may be needed to detect significant changes in

promoter activity. We are developing an approach to validate the

regulatory modules presented in this study.

Genome-wide features such as promoter activity, endogenous

expression, TF binding, and other genomic and epigenomic marks

are being built for many tissue types and environmental contexts

(The ENCODE Project Consortium 2007). Computational methods

such as the one presented here will have to evolve to integrate in-

creasing amounts of data from diverse lines of biological evidence.

Integrative approaches will be crucial for unraveling the intricacies

of transcriptional networks.

Methods

Promoter transient transfection reporter assay
We performed large-scale promoter transient transfection reporter
assays as described previously (Trinklein et al. 2003; Cooper et al.
2006; Lin et al. 2007) with some modifications. We tested all
promoter constructs in triplicate across each of the eight cell lines.
Each plate contained four positive control promoters that have
a range of activity levels, as well as four negative control DNA
fragments. The 59 reporter plasmids were constructed by Switch-
Gear Genomics, and DNA preparations for the transfections were
also provided by SwitchGear. These promoter fragments in the
plasmids are, on average, 1000 bp in length and contain ;900 bp
upstream and ;100 bp downstream of the TSS. The AUG codon
driving translation in all the plasmids is that of the luciferase gene

and not that of the human genes from
which the promoters were derived. The
plasmids were constructed by cloning
a PCR amplified human genomic DNA
fragment corresponding to each pro-
moter into the pGL4 reporter vector
(Promega). The accurate representation
of each promoter was confirmed by DNA
sequencing.

Endogenous gene expression analysis

We purified total RNA from each of the
eight immortalized human cell lines in
three separate growths of cells. Cells were
homogenized in TRIzol (Invitrogen) with
a QIAshredder (Qiagen) according to the
manufacturer’s protocols. We assessed
the purity and quantity of the RNA by
using the NanoDrop (ThermoScientific).
We then isolated total RNA from the ho-
mogenate by using RNeasy Mini Kits
(Qiagen) and labeled and amplified this
material (Illumina TotalPrep RNA ampli-
fication kit, Ambion).

We hybridized the labeled cRNA to
Illumina HumanRef-8 v2 whole-genome
Expression BeadChips to measure endoge-
nous expression in each of the three
biological replicates. We extracted and
normalized the data with the rank-
invariant method (Illumina BeadStudio

software) and matched gene identifiers from all of the transcripts
on the BeadArrays to promoter predictions from SwitchGear Ge-
nomics (http://www.switchdb.com; score > 20) to find transcripts
that were not associated with alternative promoters.

Definition of high- CG and low CG promoter classes

The normalized CG dinucleotide content is defined as the ratio of
observed over expected number of CG dinucleotides, where the
expected number of CG dinucleotides is defined as [(G% + C%)/2]2.
The normalized CG content for the 4575 assayed promoters follow
a bimodal distribution (Fig. 3), and LCG and HCG promoters were
separated at the trough of the distribution where normalized CG
dinucleotide content was 0.5.

Thermodynamic model of TF binding potential

Each motifs was represented by a composite score computed by the
algorithm Clover (Frith et al. 2004). A raw score is first computed
representing the likelihood that a motif is present at a particu-
lar location on a given sequence. This was defined as log-likeli-
hood-ratio (LR1) in Frith et al. (2004), where p(L) is the background
probability of observing nucleotide L at position k, and q is the
foreground probability defined by a given PSSM:

LR1ðLÞ= P
w

k = 1

qðk;LkÞ
pðLkÞ

:

Multiplying over w, the width of the motif, LR1 has been
shown to be proportional to the equilibrium occupancy of a binding
site by the corresponding TF, according to statistical mechanical
theory (Schneider et al. 1986; Berg and von Hippel 1987; Stormo

Figure 5. Elements of transcription regulation. Ubiquitous promoters have high CG content and are
regulated by a few TFs. Tissue-specific promoters tend to have low CG content and a TATA box and are
regulated by many TFs. Promoter activity of the proximal promoter is primarily determined by se-
quence content, while endogenous gene expression is additionally influenced by chromatin, DNA
methylation, and long-range elements. Note that the molecules in this figure are not drawn to scale.
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2000). The raw scores for all locations along a promoter are averaged
to produce the composite score described in this article. This rep-
resents the likelihood of binding along the entire promoter.

We tested several metrics for how well they predicted promoter
activity, and found that the metric for the positional preferences of
motifs was far less predictive (r < 0.2) than other metrics, including
the composite score above, that took into account the number and
scores of binding sites along the promoter (r > 0.4). The composite
score we used incorporated the likelihood of occurrences of multiple
motifs and their combinations, but did not consider their positions
relative to each other.

SVM implementation

SVMs are among the best available tools for classifying data with few
examples in very large dimensional spaces. To avoid over-fitting, we
used cross-validated trials where we partitioned the promoters for
each model into five parts, reserving 80% of the data for training and
the remaining 20% for testing. We used all the data available by ro-
tating the training and testing sets five times. This procedure favors
models that will generalize well to an independent test set. We
considered nine promoter sets: two sets for HCG promoters (Ubiq-
uitously inactive and HeLa-specific) and seven sets for LCG pro-
moters (Ubiquitously active, U87MG-, AGS-, HepG2-, HeLa-,
HCT116-, and T98G-specific). The most abundant promoter ac-
tivity pattern was used as background promoter sets in our dis-
criminative models. In LCG promoters, the most abundant pattern
was the ubiquitously inactive pattern (labeled 00000000 in Fig. 2),
whereas the most abundant pattern in HCG promoters was the
ubiquitously active pattern (labeled 11111111 in Fig. 2). Some of
the foreground promoter sets contained fewer than 20 promoters,
which was not enough to produce robust AUC scores by fivefold
cross-validation. These cases were discarded.

For each model, we estimated the cumulative distribution
function of the test statistic using the AUCs tested on randomly
sampled motif combinations across five cross-validated trials (80
motif combinations 3 5 trials 3 10 samples = 4000 data points). The
P-value was then computed using this background distribution and
represents the probability of obtaining a model with that AUC or
better by chance. A higher AUC would result in a lower P-value. If we
select the model that had the minimum P-value (instead of the
maximum AUC), four models would have fewer numbers of motifs.
The overall observation that tissue-specific models required more
motifs than ubiquitous models would not change.

All models were implemented in R 2.5.0, using the e1071
package interface to the libsvm algorithm written by Chih-Chung
Chang and Chih-Jen Lin (software available at http://www.csie.
ntu.edu.tw/;cjlin/libsvm). We used a linear kernel with default
parameters. As the combinatorial space of all the TFs would be in-
tractable to traverse, we first ranked the TFs by their individual AUCs
and then added them sequentially to form a cumulative model. This
resulted in motif combinations that had better AUCs than motif
combinations discovered using other feature selection strategies.
The cumulative AUCs, P-values, and ranks for individual motifs are
provided in Supplemental Data S3.

Reducing redundancy in motif sets

After training and ranking all motifs, we clustered and pruned out
redundant motifs in each model to eliminate biases caused by
multiple testing of the same motif. This step was done after mod-
eling because there was no a priori information as to which PSSM
variant would perform best, when multiple PSSMs are available for
the same TF. We used the PSSM with the best AUC and clustered
redundant motifs that had pairwise Pearson correlation coef-

ficients greater than 0.2. We used a program we developed pre-
viously (Haverty et al. 2004) to align locally and compute Pearson
correlation coefficients between pairs of motifs. We then picked
the motif with the best rank in each model to represent the group
of redundant motifs, roughly halving the number of motifs in the
final nonredundant list. All nonredundant motif ranks and plots of
their predictive abilities are provided in Supplemental Data S3.

References

Berg OG, von Hippel PH. 1987. Selection of DNA binding sites by regulatory
proteins. Statistical-mechanical theory and application to operators and
promoters. J Mol Biol 193: 723–750.

Brown CD, Johnson DS, Sidow A. 2007. Functional architecture and
evolution of transcriptional elements that drive gene coexpression.
Science 317: 1557–1560.

Brunner AL, Johnson DS, Kim SW, Valouev A, Reddy TE, Neff NF, Anton E,
Medina C, Nguyen L, Chiao E, et al. 2009. Distinct DNA methylation
patterns characterize differentiated human embryonic stem cells and
developing human fetal liver. Genome Res 19: 1044–1056.

Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R,
Ravasi T, Lenhard B, Wells C, et al. 2005. The transcriptional landscape
of the mammalian genome. Science 309: 1559–1563.

Cooper SJ, Trinklein ND, Anton ED, Nguyen L, Myers RM. 2006.
Comprehensive analysis of transcriptional promoter structure and
function in 1% of the human genome. Genome Res 16: 1–10.

Davies SR, Chang LW, Patra D, Xing X, Posey K, Hecht J, Stormo GD, Sandell
LJ. 2007. Computational identification and functional validation of
regulatory motifs in cartilage-expressed genes. Genome Res 17: 1438–
1447.

The ENCODE Project Consortium. 2007. Identification and analysis of
functional elements in 1% of the human genome by the ENCODE pilot
project. Nature 447: 799–816.

Frith MC, Fu Y, Yu L, Chen JF, Hansen U, Weng Z. 2004. Detection of
functional DNA motifs via statistical over-representation. Nucleic Acids
Res 32: 1372–1381.

Gass P, Riva MA. 2007. CREB, neurogenesis and depression. BioEssays 29:
957–961.

Guyon I, Weston J, Barnhill S, Vapnik V. 2002. Gene selection for cancer
classification using support vector machines. Mach Learn 46: 389–422.

Han JH, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA, Neve RL,
Guzowski JF, Silva AJ, Josselyn SA. 2007. Neuronal competition and
selection during memory formation. Science 316: 457–460.

Harrow J, Denoeud F, Frankish A, Reymond A, Chen CK, Chrast J, Lagarde J,
Gilbert JG, Storey R, Swarbreck D, et al. 2006. GENCODE: Producing
a reference annotation for ENCODE. Genome Biol 7: S4.1–S4.9.

Haverty PM, Hansen U, Weng Z. 2004. Computational inference of tran-
scriptional regulatory networks from expression profiling and transcrip-
tion factor binding site identification. Nucleic Acids Res 32: 179–188.

Imanishi T, Itoh T, Suzuki Y, O’Donovan C, Fukuchi S, Koyanagi KO, Barrero
RA, Tamura T, Yamaguchi-Kabata Y, Tanino M, et al. 2004. Integrative
annotation of 21,037 human genes validated by full-length cDNA
clones. PLoS Biol 2: e162. doi: 10.1371/journal.pbio.0020162.

Johnson DS, Zhou Q, Yagi K, Satoh N, Wong W, Sidow A. 2005. De novo
discovery of a tissue-specific gene regulatory module in a chordate.
Genome Res 15: 1315–1324.

Johnson DS, Mortazavi A, Myers RM, Wold B. 2007. Genome-wide mapping
of in vivo protein–DNA interactions. Science 316: 1497–1502.

Kadonaga JT. 1998. Eukaryotic transcription: An interlaced network of
transcription factors and chromatin-modifying machines. Cell 92: 307–
313.

Lin JM, Collins PJ, Trinklein ND, Fu Y, Xi H, Myers RM, Weng Z. 2007.
Transcription factor binding and modified histones in human
bidirectional promoters. Genome Res 17: 818–827.

Mantamadiotis T, Lemberger T, Bleckmann SC, Kern H, Kretz O, Martin
Villalba A, Tronche F, Kellendonk C, Gau D, Kapfhammer J, et al. 2002.
Disruption of CREB function in brain leads to neurodegeneration. Nat
Genet 31: 47–54.

Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter
I, Chekmenev D, Krull M, Hornischer K, et al. 2006. TRANSFAC and its
module TRANSCompel: Transcriptional gene regulation in eukaryotes.
Nucleic Acids Res 34: D108–D110.

Myers RM, Tilly K, Maniatis T. 1986. Fine structure genetic analysis of a beta-
globin promoter. Science 232: 613–618.

Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M,
Minovitsky S, Dubchak I, Holt A, Lewis KD, et al. 2006. In vivo enhancer
analysis of human conserved non-coding sequences. Nature 444: 499–
502.

Sequence features in human promoters

Genome Research 897
www.genome.org

 Cold Spring Harbor Laboratory Press on January 9, 2025 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


Ruan Y, Ooi HS, Choo SW, Chiu KP, Zhao XD, Srinivasan KG, Yao F, Choo
CY, Liu J, Ariyaratne P, et al. 2007. Fusion transcripts and transcribed
retrotransposed loci discovered through comprehensive transcriptome
analysis using Paired-End diTags (PETs). Genome Res 17: 828–838.

Saxonov S, Berg P, Brutlag DL. 2006. A genome-wide analysis of CpG
dinucleotides in the human genome distinguishes two distinct classes of
promoters. Proc Natl Acad Sci 103: 1412–1417.

Schneider TD, Stormo GD, Gold L, Ehrenfeucht A. 1986. Information content
of binding sites on nucleotide sequences. J Mol Biol 188: 415–431.

Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R,
Watahiki A, Nakamura M, Arakawa T, et al. 2003. Cap analysis gene
expression for high-throughput analysis of transcriptional starting
point and identification of promoter usage. Proc Natl Acad Sci 100:
15776–15781.

Smith AD, Sumazin P, Xuan Z, Zhang MQ. 2006. DNA motifs in human and
mouse proximal promoters predict tissue-specific expression. Proc Natl
Acad Sci 103: 6275–6280.

Smith AD, Sumazin P, Zhang MQ. 2007. Tissue-specific regulatory elements in
mammalian promoters. Mol Syst Biol 3: 73. doi: 10.1038/msb4100114.

Stormo GD. 2000. DNA binding sites: Representation and discovery.
Bioinformatics 16: 16–23.

Su AI, Pezacki JP, Wodicka L, Brideau AD, Supekova L, Thimme R, Wieland S,
Bukh J, Purcell RH, Schultz PG, et al. 2002. Genomic analysis of the host
response to hepatitis C virus infection. Proc Natl Acad Sci 99: 15669–
15674.

Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R,
Hayakawa M, Kreiman G, et al. 2004. A gene atlas of the mouse and
human protein-encoding transcriptomes. Proc Natl Acad Sci 101: 6062–
6067.

Trinklein ND, Aldred SJ, Saldanha AJ, Myers RM. 2003. Identification and
functional analysis of human transcriptional promoters. Genome Res 13:
308–312.

Wakaguri H, Yamashita R, Suzuki Y, Sugano S, Nakai K. 2007. DBTSS:
Database of transcription start sites, progress report 2008. Nucleic Acids
Res 36: D97–D101.

Watt AJ, Garrison WD, Duncan SA. 2003. HNF4: A central regulator of
hepatocyte differentiation and function. Hepatology 37: 1249–1253.

Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schubeler
D. 2007. Distribution, silencing potential and evolutionary impact of
promoter DNA methylation in the human genome. Nat Genet 39: 457–
466.

Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T, Shahab A, Yong HC, Fu Y,
Weng Z, et al. 2006. A global map of p53 transcription-factor binding
sites in the human genome. Cell 124: 207–219.

Xi H, Yu Y, Fu Y, Foley J, Halees A, Weng Z. 2007. Analysis of overrepresented
motifs in human core promoters reveals dual regulatory roles of YY1.
Genome Res 17: 798–806.

Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES,
Kellis M. 2005. Systematic discovery of regulatory motifs in human
promoters and 39 UTRs by comparison of several mammals. Nature 434:
338–345.

Zhang X, Lu X, Shi Q, Xu XQ, Leung HC, Harris LN, Iglehart JD, Miron A, Liu
JS, Wong WH. 2006. Recursive SVM feature selection and sample
classification for mass-spectrometry and microarray data. BMC
Bioinformatics 7: 197. doi: 10.1186/1471-2105-7-197.

Received September 5, 2009; accepted in revised form April 12, 2010.

Landolin et al.

898 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on January 9, 2025 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 10.1101/gr.100370.109Access the most recent version at doi:
2010 20: 890-898 originally published online May 25, 2010Genome Res. 

  
Jane M. Landolin, David S. Johnson, Nathan D. Trinklein, et al. 
  
specificity
Sequence features that drive human promoter function and tissue

  
Material

Supplemental
  

 http://genome.cshlp.org/content/suppl/2010/04/22/gr.100370.109.DC1

  
References

  
 http://genome.cshlp.org/content/20/7/890.full.html#ref-list-1

This article cites 39 articles, 19 of which can be accessed free at:

  
License

Service
Email Alerting

  
 click here.top right corner of the article or 

Receive free email alerts when new articles cite this article - sign up in the box at the

 https://genome.cshlp.org/subscriptions
go to: Genome Research To subscribe to 

Copyright © 2010 by Cold Spring Harbor Laboratory Press

 Cold Spring Harbor Laboratory Press on January 9, 2025 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/doi/10.1101/gr.100370.109
http://genome.cshlp.org/content/suppl/2010/04/22/gr.100370.109.DC1
http://genome.cshlp.org/content/20/7/890.full.html#ref-list-1
http://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=protocols;10.1101/gr.100370.109&return_type=article&return_url=http://genome.cshlp.org/content/10.1101/gr.100370.109.full.pdf
http://genome.cshlp.org/cgi/adclick/?ad=57163&adclick=true&url=https%3A%2F%2Fwww.usascientific.com%2Fvortex_mixer%3Futm_source%3DCSHL%26utm_medium%3DeTOC_VMX%26utm_campaign%3DVMX
https://genome.cshlp.org/subscriptions
http://genome.cshlp.org/
http://www.cshlpress.com

