
T R A N S A C T I O N A L B L A C K B O A R D S

J. Robert Ensor and John D. Gabbe
A T & T Bell Laboratories

Holmdel, NJ 07733

A B S T R A C T

The blackboard architecture is a popular structur
ing framework for expert systems. W i t h this structure,
an expert system is bui l t as a collection of knowledge
sources which are scheduled by a controller and com
municate through a shared data region, called a black
board. The performance of such a system may be sig
nif icant ly enhanced by the concurrent execution of the
knowledge sources. However, introduct ion of con
current execution into blackboard systems requires
extension of the architecture w i th new mechanisms for
scheduling knowledge source activities, synchronizing
knowledge source interactions, and accessing shared
data. This paper describes our design for transaction-
based facilities support ing parallel execution of
knowledge sources in a blackboard system.

I . I N T R O D U C T I O N

The blackboard architecture is an important struc
tural framework for expert systems. In this architec
ture, an expert system consists of a shared data region
(called the blackboard), a set of knowledge sources,
and a control mechanism. The blackboard is a data
base which is shared by the knowledge sources as their
communication medium. Containing rules and
hypotheses which express the domain expertise of the
system, the knowledge sources respond to each other
through observed changes in the blackboard. The con
t ro l mechanism schedules execution of the knowledge
sources according to information from its goal queues
and the blackboard.

Several expert systems have been bui l t according to
the blackboard architecture. Examples include a
speech-understanding system (Erman et al, 1980), a
sonar interpretat ion system (Ni l and Feigen-
baum, 1978), a vehicular t racking system (Lesser and
Cork i l l , 1978), and a protein crystallography interpre
tat ion system (Terry, 1983). Al though these systems
are founded on the blackboard architecture, they vary
signif icantly w i th in the framework, demonstrating the
u t i l i t y and f lexibi l i ty of the paradigm. Experience sug
gests that this architecture is part icular ly suitable for
systems representing mult ip le areas of expertise and

for systems solving problems wi th complex information
interdependences.

Multiprocessor computing environments should be
capable of increasing the scope and u t i l i t y of expert
systems and successfully addressing problems beyond
the reach of most uniprocessors, such as real t ime
speech recognition or robot control. The domain and
control knowledge of an expert system may be distr i
buted onto several processors. The interactions of
modular knowledge sources may simulate their
modeled events, w i th both communication paths and
t iming of interactions. Thus multiprocessor configura
tions have the potential to support the construction
and execution of expert systems wi th new and useful
properties.

Multiprocessor computers are often di f f icul t to use.
While the processors can execute in parallel, the
exchange of data, code, and results among these pro
cessors can often make the overall system slow. There
fore, a balance must be reached among the costs of
loading code, accessing data, and communicating
requests and responses. Two extreme approaches have
received most at tent ion by researchers. At one
extreme are systems in which processing nodes fre
quently exchange small sets of data and do small com
putations w i th each data set (e.g., Dennis, 1980). At
the other extreme are systems that place a large, auto
nomous program on each processing node. In these
systems, the nodes exchange data infrequently and
spend most of their t ime performing " local" computa
tions (e.g., Lesser, 1978). The work described in this
paper focuses on support ing systems closer to the
latter extreme. We present mechanisms for construct
ing expert systems as collections of knowledge sources
communicating through a shared data medium. These
are systems in which knowledge sources executing on
different processors perform moderate to large compu
tations between communications.

The integr i ty of data that is accessed asynchro
nously by several clients must be maintained. Provid
ing transactional access to shared data bases is a com
mon solution to this5 6 T c (c o m p u) T 2 s d mus

J. Ensor and J. Gabbe 341

commit- or an abort-transaction request, a transaction
is a uni t of activity w i th three properties: atomicity,
consistency preservation, and permanence. Atomici ty
means that , in net effect and even when failures occur,
either all operations in the unit happen (the transac
t ion commits) or none of them happens (it aborts).
Consistency preservation means that a transaction
moves data from one consistent state to another. Per
manence means that the effect of a committed transac
t ion persists, surviving any noncat as trophic failures,
unt i l the next transaction involving that data is com
mi t ted.

We extend the blackboard architecture to support
systems executing in multiprocessor environments by
providing transactional access to the blackboard. Our
extensions are novel in their ease of use and in the
richness of structure that they support. Two mechan
isms are provided for safe access to the blackboard
data. Knowledge sources can communicate by access
ing shared data in separate transactions. Furthermore,
several knowledge sources can participate in a common
transaction if they need to see a common, consistent
view of shared data.

I I . S Y S T E M S T R U C T U R E

Figure 1 illustrates a system that we designed to
understand the use of the blackboard. We term the
control and knowledge sources agents because they are
both modular units of activity. The agents are distr i
buted on various processors and may execute con
currently. Knowledge source activities on each node
are controlled by the control sources on that node.
(The collection of control sources is the controller men
tioned in the blackboard architecture description.) In
our present implementation, the distr ibution of agents
is subject to restrictions. The init ial distr ibut ion is
specified by the system designer, and we provide no
mechanism to support agent migration among proces
sors. Al though the blackboard resides on a single
machine, it could be distr ibuted without changing its
interface.

Figure la
Network of Processing Nodes

A . The Blackboard

The blackboard is a repository of data; each datum
holds an arbitrary Lisp s-expression. Because agents
may share data and reference them in an interleaved
fashion, some mechanism is needed to maintain con
sistency of the blackboard. We associate a transaction
manager w i th this data base, and require that any
reference to the blackboard be part of a transaction.

The blackboard transaction manager controls asyn
chronous references to shared data via locks. There
are two types of locks: write and read. The holder of a
write-lock has exclusive access to the locked datum
and may modify the datum. Holders of read-locks may
read the datum concurrently. No writer may access a
datum while a read-lock for that datum is held. When
a client first references a datum, the transaction
manager attempts to obtain the appropriate lock. A l l
locks are held to the end of the transaction in which
they were obtained. Thus the transaction manager
preserves data consistency by preserving serializability
(Eswaran, 1976).

When trying to obtain a lock, the transaction
manager might find that it is not available. The tran
saction that needs the unavailable lock is suspended
unt i l the lock can be obtained. Sometimes more than
one transaction may be waiting to obtain a lock, and
this introduces the potential for deadlock among the
wait ing transactions. For example, transaction A
might wait for a lock held by transaction B, while
transaction B waits for some other lock held by t ran
saction A. The transaction manager detects deadlocks
and resolves them by aborting a suspended transac
t ion. This abortion is simply reported to the agents
part icipating in the transaction; these agents must
then decide what action is appropriate.

Data consistency among agents interacting wi th in a
transaction is maintained by time stamps. If serializa
bi l i ty among agents wi th in a transaction is violated,

Figure lb
Agents Wi th in a Node

342 J. Ensor and J. Gabbe

the blackboard transaction manager aborts the t ran
saction. This abortion is reported to the agents part i
cipating in the transaction, as w i th deadlock detection.

Computat ion based on the transactional black
board is not data dr iven; that is, accessing values in
the blackboard does not automatically trigger agent
act iv i ty. This seems appropriate in a distr ibuted
environment because the blackboard might not be able
to schedule activities on remote sites. This is in
contrast to the centralized case supported in previous
proposals (e.g., the Hearsay I I I approach of Balzer et
al, 1980).

B. The Agents

Each knowledge source contains some of the
system's domain specific knowledge. This knowledge is
expressed in terms of the data visible to the agent -
that port ion of the blackboard accessible to the agent
plus those data sent as message parameters by other
agents. As a knowledge source executes, it examines
the visible system state. If the system state matches a
condit ion known to the knowledge source, the agent
takes specified actions. These actions include request
ing that the controller schedule a knowledge source
act iv i ty by placing an entry on the controller goal
queue, performing some operations on the blackboard,
and/or sending a message to another knowledge
source.

C. In ter -agent Communica t ion

The multiprocessor environment fosters a richness
of system structure. Each processor can support a
community of agents - complexes of control sources
and groups of knowledge sources working closely
together - and these communities can interact w i th
communities on other processors. Agents executing on
the same machine can communicate w i th efficiency
and faci l i ty, for they may directly access common data
and may include arbi t rary references as parameters in
the messages that they send to each other. Since the
cost of message transmission between machines is
higher than a few memory references on a single one,
agents executing on separate machines cannot com
municate so cheaply. Further, these agents may
include only values in their message parameters, and
the conversion of local data to transmittable data
values may be expensive. Each node in our system
then contains procedures to convert the value of arbi
t rary s-expressions to transmittable data values. In
addi t ion, each communicating agent needs access to
procedures to reference these transmit ted data values
once they have been received.

Agents may also communicate through the black
board, and two mechanisms are provided for this
interact ion. Agents can interact by accessing shared
data in separate transactions, or several agents can
part icipate in a common transaction. This latter
mechanism is often useful; for example, the controller
might start a transaction to check the precondition of

a goal-queue entry. The knowledge source that the
controller then activates might need to access the data
mentioned in the goal-queue entry. Because the
knowledge source should see these data in the same
state as the controller, it continues the same transac
t ion . To include a second agent in a transaction, the
first agent merely passes its transaction identif ier and
status to the second. The transaction status indicates
whether the transaction is to be commit ted, aborted,
or continued.

D. Schedul ing and Transact ion Protocols

The controller maintains one or more goal queues,
each comprised of entries generated by knowledge
sources. A goal-queue entry has three parts: an expres
sion (called the precondit ion), an action to be taken if
that precondition is t rue, and a status indicator which
may contain a transaction identif ier if the action is to
continue an on-going transaction.

Scheduling act iv i ty by selecting entries from its
goal queue, the controller proceeds down the goal
queue evaluating entry preconditions. If the precondi
t ion is false, its action can not be selected, and the goal
is deferred. If the precondition holds, the correspond
ing action is executed. In evaluating a precondit ion,
the controller might need to access data in the black
board. If there is no transaction identif ier associated
w i th the queue entry, the controller begins a new tran
saction. If an identif ier is already associated wi th the
queue entry, the controller continues this transaction.
At the end of the decision process, the controller
aborts the newly-started transactions associated w i th
deferred goals. If an agent is activated as a result of
the queue entry selection, that agent is given any asso
ciated transaction identif ier.

In addit ion to scheduling, the control agents are
responsible for the in i t iat ion and terminat ion of t ran
sactions. These activities are based on the contents of
the goal queues. As mentioned above, the controller
begins a transaction or continues an existing one when
it schedules a knowledge source for act iv i ty. When an
agent finishes executing, it notifies the controller. The
controller now checks the goal queue for entries w i th
the transaction identif ier of the knowledge source just
completed. If the queue has no entries w i th this t ran
saction identif ier, the controller terminates the t ran
saction according to the transaction status. If other
entries contain this identif ier, the associated actions
wi l l presumably continue this transaction.

I I I . IMPLEMENTATION

Our in i t ia l implementat ion of an expert system
using the transactional blackboard is designed to exe
cute on a network of three Symbolics Lisp Machines
connected via an Ethernet. Zetalisp flavors (Wein-
reb, 1981), the blackboard and knowledge and control
sources communicate w i t h each other via messages, the
parameterized invocations of flavor methods. The

J. Ensor and J. Gabbe 343

message parameter restrictions discussed above are
enforced at run-t ime by the execution environment.
The blackboard transaction manager, which reads or
writes objects on behalf of agent requests, and its asso
ciated data base reside on a single machine.

A . Da ta

Lisp s-expressions are the unit of storage and
retrieval in the blackboard, and a blackboard datum is
indexed by a Lisp name. Because the blackboard has
no knowledge of the internal structure of the data it
stores, the storage and retrieval support functions
available to an agent are responsible for constructing
transmittable data for storage and reconstructing the
representations on retrieval. Generally, these func
tions need access to the definitions of the data in order
to reconstruct their representations.

B. Transact ions

Access to the blackboard data is allowed only
w i th in transactions. The transaction manager associ
ated w i th the blackboard receives requests from
agents, executes on their behalf, and packages
responses. W i t h each request to the blackboard, an
agent presents a unique agent identif ier and a transac
t ion identif ier. The transaction identif ier is returned
to an agent when it begins a transaction as a return
value of the start-transaction command.

The blackboard transaction manager supports five
transaction states and state-changing messages. Figure
2 il lustrates these states and the messages that cause
state transitions. Start ing in the ground state, a t ran
saction moves w i th the start-transaction message into
the active state where read and write messages are
handled. Commit- and abort-transaction messages ter
minate a transaction by moving it to the committed
and ground states respectively. The straddle and
precommitted states provide for the implementation of
two- and three-phase commit protocols (Skeen, 1981),
which are a means of coordinating transactions involv
ing more than one transactional server.

1. A t o m i c i t y . Atomic i ty ensures that at the end of
a transaction all the write actions associated wi th the
transaction have taken place (the transaction commit-

Figure 2
Transaction States

ted), or all the data referenced by the transaction are
restored to the state that existed when the transaction
began (the transaction aborted). In each transaction,
an existing datum is copied before it is first wr i t ten .
(If there is no existing datum, the "copy" so indicates.)
This copy then serves to save the state of the datum
that existed before the transaction began. If the t ran
saction commits, the copy is discarded; if the transac
t ion aborts, the copy replaces the current version of
the datum.

2. Cons i s tency . Our transactional blackboard has
two broad consistency tasks: first, to maintain data
consistency among several transactions (inter-
transactional consistency), and second, to preserve a
consistent view of data for those agents w i th in an ind i
vidual transaction (intra-transactional consistency).

Inter-transactional consistency of blackboard data
is maintained wi th locks. The write locks are exclusive
and guarantee that no activity can interfere w i th the
wri ter while it is modifying data. Read locks are
shared, and many agents may concurrently read a
datum. Since the datum is not modified during this
t ime, consistency is maintained. A l l locks are held to
the end of the transaction, and requests made to
locked data are queued unt i l release of locks.

The transaction manager checks for deadlock
whenever it queues a read or write request. In the
present implementation, the blackboard retries queued
requests referencing a particular datum in the order in
which they are received. If a deadlock exists, the
manager calls a deadlock handler to abort one of the
transactions. Al though the transaction manager con
tains a default handler, a preferred deadlock handler
may be specified by an agent when it initiates a t ran
saction to allow deadlock resolution to be based on
domain knowledge.

Intra-transactional consistency is maintained
through the use of time-stamps. The time stamps are
used to enforce serialization through a basic t ime-
ordered scheduling algorithm (Bernstein, 1981). When
an agent first participates in a transaction, it is
assigned a time-stamp, called the agent t ime for that
agent. The write time-stamp for each blackboard
datum is the agent time of the write request being exe
cuted on that datum. The read time-stamp for each
datum is the later of the datum's current read t ime-
stamp and the agent t ime of the read request being
executed on that datum. A datum maintains a
separate read time-stamp for each transaction holding
a read-lock. A read request for a datum is rejected if
the agent t ime is earlier that the datum's wr i te t ime-
stamp. A wri te request is rejected if the agent t ime is
earlier than either the read or write t ime stamp of the
datum. The establishment of a serializable in t ra-
transaction schedule and concomitant coordination of
the part ic ipat ing agents is the responsibility of the
agent controll ing the transaction. The blackboard
regards an intra-transaction time-order violation as a

344 J. Ensor and J. Gabbe

fatal error and aborts the offending transaction. The
blackboard's transaction manager checks for possible
time-order violations before queuing a store or retrieve
request, so the errors are detected immediately.

3. Pe rs i s tence . Persistence ensures that the results
of committed (and straddled and precommitted) t ran
sactions wi l l survive system crashes. To implement
persistence, copies of data are kept on devices w i th
independent failure modes and recovery protocols are
supported. We use a straightforward logging and
checkpoint scheme to preserve copies on independent
devices. The implementation might be expensive in
both space and t ime. It is not practical to encumber
all agents w i th this overhead, and thus logging can be
deactivated for any transaction. If a transaction is not
logged, crash recovery returns its data to some previ
ous (archived) consistent state, instead of the most
recent consistent state. The recovery protocols are not
expensive to implement because they are driven by
external agents, not the blackboard itself.

I V . C O N C L U S I O N S

Our transactional blackboard architecture supports
the construction of expert systems for multiprocessor
environments. The transactional interface allows asyn
chronous requests to be safely issued to the shared
data of the blackboard. Clients of this transactional
service must specify the boundaries of each transac
t ion, and they must deal w i th aborted transactions.
We feel that this marginal cost over a serial system is
small and should not interfere w i th the business of
bui ld ing expert systems.

More important ly , we provide mechanisms to make
use of this shared data in an intell igent way. Control
decisions are based on domain knowledge and com
munication costs. The controller presumably tries to
uti l ize the processors of the computing faci l i ty to effect
good system performance or to model some system of
interest. The controller remains knowledge-based and
does not use scheduling to protect shared data.
Knowledge sources are not required to provide explicit
synchronization or protect the consistency of shared
data. If several agents wish, they may participate in
common transactions. To do so, they only need to
pass transaction identif iers among themselves.

We are using this architecture to bui ld some expert
systems. Our experience indicates that this architec
ture is very helpful for large, mult i -author projects,
where each designer works rather independently to
implement a small area of expertise. In addit ion to
reaff irming the advantages of modular i ty in program
structure, we would like to report on the performance
advantages realized by executing our expert systems on
multiprocessor computers. Unfortunately, we have not
yet performed the necessary experiments.

R E F E R E N C E S

Balzer, R., Erman, L. D., London, P., and Wil l iams, C,
"Hearsay I I I : A Domain-Independent Framework for
Expert Systems," in Proc. 1st National Conference on
Artificial Intelligence, pp. 108-110, Stanford, CA.,
August 1980.

Bernstein, P. A. , and Goodman, N., "Concurrency
Control in Distr ibuted Database Systems", ACM Com-
puting Surveys, 13:2, pp 185-221, (June 1981).

Dennis, J. B., "Data-f low Supercomputers," Computer,
13:11, (November 1980), pp. 48-56.

Erman, L. D., F. Hayes-Roth, V. Lesser, and D. Reddy,
"The HEARSAY- I I speech-understanding system:
intergrat ing knowledge to solve uncertainty" , ACM
Computing Surveys, 12 (2), pp. 213-253, (June 1980).

Eswaran, K. P., et alia "The Notions of Consistency
and Predicate Locks in a Database System", Comm.
ACM, 19:11, pp. 624-633, (November 1976).

Lesser, V. R. and Cork i l l , D. D., "Cooperative distr i
buted problem solving a new approach for structur ing
distr ibuted systems", TR 78-7, Department of Com
puter and Information Science, Univ. of Massachusetts,
Amherst, M A , 1978.

N i i , H. P., and Feigenbaum, E. A. , "Rule-based Under
standing of Signals," in Pattern-Directed Inference Sys
tems, D. A. Waterman and R. Hayes-Roth (eds.),
Academic Press, 1978.

Skeen, D., "Nonblocking Commit Protocols", Proceed
ings of ACM-SIGMOD International Conference on
Management of Data, pp. 133-142 (Apri l 1981).

Terry, A. , "The CRYSALIS Project: Hierarchical Con
tro l of Product ion Systems," Stanford Heuristic Pro-
gramming Project Memo HPP-83-19, Computer Sci
ence Department, Stanford University, Stanford, CA,
1983.

Weinreb, D., and Moon, D., Lisp Machine Manual,
Symbolics Inc. Cambridge, M A , 1981.

