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Prime constellations of various sorts are a source of continued fascination
for both professional and recreational mathematicians. Some of the problems
about prime constellations, such as the Twin Prime Conjecture, are intractably
difficult to solve despite being incredibly simple to state.

One type of prime constellation, the prime quadruplet, consists of four
prime numbers between p and p + 8. Other than the sequences (3, 5, 7, 11)
and (5, 7, 11, 13), all of the quadruplets are also prime decades. The prime
decades are sequences of four consecutive prime numbers that fall between
two consecutive multiples of 10. For example, the first two prime decades are
(11, 13, 17, 19) and (101, 103, 107, 109). All of these sequences can be expressed
as (15n−4, 15n−2, 15n+2, 15n+4) for some odd n. OEIS Sequence A112540[1]
gives the sequence of values of n, starting with (1, 7, 13, 55, 99, . . . ).

The author is a recreational mathematician; no pretense is made that the
notes presented here are particularly exciting or illuminating to academics. It
seems all but impossible that mathematicians examining prime constellations
would not use some form of sieve to find those constellations. However, while
a search of the literature turned up examples of highly complex sieves[2], and
sieves for large clusters[3], no sign was found of a simple sieve for the decades–
one that someone with nothing more than a knowledge of modular arithmetic
and basic algebra could use readily. This was surprising given the well-known
Sieve of Eratosthenes for individual primes, and relatively well-known sieves for
the twin primes[4][5].

The novel portion of this work, then, is the simple Eratosthenean sieve given
for the prime decades. It is followed by a (longer) proof that the sieve works as
described.
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The Sieve

Unlike the Sieve of Eratosthenes, the sieve presented here does not sieve for the
prime decades directly; instead, it removes from the number line all of the values
not in the OEIS sequence given above. Once those numbers are obtained, one
can readily find the four primes within the decade as well.

1. Begin with N, the set of natural numbers or positive integers. Remove all
the even numbers to give a set No; all the numbers in the sequence are
odd.

2. Determine the value k for each prime. For each prime 7 or larger, k is
the number such that, if the prime is written as p = 15k ± q, then q
will be between -7 and 7. In particular, q will take one of the values in
{±1,±2,±4,±7}. For example, 79 is (15)(5) + 4, and 89 is (15)(6)− 1.

3. Beginning with p = 7 and stepping upward through the prime numbers,
remove elements of No where n ≡ ±r (mod p) or n ≡ ±s (mod p), but
n 6= k, as follows:

r, s = ±2k,±4k for q = ±1
r, s = ±k,±2k for q = ±2
r, s = ±k,±(7k + 2) for q = 4
r, s = ±k,±(7k − 2) for q = −4
r, s = ±(4k + 2),±(8k + 4) for q = 7
r, s = ±(4k − 2),±(8k − 4) for q = −7

To demonstrate, start with the odd numbers (No), and strike out all those
n ≡ ±(4k + 2) (mod 7) or n ≡ ±(8k + 4) (mod 7). k = 0, so this strikes out
n ≡ 2, 3, 4, 5 (mod 7).

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 · · ·

For p = 11, k = 1, q = −4 and r, s = ±k,±(7k − 2) = ±1,±5 (mod 11). Note
that n = 1 is not removed, because n = k.

1 7 13 15 21 27 29 35 41 43 49 55 57 63 69 · · ·

For p = 13, strike n ≡ r, s ≡ ±1,±2 (mod 13), again excepting 1:

1 7 13 15 35 41 55 57 63 69 73 75 79 81 95 · · ·

The integers that are not part of the sequence are slowly being removed. This
process is a bit slower than the Sieve of Eratosthenes, as the number line has
been compressed by a factor of around 15. The sieve using p = 13 really rejects
the composite numbers (15)(15)−2 = 223, (15)(41)−4 = 611, (15)(63)+4 = 949,
etc. An integer is removed (or not) from the Sieve of Eratosthenes by, at largest,
a prime near

√
n; in this prime decade sieve, a given number must be tested

with primes up to
√

15n. The high density of numbers removed using only 7,
however, means the sieve is slightly faster than this would normally imply.
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The Theorem and Proof

First, some definitions and conventions:
Herein, p always represents a prime number, and all lowercase letters rep-

resent integers. P is the set of all prime numbers, and N excludes 0, that is,
N ≡ Z+.

OEIS Sequence A112540 can be redefined as a set T with elements ni:

T := {n ∈ N | {15n− 4, 15n− 2, 15n + 2, 15n + 4} ⊂ P}

The individual possible primes calculated from each n are represented as
tn,1, tn,2, tn,3, and tn,4 respectively. For example, t1,1 = (15)(1) − 4 = 11 and
t5,3 = (15)(5) + 2 = 77. These are, importantly, only possibly primes.

Theorem 1. Let T := {n ∈ N | {15n − 4, 15n − 2, 15n + 2, 15n + 4} ∈ P}.
Express the primes p ≥ 7 in a least absolute residue system as p = 15k±q, with
q ∈ {1, 2, 4, 7}. Then:

Given S := {[(n ≡ ±r (mod p)) ∨ (n ≡ ±s (mod p))] ∧ [n 6= k]},
∀(p ≥ 7, p = 15k ± q) (∃r (mod p), s (mod p)) : [∀n (∃p : S) =⇒ n 6∈ T ],where

r, s =



±2k,±4k for q ≡ ±1, k even
±k,±2k for q ≡ ±2, k odd
±k,±(7k − 2) for q ≡ −4, k odd
±k,±(7k + 2) for q ≡ 4, k odd
±(4k − 2),±(8k − 4) for q ≡ −7, k even
±(4k + 2),±(8k + 4) for q ≡ 7, k even


The theorem is initially expressed symbolically for clarity, as a natural-

language translation is unwieldy and has fewer parentheses available. In sum-
mary: with T, p, q, and k as defined above, every prime has four residues ±r
(mod p) and ±s (mod p) such that, if for any prime p ≥ 7, if (n ≡ ±r (mod p)
or n ≡ ±s (mod p) and n 6= k), then n 6∈ T .

To set up the proof, several lemmas are necessary.

Lemma 1. For a given n ∈ No, n ∈ T if and only if for all i, tn,i is indivisible
by any integer 1 < z < tn,i.

On some level this is not so much a lemma as a rearrangement of the definition
of T . However, this rearrangement in terms of divisibility allows for easier proof.

Lemma 2. All primes p ≥ 7 can be expressed in the form p = 15k ± q in a
least absolute residue system, where q ∈ {±2,±4} (for k odd), or q ∈ {±1,±7}
(for k even).

Proof. Consider all the integers m = 15k ± q in a least absolute residue system
mod 15.

If k is odd and q is odd, then 15k ± q is even and not prime. Hence,
q 6≡ {±1,±3,±5,±7} (mod 15). If k is odd and q is even, 15k and 15k ± 6
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are divisible by 3. Only the remaining integers 15k ± 2 and 15k ± 4 can be
prime.

If k is even and q is even, then 15k ± q is even and not prime. If k is even
and q is odd, 15k ± 3 and 15k ± 5 are divisible by 3 and 5 respectively. Only
the remaining integers 15k ± 1 and 15k ± 7 can be prime.

This lemma results in a division of the prime numbers into several classes,
which are used to enumerate the values of r and s in the theorem.

Finally, a quick trick of modular arithmetic, giving a convenient method of
determining divisibility (for use with Lemma 1).

Lemma 3. Choose some positive integers a, b, k, n with (a, b) = 1, a ≥ b ≥ 1,
and n ≥ k. Then:

(u = ak + b, v = an + b) ⇐⇒ (n ≡ k (mod u) =⇒ u | v)

Proof. Since N (mod u) is the same as N (mod ak+ b), the proof is entirely in
(mod ak + b). In this modulus:

b ≡ −ak ⇐⇒ v ≡ an− ak ⇐⇒ v ≡ a(n− k)

Additionally, (a, b) = 1 =⇒ (a, ak + b) = 1, so a is invertible mod ak + b.
Therefore:

n− k ≡ 0 =⇒ v ≡ 0 ⇐⇒ u | v
∴ n ≡ k (mod u) =⇒ u | v

The reverse implication is true only if (k, c) = 1. However, this is not
necessary for the remainder of the proof.

Lemma 3 can be further extended to cover cases where the residues of u and
v are unequal, using essentially the same algebra as in Lemma 3.

Lemma 4. Choose integers as in Lemma 3, and additionally some nonzero
integers c, d with (a, c, d) = 1. Then:

(u = ak + bc, v = an + bd) ⇐⇒ (cn ≡ dk (mod u) =⇒ u | v).

Proof. Working entirely in (mod ak + bc) ≡ (mod u):

ak ≡ −bc ⇐⇒ adk ≡ −bcd
v ≡ 0 ⇐⇒ an ≡ −bd ⇐⇒ acn ≡ −bcd ⇐⇒ acn ≡ adk ⇐⇒ cn ≡ dk

v ≡ 0 ⇐⇒ cn ≡ dk =⇒ u | v
∴ cn ≡ dk (mod u) =⇒ u | v

Note that if c or d = −1, then in many cases expressions where two signs are
possible can be simplified as:

(u = ak ± bc, v = an± bd) ⇐⇒ (±cn ≡ ±dk (mod u) =⇒ u | v) �
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Proof of Theorem 1. Lemmas 3 and 4 show that modular equivalences can be
used to determine divisibility of two numbers originally expressed in the same
modulus a. Lemma 2 shows that the primes can be expressed in several classes
(mod 15), and the original set definition also looks for primes (mod 15). Lemma
1 says that showing any of the numbers 15k± 2,±4 are divisible by some other
number implies n 6∈ T , meaning that the inclusion of a given n in T can be
determined by the modular equivalences of Lemmas 3 and 4.

There are multiple cases to prove.

Case 1. n = k

An exception anytime n = k. In these instances, p | tn,i because p = tn,i, that
is, the potential prime is also the divisor prime. Therefore congruences in which
n = k do not exclude n from T as even primes are divisible by themselves.

Case 2. p = 15k ± 1

Using b = 1, c = ±1, d = ±2, Lemma 4 gives:

p = 15k ± 1, an,i = 15n± 2 ⇐⇒ [n ≡ ±k (mod p) =⇒ p | tn,2 or p | tn,3]

Using b = 1, c = ±1, d = ±4, Lemma 4 gives:

p = 15k ± 1, an,i = 15n± 4 ⇐⇒ [n ≡ ±k (mod p) =⇒ p | tn,1 or p | tn,4]

Hence, q = ±1 =⇒ r = ±2k and s = ±4k

Case 3. p = 15k ± 2

By the method of Case 2:

b = 2, c = ±1, d = ±1 =⇒ (q = ±2 =⇒ r = ±k)

b = 1, c = ±1, d = ±2 =⇒ (q = ±2 =⇒ s = ±2k)

Case 4. p = 15k ± 4, an,i = 15n± 4

By the method of Cases 2 and 3:

b = 4, c = ±1, d = ±1 =⇒ (q = ±4 =⇒ r = ±k)

Case 5. p = 15k + 4, an,i = 15n± 2

Here b = 2, c = 2, d = ±1. Lemma 4 gives a less convenient result:

p = 15k + 4, an,i = 15n± 2 ⇐⇒ [2n ≡ ±k (mod p) =⇒ p | tn,1 or p | tn,4]

However, 2n ≡ ±k can be converted into an expression with only n on the
left-hand side, to prevent modular inverse calculations from being necessary:
In mod 15k + 4, taking an,2 = 15n− 2:

−2n ≡ k ⇐⇒ −4n ≡ 2k ⇐⇒ 15kn ≡ 2k ⇐⇒
15n ≡ 2 ⇐⇒ 15n ≡ 105k + 30 ⇐⇒ n ≡ 7k + 2

In mod 15k + 4, taking an,3 = 15n + 2, the same algebra gives the solution
n ≡ −(7k + 2). Hence, q = 4 =⇒ s = ±(7k + 2).
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Case 6. p = 15k − 4, an,i = 15n± 2

Using b = 2, c = −2, d = ±1, Lemma 4 results in −2n ≡ ±k (mod p) =⇒ p |
tn,1 or p | tn,4. Then, by a rearrangement similar to Case 5,

b = 2, c = −2, d = ±1 =⇒ (q = −4 =⇒ s = ±(7k − 2))

Case 7. p = 15k + 7, an,i = 15n± 4

Using b = 1, c = 7, d = ±4, Lemma 4 gives:

p = 15k + 7, an,i = 15n± 4 ⇐⇒ [7n ≡ ±4k (mod p) =⇒ p | tn,1 or p | tn,4]

Using the methods of Cases 5 and 6, in mod 15k + 7, taking an,1 = 15n− 4:

7n ≡ −4k ⇐⇒ −15kn ≡ −4k ⇐⇒ 15n ≡ 4 ⇐⇒
15n ≡ 120k + 60 ⇐⇒ n ≡ 8k + 4

In mod 15k + 7, taking an,4 = 15n + 4, the same algebra gives the solution
n ≡ −(8k + 4). Hence, q = 7 =⇒ r = ±(8k + 4).

Case 8. p = 15k + 7, an,i = 15n± 2

Using b = 2, c = −2, d = ±1, Lemma 4 results in −7n ≡ ±4k =⇒ p | tn,1 or p |
tn,4. Then, by a rearrangement similar to Cases 5-7, q = 7 =⇒ s = ±(4k + 2).

Cases 9 and 10, where p = 15k − 7, would proceed with the same algebra as
cases 7 and 8, ending such that q = −7 gives r = ±(8k− 4) and s = ±(4k− 2).
The algebra is omitted in the interest of brevity. �

Discussion

There are a few points of interest in the use and description of this sieve.
First, it should be noted that, if desired, the sieve using 7, 11, and 13 could

be used as a low-density wheel sieve with only 189 elements (mod 2002). If
one were searching for very large decades, a larger wheel sieve might be more
useful, though it would take up more memory to hold the wheel. Any given
programmer should, of course, consider their time/space requirements.

This sieve is connected to the sieve for the twin primes[5], as each prime
decade is a “twin of twins.” In other words, each decade is a pair of consecutive
integers in the set {k ∈ N | 6k− 1 ∈ P∧ 6k + 1 ∈ P}. It seems unlikely that this
is useful for computation.

The sieve as presented could also be extended to the prime sextuplets, i.e.,
15n±z, z ∈ {±2,±4,±8}. This would add a third component to the sieve using
each prime, as follows:

±8k for q = ±1
±4k for q = ±2
±2k for q = ±4
±(k + 1) for q = 7
±(k − 1) for q = −7
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This implies that all of the prime sextuplets have n ≡ 0 (mod 7), other than
the first case (7, 11, 13, 17, 19, 23), which is a known result.

For reference, the set of elements in the wheel (mod 2002) is:

{5, 13, 7, 13, 29, 35, 55, 57, 69, 85, 91, 97, 99, 113, 125, 139, 147, 161, 169, 189, 195, 211, 217, 231, 239,
251, 253, 267, 273, 279, 293, 295, 315, 321, 343, 371, 377, 385, 393, 399, 407, 421, 433, 447, 449, 455,

475, 477, 491, 497, 503, 517, 525, 539, 553, 559, 575, 581, 601, 603, 629, 631, 645, 657, 671, 673, 679,

685, 693, 707, 715, 735, 741, 757, 763, 777, 783, 785, 799, 811, 825, 827, 839, 855, 861, 867, 889, 917,

931, 939, 953, 959, 965, 979, 981, 993, 1001, 1009, 1021, 1023, 1037, 1043, 1049, 1063, 1071, 1085, 1113,

1135, 1141, 1147, 1163, 1175, 1177, 1191, 1203, 1217, 1219, 1225, 1239, 1245, 1261, 1267, 1287, 1295,

1309, 1317, 1323, 1329, 1331, 1345, 1357, 1371, 1373, 1399, 1401, 1421, 1427, 1443, 1449, 1463, 1477,

1485, 1499, 1505, 1511, 1525, 1527, 1547, 1553, 1555, 1569, 1581, 1595, 1603, 1609, 1617, 1625, 1631,

1659, 1681, 1687, 1707, 1709, 1723, 1729, 1735, 1749, 1751, 1763, 1771, 1785, 1791, 1807, 1813, 1833,

1841, 1855, 1863, 1877, 1889, 1903, 1905, 1911, 1917, 1933, 1945, 1947, 1967, 1973, 1989, 1995}
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