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A B S T R A C T 

The blackboard architecture is a popular structur
ing framework for expert systems. W i t h this structure, 
an expert system is bui l t as a collection of knowledge 
sources which are scheduled by a controller and com
municate through a shared data region, called a black
board. The performance of such a system may be sig
nif icant ly enhanced by the concurrent execution of the 
knowledge sources. However, introduct ion of con
current execution into blackboard systems requires 
extension of the architecture w i th new mechanisms for 
scheduling knowledge source activities, synchronizing 
knowledge source interactions, and accessing shared 
data. This paper describes our design for transaction-
based facilities support ing parallel execution of 
knowledge sources in a blackboard system. 

I . I N T R O D U C T I O N 

The blackboard architecture is an important struc
tural framework for expert systems. In this architec
ture, an expert system consists of a shared data region 
(called the blackboard), a set of knowledge sources, 
and a control mechanism. The blackboard is a data 
base which is shared by the knowledge sources as their 
communication medium. Containing rules and 
hypotheses which express the domain expertise of the 
system, the knowledge sources respond to each other 
through observed changes in the blackboard. The con
t ro l mechanism schedules execution of the knowledge 
sources according to information from its goal queues 
and the blackboard. 

Several expert systems have been bui l t according to 
the blackboard architecture. Examples include a 
speech-understanding system (Erman et al, 1980), a 
sonar interpretat ion system (Ni l and Feigen-
baum, 1978), a vehicular t racking system (Lesser and 
Cork i l l , 1978), and a protein crystallography interpre
tat ion system (Terry, 1983). Al though these systems 
are founded on the blackboard architecture, they vary 
signif icantly w i th in the framework, demonstrating the 
u t i l i t y and f lexibi l i ty of the paradigm. Experience sug
gests that this architecture is part icular ly suitable for 
systems representing mult ip le areas of expertise and 

for systems solving problems wi th complex information 
interdependences. 

Multiprocessor computing environments should be 
capable of increasing the scope and u t i l i t y of expert 
systems and successfully addressing problems beyond 
the reach of most uniprocessors, such as real t ime 
speech recognition or robot control. The domain and 
control knowledge of an expert system may be distr i
buted onto several processors. The interactions of 
modular knowledge sources may simulate their 
modeled events, w i th both communication paths and 
t iming of interactions. Thus multiprocessor configura
tions have the potential to support the construction 
and execution of expert systems wi th new and useful 
properties. 

Multiprocessor computers are often di f f icul t to use. 
While the processors can execute in parallel, the 
exchange of data, code, and results among these pro
cessors can often make the overall system slow. There
fore, a balance must be reached among the costs of 
loading code, accessing data, and communicating 
requests and responses. Two extreme approaches have 
received most at tent ion by researchers. At one 
extreme are systems in which processing nodes fre
quently exchange small sets of data and do small com
putations w i th each data set (e.g., Dennis, 1980). At 
the other extreme are systems that place a large, auto
nomous program on each processing node. In these 
systems, the nodes exchange data infrequently and 
spend most of their t ime performing " local" computa
tions (e.g., Lesser, 1978). The work described in this 
paper focuses on support ing systems closer to the 
latter extreme. We present mechanisms for construct
ing expert systems as collections of knowledge sources 
communicating through a shared data medium. These 
are systems in which knowledge sources executing on 
different processors perform moderate to large compu
tations between communications. 

The integr i ty of data that is accessed asynchro
nously by several clients must be maintained. Provid
ing transactional access to shared data bases is a com
mon solution to this5 6  T c  (  c o m p u )  T 2 s d mus
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commit- or an abort-transaction request, a transaction 
is a uni t of activity w i th three properties: atomicity, 
consistency preservation, and permanence. Atomici ty 
means that , in net effect and even when failures occur, 
either all operations in the unit happen (the transac
t ion commits) or none of them happens (it aborts). 
Consistency preservation means that a transaction 
moves data from one consistent state to another. Per
manence means that the effect of a committed transac
t ion persists, surviving any noncat as trophic failures, 
unt i l the next transaction involving that data is com
mi t ted. 

We extend the blackboard architecture to support 
systems executing in multiprocessor environments by 
providing transactional access to the blackboard. Our 
extensions are novel in their ease of use and in the 
richness of structure that they support. Two mechan
isms are provided for safe access to the blackboard 
data. Knowledge sources can communicate by access
ing shared data in separate transactions. Furthermore, 
several knowledge sources can participate in a common 
transaction if they need to see a common, consistent 
view of shared data. 

I I . S Y S T E M S T R U C T U R E 

Figure 1 illustrates a system that we designed to 
understand the use of the blackboard. We term the 
control and knowledge sources agents because they are 
both modular units of activity. The agents are distr i
buted on various processors and may execute con
currently. Knowledge source activities on each node 
are controlled by the control sources on that node. 
(The collection of control sources is the controller men
tioned in the blackboard architecture description.) In 
our present implementation, the distr ibution of agents 
is subject to restrictions. The init ial distr ibut ion is 
specified by the system designer, and we provide no 
mechanism to support agent migration among proces
sors. Al though the blackboard resides on a single 
machine, it could be distr ibuted without changing its 
interface. 

Figure la 
Network of Processing Nodes 

A . The Blackboard 

The blackboard is a repository of data; each datum 
holds an arbitrary Lisp s-expression. Because agents 
may share data and reference them in an interleaved 
fashion, some mechanism is needed to maintain con
sistency of the blackboard. We associate a transaction 
manager w i th this data base, and require that any 
reference to the blackboard be part of a transaction. 

The blackboard transaction manager controls asyn
chronous references to shared data via locks. There 
are two types of locks: write and read. The holder of a 
write-lock has exclusive access to the locked datum 
and may modify the datum. Holders of read-locks may 
read the datum concurrently. No writer may access a 
datum while a read-lock for that datum is held. When 
a client first references a datum, the transaction 
manager attempts to obtain the appropriate lock. A l l 
locks are held to the end of the transaction in which 
they were obtained. Thus the transaction manager 
preserves data consistency by preserving serializability 
(Eswaran, 1976). 

When trying to obtain a lock, the transaction 
manager might find that it is not available. The tran
saction that needs the unavailable lock is suspended 
unt i l the lock can be obtained. Sometimes more than 
one transaction may be waiting to obtain a lock, and 
this introduces the potential for deadlock among the 
wait ing transactions. For example, transaction A 
might wait for a lock held by transaction B, while 
transaction B waits for some other lock held by t ran
saction A. The transaction manager detects deadlocks 
and resolves them by aborting a suspended transac
t ion. This abortion is simply reported to the agents 
part icipating in the transaction; these agents must 
then decide what action is appropriate. 

Data consistency among agents interacting wi th in a 
transaction is maintained by time stamps. If serializa
bi l i ty among agents wi th in a transaction is violated, 

Figure lb 
Agents Wi th in a Node 
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the blackboard transaction manager aborts the t ran
saction. This abortion is reported to the agents part i 
cipating in the transaction, as w i th deadlock detection. 

Computat ion based on the transactional black
board is not data dr iven; that is, accessing values in 
the blackboard does not automatically trigger agent 
act iv i ty. This seems appropriate in a distr ibuted 
environment because the blackboard might not be able 
to schedule activities on remote sites. This is in 
contrast to the centralized case supported in previous 
proposals (e.g., the Hearsay I I I approach of Balzer et 
al, 1980). 

B. The Agents 

Each knowledge source contains some of the 
system's domain specific knowledge. This knowledge is 
expressed in terms of the data visible to the agent -
that port ion of the blackboard accessible to the agent 
plus those data sent as message parameters by other 
agents. As a knowledge source executes, it examines 
the visible system state. If the system state matches a 
condit ion known to the knowledge source, the agent 
takes specified actions. These actions include request
ing that the controller schedule a knowledge source 
act iv i ty by placing an entry on the controller goal 
queue, performing some operations on the blackboard, 
and/or sending a message to another knowledge 
source. 

C. In ter -agent Communica t ion 

The multiprocessor environment fosters a richness 
of system structure. Each processor can support a 
community of agents - complexes of control sources 
and groups of knowledge sources working closely 
together - and these communities can interact w i th 
communities on other processors. Agents executing on 
the same machine can communicate w i th efficiency 
and faci l i ty, for they may directly access common data 
and may include arbi t rary references as parameters in 
the messages that they send to each other. Since the 
cost of message transmission between machines is 
higher than a few memory references on a single one, 
agents executing on separate machines cannot com
municate so cheaply. Further, these agents may 
include only values in their message parameters, and 
the conversion of local data to transmittable data 
values may be expensive. Each node in our system 
then contains procedures to convert the value of arbi
t rary s-expressions to transmittable data values. In 
addi t ion, each communicating agent needs access to 
procedures to reference these transmit ted data values 
once they have been received. 

Agents may also communicate through the black
board, and two mechanisms are provided for this 
interact ion. Agents can interact by accessing shared 
data in separate transactions, or several agents can 
part icipate in a common transaction. This latter 
mechanism is often useful; for example, the controller 
might start a transaction to check the precondition of 

a goal-queue entry. The knowledge source that the 
controller then activates might need to access the data 
mentioned in the goal-queue entry. Because the 
knowledge source should see these data in the same 
state as the controller, it continues the same transac
t ion . To include a second agent in a transaction, the 
first agent merely passes its transaction identif ier and 
status to the second. The transaction status indicates 
whether the transaction is to be commit ted, aborted, 
or continued. 

D. Schedul ing and Transact ion Protocols 

The controller maintains one or more goal queues, 
each comprised of entries generated by knowledge 
sources. A goal-queue entry has three parts: an expres
sion (called the precondit ion), an action to be taken if 
that precondition is t rue, and a status indicator which 
may contain a transaction identif ier if the action is to 
continue an on-going transaction. 

Scheduling act iv i ty by selecting entries from its 
goal queue, the controller proceeds down the goal 
queue evaluating entry preconditions. If the precondi
t ion is false, its action can not be selected, and the goal 
is deferred. If the precondition holds, the correspond
ing action is executed. In evaluating a precondit ion, 
the controller might need to access data in the black
board. If there is no transaction identif ier associated 
w i th the queue entry, the controller begins a new tran
saction. If an identif ier is already associated wi th the 
queue entry, the controller continues this transaction. 
At the end of the decision process, the controller 
aborts the newly-started transactions associated w i th 
deferred goals. If an agent is activated as a result of 
the queue entry selection, that agent is given any asso
ciated transaction identif ier. 

In addit ion to scheduling, the control agents are 
responsible for the in i t iat ion and terminat ion of t ran
sactions. These activities are based on the contents of 
the goal queues. As mentioned above, the controller 
begins a transaction or continues an existing one when 
it schedules a knowledge source for act iv i ty. When an 
agent finishes executing, it notifies the controller. The 
controller now checks the goal queue for entries w i th 
the transaction identif ier of the knowledge source just 
completed. If the queue has no entries w i th this t ran
saction identif ier, the controller terminates the t ran
saction according to the transaction status. If other 
entries contain this identif ier, the associated actions 
wi l l presumably continue this transaction. 

I I I . IMPLEMENTATION 

Our in i t ia l implementat ion of an expert system 
using the transactional blackboard is designed to exe
cute on a network of three Symbolics Lisp Machines 
connected via an Ethernet. Zetalisp flavors (Wein-
reb, 1981), the blackboard and knowledge and control 
sources communicate w i t h each other via messages, the 
parameterized invocations of flavor methods. The 
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message parameter restrictions discussed above are 
enforced at run-t ime by the execution environment. 
The blackboard transaction manager, which reads or 
writes objects on behalf of agent requests, and its asso
ciated data base reside on a single machine. 

A . Da ta 

Lisp s-expressions are the unit of storage and 
retrieval in the blackboard, and a blackboard datum is 
indexed by a Lisp name. Because the blackboard has 
no knowledge of the internal structure of the data it 
stores, the storage and retrieval support functions 
available to an agent are responsible for constructing 
transmittable data for storage and reconstructing the 
representations on retrieval. Generally, these func
tions need access to the definitions of the data in order 
to reconstruct their representations. 

B. Transact ions 

Access to the blackboard data is allowed only 
w i th in transactions. The transaction manager associ
ated w i th the blackboard receives requests from 
agents, executes on their behalf, and packages 
responses. W i t h each request to the blackboard, an 
agent presents a unique agent identif ier and a transac
t ion identif ier. The transaction identif ier is returned 
to an agent when it begins a transaction as a return 
value of the start-transaction command. 

The blackboard transaction manager supports five 
transaction states and state-changing messages. Figure 
2 il lustrates these states and the messages that cause 
state transitions. Start ing in the ground state, a t ran
saction moves w i th the start-transaction message into 
the active state where read and write messages are 
handled. Commit- and abort-transaction messages ter
minate a transaction by moving it to the committed 
and ground states respectively. The straddle and 
precommitted states provide for the implementation of 
two- and three-phase commit protocols (Skeen, 1981), 
which are a means of coordinating transactions involv
ing more than one transactional server. 

1. A t o m i c i t y . Atomic i ty ensures that at the end of 
a transaction all the write actions associated wi th the 
transaction have taken place (the transaction commit-

Figure 2 
Transaction States 

ted), or all the data referenced by the transaction are 
restored to the state that existed when the transaction 
began (the transaction aborted). In each transaction, 
an existing datum is copied before it is first wr i t ten . 
(If there is no existing datum, the "copy" so indicates.) 
This copy then serves to save the state of the datum 
that existed before the transaction began. If the t ran
saction commits, the copy is discarded; if the transac
t ion aborts, the copy replaces the current version of 
the datum. 

2. Cons i s tency . Our transactional blackboard has 
two broad consistency tasks: first, to maintain data 
consistency among several transactions (inter-
transactional consistency), and second, to preserve a 
consistent view of data for those agents w i th in an ind i 
vidual transaction (intra-transactional consistency). 

Inter-transactional consistency of blackboard data 
is maintained wi th locks. The write locks are exclusive 
and guarantee that no activity can interfere w i th the 
wri ter while it is modifying data. Read locks are 
shared, and many agents may concurrently read a 
datum. Since the datum is not modified during this 
t ime, consistency is maintained. A l l locks are held to 
the end of the transaction, and requests made to 
locked data are queued unt i l release of locks. 

The transaction manager checks for deadlock 
whenever it queues a read or write request. In the 
present implementation, the blackboard retries queued 
requests referencing a particular datum in the order in 
which they are received. If a deadlock exists, the 
manager calls a deadlock handler to abort one of the 
transactions. Al though the transaction manager con
tains a default handler, a preferred deadlock handler 
may be specified by an agent when it initiates a t ran
saction to allow deadlock resolution to be based on 
domain knowledge. 

Intra-transactional consistency is maintained 
through the use of time-stamps. The time stamps are 
used to enforce serialization through a basic t ime-
ordered scheduling algorithm (Bernstein, 1981). When 
an agent first participates in a transaction, it is 
assigned a time-stamp, called the agent t ime for that 
agent. The write time-stamp for each blackboard 
datum is the agent time of the write request being exe
cuted on that datum. The read time-stamp for each 
datum is the later of the datum's current read t ime-
stamp and the agent t ime of the read request being 
executed on that datum. A datum maintains a 
separate read time-stamp for each transaction holding 
a read-lock. A read request for a datum is rejected if 
the agent t ime is earlier that the datum's wr i te t ime-
stamp. A wri te request is rejected if the agent t ime is 
earlier than either the read or write t ime stamp of the 
datum. The establishment of a serializable in t ra-
transaction schedule and concomitant coordination of 
the part ic ipat ing agents is the responsibility of the 
agent controll ing the transaction. The blackboard 
regards an intra-transaction time-order violation as a 
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fatal error and aborts the offending transaction. The 
blackboard's transaction manager checks for possible 
time-order violations before queuing a store or retrieve 
request, so the errors are detected immediately. 

3. Pe rs i s tence . Persistence ensures that the results 
of committed (and straddled and precommitted) t ran
sactions wi l l survive system crashes. To implement 
persistence, copies of data are kept on devices w i th 
independent failure modes and recovery protocols are 
supported. We use a straightforward logging and 
checkpoint scheme to preserve copies on independent 
devices. The implementation might be expensive in 
both space and t ime. It is not practical to encumber 
all agents w i th this overhead, and thus logging can be 
deactivated for any transaction. If a transaction is not 
logged, crash recovery returns its data to some previ
ous (archived) consistent state, instead of the most 
recent consistent state. The recovery protocols are not 
expensive to implement because they are driven by 
external agents, not the blackboard itself. 

I V . C O N C L U S I O N S 

Our transactional blackboard architecture supports 
the construction of expert systems for multiprocessor 
environments. The transactional interface allows asyn
chronous requests to be safely issued to the shared 
data of the blackboard. Clients of this transactional 
service must specify the boundaries of each transac
t ion, and they must deal w i th aborted transactions. 
We feel that this marginal cost over a serial system is 
small and should not interfere w i th the business of 
bui ld ing expert systems. 

More important ly , we provide mechanisms to make 
use of this shared data in an intell igent way. Control 
decisions are based on domain knowledge and com
munication costs. The controller presumably tries to 
uti l ize the processors of the computing faci l i ty to effect 
good system performance or to model some system of 
interest. The controller remains knowledge-based and 
does not use scheduling to protect shared data. 
Knowledge sources are not required to provide explicit 
synchronization or protect the consistency of shared 
data. If several agents wish, they may participate in 
common transactions. To do so, they only need to 
pass transaction identif iers among themselves. 

We are using this architecture to bui ld some expert 
systems. Our experience indicates that this architec
ture is very helpful for large, mult i -author projects, 
where each designer works rather independently to 
implement a small area of expertise. In addit ion to 
reaff irming the advantages of modular i ty in program 
structure, we would like to report on the performance 
advantages realized by executing our expert systems on 
multiprocessor computers. Unfortunately, we have not 
yet performed the necessary experiments. 
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