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Abstract 

Since Android is the popular mobile operating system worldwide, malicious attackers seek out Android smartphones 
as targets. The Android malware can be identified through a number of established detection techniques. However, 
the issues presented by modern malware cannot be met by traditional signature or heuristic-based malware detec-
tion methods. Previous research suggests that machine-learning classifiers can be utilised to analyse permissions, 
making it possible to differentiate between malicious and benign applications on the Android platform. There exist 
machine-learning methods that utilise permission-based attributes to build models for the detection of malware 
on Android devices. Nevertheless, the performance of these detection methods is dependent on the raw or feature 
datasets. Android malware research frequently faces a major obstacle due to the lack of adequate and up-to-date 
raw malware datasets. In this paper, we put forward a systematic approach to generate an Android permission-based 
dataset using static analysis. To create the dataset, we collect recent raw malware samples (APK files) and focus 
on the reverse engineering approach and permission-based features extraction. We also conduct a thorough feature 
analysis to determine the important Android permissions and present a machine-learning-based Android malware 
detection mechanism. The experimental result of our study demonstrates that with just 48 features, the random forest 
classifier-based Android malware detection model obtains the best accuracy of 97.5%.
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1  Introduction
According to Statista web portal [1], in the global mobile 
operating system market, Android continues to hold the 
top spot with a market share of 70.7% in the first quarter 

of 2024. Several elements are involved in this dominance, 
including the following: (i) since its open source, install-
ing and customising it cost nothing [2], (ii) the capacity 
to add plenty of programs from the official application 
market (the Play Store) to increase the operating system’s 
default functionality, and (iii) in addition to Google, the 
Android OS is developed and distributed by a group of 
over 84 software development companies (OHA — Open 
Handset Alliance), such as Sony, Samsung, and HTC [3]. 
Unfortunately, because of its enormous popularity, mal-
ware program developers are attracted to it. Fraudulent 
APK (Android Application Package) files can take control 
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of Android smartphones through malware and cause sig-
nificant harm to them [4].

Antivirus software providers and the antimalware 
research community offer the initial layer of defence 
against any malware attack. In the beginning, signature-
based detection mechanisms served as the foundation for 
antivirus engines. A signature is a particular pattern that 
is kept up to date in an antivirus database and serves to 
identify malware uniquely. But the main problems with 
signature-based methods are that they are not scalable, 
and they are vulnerable to 0-day attacks [5]. Heuristic 
engines are frequently used in antivirus programs to sup-
plement signature-based detection, in which malware 
specialists create rules to identify potentially harmful 
activity on a system [6]. However, it is difficult to write 
specific criteria for such engines to detect malicious 
activity without raising the false-positive rate [7].

In recent years, scholars have started to look at devel-
oping malware detection mechanisms based on machine 
learning [8]. There are two stages involved in building 
these systems: feature extraction using application anal-
ysis and classification. Based on the traditional research 
methodology described in the literature, experts and 
researchers commonly utilise three analysis techniques—
static, dynamic, and hybrid—for feature extraction to 
detect Android malware [9]. Static analysis gathers fun-
damental data about the functionality of the application 
to investigate malware without running the actual code. 
Dynamic analysis, on the other hand, tracks an appli-
cation’s nature and looks for indications of malicious 
behaviour. The hybrid study combines static and dynamic 
analysis. Even though code obfuscation and other com-
plex malicious transformation techniques provide some 
challenges for static analysis, it is still a very effective, 
practical, and widespread method of detecting malware 
before it executes. Static features in Android are taken 
from the APK file’s source code. Of all the static features, 
permissions is the most widely applied and popular one 
[10]. Several publications addressing the use of static 
malware analysis have been released in earlier research. 
For instance, Urcuqui Lopez et al. [11] suggested a frame-
work for static analysis and used machine learning to dis-
tinguish between legitimate and dangerous apps. They 
gathered 558 APKs in total and evaluated them using a 
list of 330 attributes. Using K-neighbours, SVM, and the 
decision tree algorithm, they reached the best accuracy of 
94% in classification. DREBIN [12] conducts a thorough 
static analysis, extracting as many features (API, permis-
sions, network address, etc.) as it can from the manifest 
and program of an application. With a detection rate of 
93.9%, DREBIN offers a decent performance.

Google incorporated a permission system into the 
Android OS, which requires all developers to specify 

the permissions needed for their application’s function-
ing. However, the choice to allow or prohibit access to 
the requested permission rests with the user. Thus, it 
appears that monitoring and analysing permissions can 
help prevent Android malware from spreading. In recent 
trends, researchers have developed reliable machine-
learning models for detecting Android malware by ana-
lysing the significance of permissions [13–17]. Sanz et al. 
[17] extracted the application permissions and utilised 
machine-learning algorithms to detect malware. A total 
of 1811 benign and 249 malicious programs were used to 
evaluate their framework, called PUMA. With an accu-
racy of 86.41%, the random forest (RF) classifier pro-
duced the best results. A. P. Felt et  al. [14] introduced 
Stowaway, a tool that identifies over-privilege in Android 
programs that have been developed. Stowaway consists 
of two components: an API call that lists the permissions 
required for each API call and a static analysis tool that 
establishes the permission map of an application. Santosh 
K. et  al. [15] devised a system that identifies the most 
significant features using the feature reduction tech-
nique. They used a dataset containing 398 samples and 
330 permissions — 198 of which are malware and 198 
of which are benign. Gain ratio, information gain, and 
ReliefF were used to compare various feature reduction 
techniques. The authors achieved the maximum accuracy 
of 93.46% using the randomizable filtered classification 
method utilising the gain ratio when the top 5 permis-
sions were considered for performance evaluation. D. 
O. Sahin et al. [16] proposed a novel machine-learning-
based malware detection approach for Android to differ-
entiate between goodware and malware applications. The 
authors employed a feature selection technique using lin-
ear regression to eliminate superfluous permissions. They 
experimented with 1000 malicious and 1000 legitimate 
apps. They downloaded malware from the Android mal-
ware dataset as well as useful apps from APKPure. The 
authors used the SMO algorithm to obtain the best per-
formance of 0.9655 (F-measure) (102 permissions) with-
out carrying out the feature selection procedure. Using 
the same approach, they achieved the greatest accuracy 
of 0.961 (F-measure) (27 permissions) by implementing 
feature selection.

Based on the review of the literature, we observe that 
most works used datasets from 2009 to 2020. These data-
sets, which include samples from earlier Android system 
versions, were also used by several recent articles pub-
lished after 2020, such as Şahin et  al. [16], Sihag et  al. 
[18], and Sarah et al. [19]. As new malware emerges in its 
behaviour patterns, it is important to update the malware 
features in the dataset. To ensure reliable evaluation of 
malware detection systems, it is required to periodically 
develop unbiased malware datasets. From the literature 



Page 3 of 12Pathak et al. EURASIP Journal on Information Security         (2024) 2024:33 	

survey, we observe that many researchers’ uses older 
datasets in their research work. Older datasets are never 
enough to assess how well the defence mechanism is 
working. In this study, we attempt to suggest a mecha-
nism to detect Android malware that is both reliable and 
efficient. We gather the latest malware samples directly 
from the sources that are regularly updated with the new-
est malware. We use the static analysis technique to con-
struct a framework to generate a novel permission-based 
dataset. The comprehensive permissions list is manually 
compiled from the official Android docs.

We further carry out a feature vector analysis utilis-
ing the feature reduction technique to minimise num-
ber of features in the dataset. Feature reduction is the 
act of lowering a dataset’s feature count, or dimensions, 
while preserving as much information as feasible. It helps 
machine learning algorithms computationally efficient 
and reduces storage.

Eventually, we assess the performance with prominent 
machine-learning classifiers, such as K-NN, Naive Bayes, 
decision tree, and random forest.

The following highlights the key contributions of this 
work:

1)	 We suggest a framework for generating a featured 
dataset through static analysis. This method gathers 
malware samples from a live malware repository and 
uses reverse engineering to extract permission fea-
tures from the gathered APK files.

2)	 We propose an Android malware detection system 
that uses machine learning-based classification mod-
els after thorough feature engineering (using a fea-
ture importance-based attribute reduction strategy).

3)	 The random forest method works better and reaches 
a 96.25% accuracy rate with full permission. Our 
reduced feature models, built with just 15% of the 
Android permissions, attain maximum accuracy 
while saving a significant amount of time. Despite 
having fewer features, the random forest classifier 
achieves an accuracy of 97.5%.

2 � The proposed system
This study aims to propose an effective and efficient 
Android malware detection system. Figure 1 depicts the 
proposed systematic structure of the empirical study 
used to classify malware. The architecture is broken 
down into the following modules:

2.1 � Permission‑based dataset generation
The dataset preparation framework outlines the entire 
process of getting ready for the created dataset. We sepa-
rate them into three phases: data collection, data analysis 
and feature extraction, and feature vector generation. In 

the data collection phase, Android applications that are 
malicious and benign are gathered for additional exami-
nation. The data gathered in phase 1 is subjected to static 
data analysis employing a reverse engineering approach 
and feature extraction in the second phase. Lastly, phase 
3 creates a binary variable for each extracted permission 
and gives each application a label to produce the final 
dataset.

For our experimental study, we collect over 700 
Android applications from various sources. We extract 
the Android permissions from the application that could 
serve as features for our models. We carefully compile 
323 permissions from the official Android developer 
website. The end product of this module is a permission-
based dataset.

2.2 � Classification models
The primary goal of machine learning-based classifica-
tion is to create a model that can correctly classify new 
Android applications. Various machine-learning algo-
rithms can be employed to develop the detection mod-
els. We assess the Android malware detection system’s 

Fig. 1  Proposed Android malware detection system
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performance using four common machine learning algo-
rithms, viz. K-nearest neighbour (K-NN), Naïve Bayes 
(NB), decision tree (DT), and random forest (RF). Later 
on, each module is covered in detail.

3 � Methodology
This section covers the steps involved in creating the 
permission-based dataset, feature reduction methods 
applied to the dataset, and several machine learning 
algorithms utilised in the development of an effective 
Android malware detection system.

3.1 � Permission‑based dataset
Any program that wants to access the restricted data, 
whether it be malware or goodware, must initially go via 
the permission authorisation process. We predominantly 
preferred permission-based static features in our study 
since permissions are typically the first thing malicious 
software will attempt to exploit.

3.1.1 � Data collection
To construct a featured dataset, we need application 
package kits (APKs) including both benign and mali-
cious applications. We use two sources for malware 
sample collection — MalwareBazaar database [20] and 
VirusShare [21]. MalwareBazaar is a project from abuse.
ch where the latest malware samples are added every day. 
VirusShare is a malware sample repository that offers 
access to live malware samples for security researchers, 
incident responders, and forensic analysts. To determine 
whether the APK files we download are malicious or not, 
we use VirusTotal [22]. We gather benign samples from 
the Google Play Store [23], which is regarded as the offi-
cial marketplace for Android applications. We collected a 
total of 585 Android APK files, out of which 385 are mal-
ware and 200 are benign.

3.1.2 � Data analysis and permission feature extraction
The analysis of data takes place in an isolated environ-
ment. VirtualBox is employed to create an isolated 
environment, with Kali Linux installed as the guest oper-
ating system for all analysis tasks. In this phase, we use a 
reverse engineering approach for data analysis. We utilise 
Apktool, which is included in Kali Linux, to decompile 
APK files and make the AndroidManifest.xml file acces-
sible. All application permissions needed to run the pro-
gramme are contained in this AndroidManifest.xml file. 
We develop a Python program to parse the XML file, 
extract all permissions from the Manifest file, and store 
them in a.csv file. The pseudo-code snippet is shown in 
Fig. 2.

3.1.3 � Feature vector
After collecting the data, we randomly selected 398 
Android applications (199 malicious and 199 benign) 
to create the feature vector and permission-based data-
set. Using the official Android developer website [24], 
we compile a comprehensive list of 323 permissions. 
Depreciated permissions are included in this list. This 
stage involves handling the analyser to produce a binary 
variable. The presence or absence of a permission in the 
analysed AndroidManifest.xml file determines the value 
associated with that permission in the list. Let V be a 
vector that represents every selected permission feature. 
For each Android app that is downloaded, we generate a 
binary sequence Vi = {F1, F2, F3, ….., Fj} and as follows:

We write a Python program to generate the feature 
vector; a pseudo-code is displayed in Fig. 3. A label per-
taining to the application’s category is generated concur-
rently with the permissions analysis.

(1)Fj =
1The analyser detected the permission

0Otherwise

Fig. 2  Pseudo-code for performing the permission extraction
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Finally, we combine the feature vector and the asso-
ciated label for all applications to form the permission-
based dataset, which we store as a CSV file.

3.2 � Feature engineering
A preliminary examination of the feature vector pro-
vided some insightful information about the utilisa-
tion of Android permissions. We observe that there 
is variation in the distribution of permission features. 
Ten significant permissions and their usage frequency 
in the dataset are displayed in Fig.  4. Applications 

(2)li =







1 if the application is malware

0 if the application is benign

that contain malware frequently use certain permis-
sions, while those that are benign use others. Mali-
cious and legitimate apps use Android permissions like 
ACCESS_NETWORK_STATE and INTERNET some-
where equally. However, malware applications are more 
inclined to use permissions like READ_SMS, READ_
PHONE_STATE, and READ_CONTACTS.

Moreover, of the 323 permissions in the dataset, nei-
ther malware applications nor benign applications have 
used 146 of them. For malware and benign applications 
separately, the figure is 169 and 197, respectively.

A correlation is a connection or relationship whereby 
two variables are likely to change whenever one of 
them does. Figure  5 displays the relationship between 

Fig. 3  Pseudo-code for feature vector generation

Fig. 4  Android permission usage frequency in malicious and benign applications
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the top 10 dangerous permissions in malicious applica-
tions that are obtained by gradient boosting. The great-
est correlation is 0.86 between RECORD_AUDIO and 
ACCESS_FINE_LOCATION, followed by 0.74, 0.73, 
and 0.73 between CAMERA and RECORD_AUDIO, 
CAMERA and ACCESS_COARSE_LOCATION, and 
CAMERA and READ_LOGS. Malware frequently uses 
READ_SMS and READ_CALL_LOG to obtain crucial 
personal data. With the first permission, the app can 
access details about sent and received SMS messages; 
with the second permission, it can access the device’s 
call history. These permissions can be combined in 
many ways to accomplish the harmful task that is 
intended.

3.2.1 � Feature reduction
Our feature vector makes use of 323 Android permis-
sions. Large feature counts in a classification model will 
make the system more computationally expensive. More-
over, training the model takes longer on big datasets with 
a huge feature set. Thus, we use the feature subset selec-
tion approach (feature importance score) to achieve fea-
ture reduction [25].

Feature importance score is a feature reduction strategy 
that involves calculating each feature’s relevance score 
inside a dataset and removing features with lower scores 
from the final vector. Our computation of the feature 
importance score for Android permissions reveals that 
274 out of 323 features have a feature importance value 
of zero. With a feature importance value of 0.283, per-
mission READ_SMS has the highest rating. The feature 

importance score of the top 50 Android permissions is 
highlighted in Fig.  6. Based on our analysis, we remove 
all Android permissions from the feature list if they have 
a feature relevance score of 0. With just 48 features, we 
can finally create our reduced feature vector. The top 20 
Android permissions are listed in Table  1 along with a 
feature importance score.

3.3 � Malware classification models
To create an Android malware detection system, this 
study uses four standard classification algorithms. These 
algorithms are K-nearest neighbour (K-NN), Naïve-Bayes 
(NB), decision tree (DT), and random forest (RF).

3.3.1 � K‑nearest neighbour (K‑NN) algorithm
A popular supervised machine-learning technique for 
classification is K-nearest neighbour. It calculates the 
separation between classes and a data point. The adja-
cency with the points in the training set determines the 
value prediction of a new data point. To calculate dis-
tance across all datasets, this study employs the default 
metric. By default, “Minkowski” is used. When the power 
parameter, p, equals 2, the conventional Euclidean dis-
tance is obtained. K = 5 is selected as the nearest neigh-
bour number (K) since it yields the best accuracy with 
these values.

3.3.2 � Naïve‑Bayes algorithm
The algorithm is supervised and is founded on the Bayes 
theorem. The Bayes theorem provides a method for 
calculating the posterior probability. The Naïve-Bayes 

Fig. 5  Permission correlation matrix utilised in malicious software
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classifier assumes that one feature’s existence does not 
imply another’s presence. To apply the algorithm to the 
dataset, this work uses default settings.

3.3.3 � Decision tree algorithm
A supervised learning method called decision-tree is 
generally employed to address categorisation issues. The 
decision node and leaf node make up a decision tree. 

While leaf nodes are the result of decisions made by 
decision nodes and do not include any additional exten-
sions, decision nodes make decisions with multiple 
branches. To get the best outcome in this study, the crite-
rion = “entropy” is applied.

3.3.4 � Random forest algorithm
Among the supervised learning, algorithms mainly uti-
lised for classification is the random forest algorithm. 
Using data samples, it builds decision trees, extracts 
predictions from each tree, and uses voting to select the 
best outcome. This model is an ensemble one. This study 
measures the split quality using estimators = 100 and cri-
terion = “entropy”. Applying the given criterion yields the 
maximum accuracy.

3.4 � Performance metrics
An essential part of any machine-learning process is 
assessing the model’s output. In this procedure, the 
trained model forecasts previously unseen tagged data. 
Classification evaluates the percentage of these predic-
tions that the model accurately predicted. Most of the 
time, models cannot be completely accurate in real-world 
classification scenarios. Therefore, knowing how and in 
what way a model was incorrect is helpful when assess-
ing it.

A classification model is assessed using the following 
four values: true positive (TP), false positive (FP), true 
negative (TN), and false negative (FN). Numerous meas-
ures that assess performance can be obtained from these 
anticipated values. This study measures the performance 
of the classifier using precision, recall, accuracy, and F1 
score.

Fig. 6  Feature importance score of top 48 Android permissions

Table 1  Top 20 important permissions

Permissions Importance score

READ_SMS 0.282916278

FOREGROUND_SERVICE_LOCATION 0.205475003

USE_FINGERPRINT 0.056946058

READ_SYNC_SETTINGS 0.050180726

RECEIVE_MMS 0.046693586

READ_LOGS 0.038653832

SCHEDULE_EXACT_ALARM 0.027465085

INSTALL_SHORTCUT​ 0.026794842

SEND_SMS 0.020696118

BLUETOOTH_CONNECT 0.019080613

GET_TASKS 0.013990888

MODIFY_AUDIO_SETTINGS 0.013627682

GET_ACCOUNTS 0.013404317

MOUNT_UNMOUNT_FILESYSTEMS 0.013162673

BLUETOOTH_ADMIN 0.013102572

BLUETOOTH 0.012360611

CAMERA 0.009172391

ACCESS_COARSE_LOCATION 0.008857181

MANAGE_OWN_CALLS 0.008126509

ACCESS_FINE_LOCATION 0.008015067



Page 8 of 12Pathak et al. EURASIP Journal on Information Security         (2024) 2024:33 

The easiest way to calculate accuracy is to take the ratio 
of accurate forecasts to total predictions.

The precision is the proportion of true positives that 
the classifier has actually detected out of all samples that 
have been classified as positive.

The recall is the ratio of samples that the classifier cor-
rectly classified as positive overall to samples that were 
actually classified as negative.

F1 score is the harmonic mean of precision and recall 
values.

4 � Results and discussion
The primary scripting language utilised in this study 
is Python 3.12. The libraries and functions offered by 
Python are extensive. Throughout several stages of 
analysis, operating systems differ. Our preinstalled 
operating system is Windows 10. We use the virtualiza-
tion technique with Oracle VirtualBox to establish an 
isolated environment for the purpose of collecting mal-
ware samples. The guest operating system for all analy-
sis operations is Kali Linux, which is configured inside 

(3)Accuracy =
TP + TN

TP + FP + TN + FN

(4)Precision =
TP

TP + FP

(5)Recall =
TP

TP + FN

(6)F1score =
2× precision × recall

Precision + recall

VirtualBox. An Intel Core i5-8265U CPU with 16  GB 
RAM and a 256 GB SSD is used in the experiment.

We will first discuss the performance of the selected 
classification models. The performance with the entire 
feature set (323 features) is displayed in Table  2. The 
random forest classification algorithm, with an accu-
racy score of 96.25%, achieves the best accuracy when 
all features are considered.

Next, to minimise the feature set size, we employ the 
feature reduction technique utilising the feature impor-
tance score. The performance of the classifiers with a 
reduced feature set (48 features) is displayed in Table 3. 
The random forest algorithm obtains the best accuracy 
of 97.5% with the reduced feature set.

Additionally, we conducted a comparison of the clas-
sification models’ accuracy prior to and following fea-
ture reduction. Table  4 displays the outcomes of the 
comparison. Accuracy losses with the K-NN classifi-
cation model, gains in accuracy with the Naive-Bayes 
and random forest algorithms, and neither gain nor 
loss with the decision tree method are noted. Based on 
observations, the random forest classification model 
yields the maximum accuracy.

Our customised feature reduction technique reduces 
the feature set size by about 85%. Figure 7 displays the 
size of the feature set before and after feature reduc-
tion. The classification algorithms’ execution times are 
displayed in Fig. 8. We see a significant improvement in 
the algorithm’s overall running time. A comparison of 
our approach with some of the previous research that 
uses attribute selection in Android malware detection 
is given in Table 5. The data shows that the random for-
est classifier yields the best results in most studies, and 

Table 2  Performance metric with full feature (323 features)

ML models and measures Accuracy score Precision Recall F1 score

KNN classification model 90.00% 97.05% 82.50% 89.18%

Naïve-Bayes classification model 62.50% 14.70% 83.30% 25.00%

Decision tree classification model 95.00% 94.11% 94.11% 94.11%

Random forest classification 96.25% 100.00% 91.89% 95.77%

Table 3  Performance metric with reduced feature (48 features)

ML models and measures Accuracy score Precision Recall F1 score

KNN classification model 86.25% 97.05% 76.74% 85.71%

Naïve-Bayes classification model 86.25% 94.11% 78.04% 85.33%

Decision tree classification model 95.00% 94.11% 94.11% 94.11%

Random forest classification 97.50% 100.00% 94.40% 97.14%
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our method uses only 48 features to obtain the greatest 
accuracy of 97.5%.

Dangerous permissions for Android are requests 
made by an application during runtime that pro-
vide access to view private information or carry out 
banned actions. Although the runtime permission 
model strengthens the security of the Android system, 
many Android apps in reality have a variety of runtime 
problems [30, 31]. Nevertheless, these problems with 
runtime permissions can only arise when the applica-
tion is running. All developers using Android OS are 
required to specify the list of permissions required for 
their applications to function or to correctly invoke 

the Android API. As a result, the list of all Android 
permissions needed to operate the programme effec-
tively is contained in the AndroidManifest.xml file. 
Our suggested method for creating datasets is essen-
tially permission-based static analysis, which looks 
into malware without running the programme. It uses 
the AndroidManifest.xml file to get the fundamental 
data about the operation of the app. A reverse engi-
neering approach is used to study the Android applica-
tion’s source code and extract its features. As a result, 
the suggested method is unaffected by Android runt-
ime permission concerns because all attributes are 
extracted without running the code.

Table 4  Comparison (accuracy gain or loss)

ML models and measures With the full feature set With the reduced feature set Accuracy gain/loss

KNN classification model 90.00% 86.25%  − 3.75%

Naïve-Bayes classification model 62.50% 86.25% 23.75%

Decision tree classification model 95.00% 95.00% 0.00%

Random forest classification 96.25% 97.50% 1.25%

Fig. 7  Comparison of feature set size

Fig. 8  Model execution time
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The issue with permission-based datasets is that 
when new viruses and Android versions emerge, the 
datasets are out of current, and the detection system 
can no longer function. One way to solve this is to 
retrain the classifier using an updated dataset. When 
to retrain a malware detection system is a challeng-
ing decision, though [32]. Dangerous permissions pose 
the greatest threat to Android security, given the level 
of protection afforded by Android permission sys-
tems. According to official releases from the Android 
platform, harmful permissions do not change over 
the course of several Android version releases, even 
though Android permissions are constantly evolving. 
Consequently, our model will remain viable until a 
new Android update adds any dangerous permissions.

Dangerous permissions are crucial in permission-
based malware detection systems. We can make our 
system as resilient as other cutting-edge malware 
detection systems by researching the pattern of devel-
opment of dangerous permissions in Android. We can 
include this in our study’s future scope.

Because it is easy to extract static features, static 
approaches are typically simpler to implement. Nev-
ertheless, there are several drawbacks to static meth-
ods, and as a result, models constructed using Android 
permissions are typically found to be unable to iden-
tify the hidden behaviour of dynamic code loading and 
code obfuscation. Consequently, some malicious apps 
might use subtle techniques to avoid being detected 
based on permissions. Using permissions as a feature 
is also limited by the fact that many detection models 
cannot track behaviours that do not result in permis-
sion checks.

5 � Conclusion and future works
The number of Android systems has increased dra-
matically during the past 10  years. Because Android 
devices are so popular, cybercriminals target them. 
According to research, heuristic- and signature-based 
detection engines are unable to handle new-generation 
malware. Machine learning-based malware detection 
has become the most popular defence strategy against 
Android malware in recent years. As new malware 
appears and changes its behaviour patterns, it is imper-
ative to update the malware features in the dataset. It 
is never feasible to assess the defensive mechanism’s 
efficacy using older datasets. This research focuses 
on the process of creating permission-based datasets 
using recent malware samples. The entire process of 
generating the permission-based dataset is thoroughly 
and methodically explained, beginning with data col-
lecting, reverse engineering, permissions extraction 
from the AndroidManifest.xml file, and feature vector 
construction. Our analysis shows that feature engi-
neering results in an effective detection system for 
Android malware that improves accuracy and short-
ens the model execution time. Our experimental result 
reveals that with feature reduction, just 48 permissions 
are needed to create a classification model that gives 
us 97.5% accuracy, saving a substantial amount of time 
throughout the model training and test stages. Future 
research in this field will investigate how useful various 
feature selection techniques are. Furthermore, besides 
traditional machine learning algorithms, we will also 
apply deep learning techniques to improve classifica-
tion performance.

Table 5  Comparison of performance with earlier work

Study Dataset size ML classifier Feature selection method Performance

Sanz et al
[17]

1811 benign
249 malware

Random forest Permission tag 86.41%
(accuracy)

Sahin et al
[26]

199 malware
200 benign

K-nearest neighbour Relevance frequency 96.63%
(accuracy)

Santosh K. et al
(K. et al., 2020)

199 malware
199 benign

Randomizable filtered classification Gain ratio 93.46%
(accuracy)

A. Sangal et al
[27]

1126 benign
396 malware

Random forest PCA 96.05%
(accuracy)

Rathore et al
[28]

5560 malware
5721 benign

Random forest Variance threshold 93.3%
(accuracy)

A. Shatnawi et al. [29] 1126 benign
396 malware

Support vector machine RFE 94.36%
(accuracy)

D. O. Sahin et al
[16]

1000 malware
1000 benign

Random forest Linear regression 96.1%
(F-measure)

Our approach 199 malware
199 benign

Random forest Feature importance score 97.5%
(accuracy)
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