
Pathak et al.
EURASIP Journal on Information Security (2024) 2024:33
https://doi.org/10.1186/s13635-024-00182-3

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

EURASIP Journal on
Information Security

Static analysis framework
for permission‑based dataset generation
and android malware detection using machine
learning
Amarjyoti Pathak1*, Th. Shanta Kumar2 and Utpal Barman3 

Abstract 

Since Android is the popular mobile operating system worldwide, malicious attackers seek out Android smartphones
as targets. The Android malware can be identified through a number of established detection techniques. However,
the issues presented by modern malware cannot be met by traditional signature or heuristic-based malware detec-
tion methods. Previous research suggests that machine-learning classifiers can be utilised to analyse permissions,
making it possible to differentiate between malicious and benign applications on the Android platform. There exist
machine-learning methods that utilise permission-based attributes to build models for the detection of malware
on Android devices. Nevertheless, the performance of these detection methods is dependent on the raw or feature
datasets. Android malware research frequently faces a major obstacle due to the lack of adequate and up-to-date
raw malware datasets. In this paper, we put forward a systematic approach to generate an Android permission-based
dataset using static analysis. To create the dataset, we collect recent raw malware samples (APK files) and focus
on the reverse engineering approach and permission-based features extraction. We also conduct a thorough feature
analysis to determine the important Android permissions and present a machine-learning-based Android malware
detection mechanism. The experimental result of our study demonstrates that with just 48 features, the random forest
classifier-based Android malware detection model obtains the best accuracy of 97.5%.

Keywords  Android malware detection, Static analysis, Permission feature extraction, Feature engineering, Machine
learning

1  Introduction
According to Statista web portal [1], in the global mobile
operating system market, Android continues to hold the
top spot with a market share of 70.7% in the first quarter

of 2024. Several elements are involved in this dominance,
including the following: (i) since its open source, install-
ing and customising it cost nothing [2], (ii) the capacity
to add plenty of programs from the official application
market (the Play Store) to increase the operating system’s
default functionality, and (iii) in addition to Google, the
Android OS is developed and distributed by a group of
over 84 software development companies (OHA — Open
Handset Alliance), such as Sony, Samsung, and HTC [3].
Unfortunately, because of its enormous popularity, mal-
ware program developers are attracted to it. Fraudulent
APK (Android Application Package) files can take control

*Correspondence:
Amarjyoti Pathak
amar.pathak@gmail.com
1 GIMT, Guwahati under Assam Science and Technology University,
Guwahati, Assam, India
2 Department of CSE, Girijananda Chowdhury University, Guwahati,
Assam, India
3 Faculty of Computer Technology, Assam down town University,
Guwahati, Assam, India

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-024-00182-3&domain=pdf

Page 2 of 12Pathak et al. EURASIP Journal on Information Security (2024) 2024:33

of Android smartphones through malware and cause sig-
nificant harm to them [4].

Antivirus software providers and the antimalware
research community offer the initial layer of defence
against any malware attack. In the beginning, signature-
based detection mechanisms served as the foundation for
antivirus engines. A signature is a particular pattern that
is kept up to date in an antivirus database and serves to
identify malware uniquely. But the main problems with
signature-based methods are that they are not scalable,
and they are vulnerable to 0-day attacks [5]. Heuristic
engines are frequently used in antivirus programs to sup-
plement signature-based detection, in which malware
specialists create rules to identify potentially harmful
activity on a system [6]. However, it is difficult to write
specific criteria for such engines to detect malicious
activity without raising the false-positive rate [7].

In recent years, scholars have started to look at devel-
oping malware detection mechanisms based on machine
learning [8]. There are two stages involved in building
these systems: feature extraction using application anal-
ysis and classification. Based on the traditional research
methodology described in the literature, experts and
researchers commonly utilise three analysis techniques—
static, dynamic, and hybrid—for feature extraction to
detect Android malware [9]. Static analysis gathers fun-
damental data about the functionality of the application
to investigate malware without running the actual code.
Dynamic analysis, on the other hand, tracks an appli-
cation’s nature and looks for indications of malicious
behaviour. The hybrid study combines static and dynamic
analysis. Even though code obfuscation and other com-
plex malicious transformation techniques provide some
challenges for static analysis, it is still a very effective,
practical, and widespread method of detecting malware
before it executes. Static features in Android are taken
from the APK file’s source code. Of all the static features,
permissions is the most widely applied and popular one
[10]. Several publications addressing the use of static
malware analysis have been released in earlier research.
For instance, Urcuqui Lopez et al. [11] suggested a frame-
work for static analysis and used machine learning to dis-
tinguish between legitimate and dangerous apps. They
gathered 558 APKs in total and evaluated them using a
list of 330 attributes. Using K-neighbours, SVM, and the
decision tree algorithm, they reached the best accuracy of
94% in classification. DREBIN [12] conducts a thorough
static analysis, extracting as many features (API, permis-
sions, network address, etc.) as it can from the manifest
and program of an application. With a detection rate of
93.9%, DREBIN offers a decent performance.

Google incorporated a permission system into the
Android OS, which requires all developers to specify

the permissions needed for their application’s function-
ing. However, the choice to allow or prohibit access to
the requested permission rests with the user. Thus, it
appears that monitoring and analysing permissions can
help prevent Android malware from spreading. In recent
trends, researchers have developed reliable machine-
learning models for detecting Android malware by ana-
lysing the significance of permissions [13–17]. Sanz et al.
[17] extracted the application permissions and utilised
machine-learning algorithms to detect malware. A total
of 1811 benign and 249 malicious programs were used to
evaluate their framework, called PUMA. With an accu-
racy of 86.41%, the random forest (RF) classifier pro-
duced the best results. A. P. Felt et al. [14] introduced
Stowaway, a tool that identifies over-privilege in Android
programs that have been developed. Stowaway consists
of two components: an API call that lists the permissions
required for each API call and a static analysis tool that
establishes the permission map of an application. Santosh
K. et al. [15] devised a system that identifies the most
significant features using the feature reduction tech-
nique. They used a dataset containing 398 samples and
330 permissions — 198 of which are malware and 198
of which are benign. Gain ratio, information gain, and
ReliefF were used to compare various feature reduction
techniques. The authors achieved the maximum accuracy
of 93.46% using the randomizable filtered classification
method utilising the gain ratio when the top 5 permis-
sions were considered for performance evaluation. D.
O. Sahin et al. [16] proposed a novel machine-learning-
based malware detection approach for Android to differ-
entiate between goodware and malware applications. The
authors employed a feature selection technique using lin-
ear regression to eliminate superfluous permissions. They
experimented with 1000 malicious and 1000 legitimate
apps. They downloaded malware from the Android mal-
ware dataset as well as useful apps from APKPure. The
authors used the SMO algorithm to obtain the best per-
formance of 0.9655 (F-measure) (102 permissions) with-
out carrying out the feature selection procedure. Using
the same approach, they achieved the greatest accuracy
of 0.961 (F-measure) (27 permissions) by implementing
feature selection.

Based on the review of the literature, we observe that
most works used datasets from 2009 to 2020. These data-
sets, which include samples from earlier Android system
versions, were also used by several recent articles pub-
lished after 2020, such as Şahin et al. [16], Sihag et al.
[18], and Sarah et al. [19]. As new malware emerges in its
behaviour patterns, it is important to update the malware
features in the dataset. To ensure reliable evaluation of
malware detection systems, it is required to periodically
develop unbiased malware datasets. From the literature

Page 3 of 12Pathak et al. EURASIP Journal on Information Security (2024) 2024:33 	

survey, we observe that many researchers’ uses older
datasets in their research work. Older datasets are never
enough to assess how well the defence mechanism is
working. In this study, we attempt to suggest a mecha-
nism to detect Android malware that is both reliable and
efficient. We gather the latest malware samples directly
from the sources that are regularly updated with the new-
est malware. We use the static analysis technique to con-
struct a framework to generate a novel permission-based
dataset. The comprehensive permissions list is manually
compiled from the official Android docs.

We further carry out a feature vector analysis utilis-
ing the feature reduction technique to minimise num-
ber of features in the dataset. Feature reduction is the
act of lowering a dataset’s feature count, or dimensions,
while preserving as much information as feasible. It helps
machine learning algorithms computationally efficient
and reduces storage.

Eventually, we assess the performance with prominent
machine-learning classifiers, such as K-NN, Naive Bayes,
decision tree, and random forest.

The following highlights the key contributions of this
work:

1)	 We suggest a framework for generating a featured
dataset through static analysis. This method gathers
malware samples from a live malware repository and
uses reverse engineering to extract permission fea-
tures from the gathered APK files.

2)	 We propose an Android malware detection system
that uses machine learning-based classification mod-
els after thorough feature engineering (using a fea-
ture importance-based attribute reduction strategy).

3)	 The random forest method works better and reaches
a 96.25% accuracy rate with full permission. Our
reduced feature models, built with just 15% of the
Android permissions, attain maximum accuracy
while saving a significant amount of time. Despite
having fewer features, the random forest classifier
achieves an accuracy of 97.5%.

2 � The proposed system
This study aims to propose an effective and efficient
Android malware detection system. Figure 1 depicts the
proposed systematic structure of the empirical study
used to classify malware. The architecture is broken
down into the following modules:

2.1 � Permission‑based dataset generation
The dataset preparation framework outlines the entire
process of getting ready for the created dataset. We sepa-
rate them into three phases: data collection, data analysis
and feature extraction, and feature vector generation. In

the data collection phase, Android applications that are
malicious and benign are gathered for additional exami-
nation. The data gathered in phase 1 is subjected to static
data analysis employing a reverse engineering approach
and feature extraction in the second phase. Lastly, phase
3 creates a binary variable for each extracted permission
and gives each application a label to produce the final
dataset.

For our experimental study, we collect over 700
Android applications from various sources. We extract
the Android permissions from the application that could
serve as features for our models. We carefully compile
323 permissions from the official Android developer
website. The end product of this module is a permission-
based dataset.

2.2 � Classification models
The primary goal of machine learning-based classifica-
tion is to create a model that can correctly classify new
Android applications. Various machine-learning algo-
rithms can be employed to develop the detection mod-
els. We assess the Android malware detection system’s

Fig. 1  Proposed Android malware detection system

Page 4 of 12Pathak et al. EURASIP Journal on Information Security (2024) 2024:33

performance using four common machine learning algo-
rithms, viz. K-nearest neighbour (K-NN), Naïve Bayes
(NB), decision tree (DT), and random forest (RF). Later
on, each module is covered in detail.

3 � Methodology
This section covers the steps involved in creating the
permission-based dataset, feature reduction methods
applied to the dataset, and several machine learning
algorithms utilised in the development of an effective
Android malware detection system.

3.1 � Permission‑based dataset
Any program that wants to access the restricted data,
whether it be malware or goodware, must initially go via
the permission authorisation process. We predominantly
preferred permission-based static features in our study
since permissions are typically the first thing malicious
software will attempt to exploit.

3.1.1 � Data collection
To construct a featured dataset, we need application
package kits (APKs) including both benign and mali-
cious applications. We use two sources for malware
sample collection — MalwareBazaar database [20] and
VirusShare [21]. MalwareBazaar is a project from abuse.
ch where the latest malware samples are added every day.
VirusShare is a malware sample repository that offers
access to live malware samples for security researchers,
incident responders, and forensic analysts. To determine
whether the APK files we download are malicious or not,
we use VirusTotal [22]. We gather benign samples from
the Google Play Store [23], which is regarded as the offi-
cial marketplace for Android applications. We collected a
total of 585 Android APK files, out of which 385 are mal-
ware and 200 are benign.

3.1.2 � Data analysis and permission feature extraction
The analysis of data takes place in an isolated environ-
ment. VirtualBox is employed to create an isolated
environment, with Kali Linux installed as the guest oper-
ating system for all analysis tasks. In this phase, we use a
reverse engineering approach for data analysis. We utilise
Apktool, which is included in Kali Linux, to decompile
APK files and make the AndroidManifest.xml file acces-
sible. All application permissions needed to run the pro-
gramme are contained in this AndroidManifest.xml file.
We develop a Python program to parse the XML file,
extract all permissions from the Manifest file, and store
them in a.csv file. The pseudo-code snippet is shown in
Fig. 2.

3.1.3 � Feature vector
After collecting the data, we randomly selected 398
Android applications (199 malicious and 199 benign)
to create the feature vector and permission-based data-
set. Using the official Android developer website [24],
we compile a comprehensive list of 323 permissions.
Depreciated permissions are included in this list. This
stage involves handling the analyser to produce a binary
variable. The presence or absence of a permission in the
analysed AndroidManifest.xml file determines the value
associated with that permission in the list. Let V be a
vector that represents every selected permission feature.
For each Android app that is downloaded, we generate a
binary sequence Vi = {F1, F2, F3, ….., Fj} and as follows:

We write a Python program to generate the feature
vector; a pseudo-code is displayed in Fig. 3. A label per-
taining to the application’s category is generated concur-
rently with the permissions analysis.

(1)Fj =
1The analyser detected the permission

0Otherwise

Fig. 2  Pseudo-code for performing the permission extraction

Page 5 of 12Pathak et al. EURASIP Journal on Information Security (2024) 2024:33 	

Finally, we combine the feature vector and the asso-
ciated label for all applications to form the permission-
based dataset, which we store as a CSV file.

3.2 � Feature engineering
A preliminary examination of the feature vector pro-
vided some insightful information about the utilisa-
tion of Android permissions. We observe that there
is variation in the distribution of permission features.
Ten significant permissions and their usage frequency
in the dataset are displayed in Fig. 4. Applications

(2)li =







1 if the application is malware

0 if the application is benign

that contain malware frequently use certain permis-
sions, while those that are benign use others. Mali-
cious and legitimate apps use Android permissions like
ACCESS_NETWORK_STATE and INTERNET some-
where equally. However, malware applications are more
inclined to use permissions like READ_SMS, READ_
PHONE_STATE, and READ_CONTACTS.

Moreover, of the 323 permissions in the dataset, nei-
ther malware applications nor benign applications have
used 146 of them. For malware and benign applications
separately, the figure is 169 and 197, respectively.

A correlation is a connection or relationship whereby
two variables are likely to change whenever one of
them does. Figure 5 displays the relationship between

Fig. 3  Pseudo-code for feature vector generation

Fig. 4  Android permission usage frequency in malicious and benign applications

Page 6 of 12Pathak et al. EURASIP Journal on Information Security (2024) 2024:33

the top 10 dangerous permissions in malicious applica-
tions that are obtained by gradient boosting. The great-
est correlation is 0.86 between RECORD_AUDIO and
ACCESS_FINE_LOCATION, followed by 0.74, 0.73,
and 0.73 between CAMERA and RECORD_AUDIO,
CAMERA and ACCESS_COARSE_LOCATION, and
CAMERA and READ_LOGS. Malware frequently uses
READ_SMS and READ_CALL_LOG to obtain crucial
personal data. With the first permission, the app can
access details about sent and received SMS messages;
with the second permission, it can access the device’s
call history. These permissions can be combined in
many ways to accomplish the harmful task that is
intended.

3.2.1 � Feature reduction
Our feature vector makes use of 323 Android permis-
sions. Large feature counts in a classification model will
make the system more computationally expensive. More-
over, training the model takes longer on big datasets with
a huge feature set. Thus, we use the feature subset selec-
tion approach (feature importance score) to achieve fea-
ture reduction [25].

Feature importance score is a feature reduction strategy
that involves calculating each feature’s relevance score
inside a dataset and removing features with lower scores
from the final vector. Our computation of the feature
importance score for Android permissions reveals that
274 out of 323 features have a feature importance value
of zero. With a feature importance value of 0.283, per-
mission READ_SMS has the highest rating. The feature

importance score of the top 50 Android permissions is
highlighted in Fig. 6. Based on our analysis, we remove
all Android permissions from the feature list if they have
a feature relevance score of 0. With just 48 features, we
can finally create our reduced feature vector. The top 20
Android permissions are listed in Table 1 along with a
feature importance score.

3.3 � Malware classification models
To create an Android malware detection system, this
study uses four standard classification algorithms. These
algorithms are K-nearest neighbour (K-NN), Naïve-Bayes
(NB), decision tree (DT), and random forest (RF).

3.3.1 � K‑nearest neighbour (K‑NN) algorithm
A popular supervised machine-learning technique for
classification is K-nearest neighbour. It calculates the
separation between classes and a data point. The adja-
cency with the points in the training set determines the
value prediction of a new data point. To calculate dis-
tance across all datasets, this study employs the default
metric. By default, “Minkowski” is used. When the power
parameter, p, equals 2, the conventional Euclidean dis-
tance is obtained. K = 5 is selected as the nearest neigh-
bour number (K) since it yields the best accuracy with
these values.

3.3.2 � Naïve‑Bayes algorithm
The algorithm is supervised and is founded on the Bayes
theorem. The Bayes theorem provides a method for
calculating the posterior probability. The Naïve-Bayes

Fig. 5  Permission correlation matrix utilised in malicious software

Page 7 of 12Pathak et al. EURASIP Journal on Information Security (2024) 2024:33 	

classifier assumes that one feature’s existence does not
imply another’s presence. To apply the algorithm to the
dataset, this work uses default settings.

3.3.3 � Decision tree algorithm
A supervised learning method called decision-tree is
generally employed to address categorisation issues. The
decision node and leaf node make up a decision tree.

While leaf nodes are the result of decisions made by
decision nodes and do not include any additional exten-
sions, decision nodes make decisions with multiple
branches. To get the best outcome in this study, the crite-
rion = “entropy” is applied.

3.3.4 � Random forest algorithm
Among the supervised learning, algorithms mainly uti-
lised for classification is the random forest algorithm.
Using data samples, it builds decision trees, extracts
predictions from each tree, and uses voting to select the
best outcome. This model is an ensemble one. This study
measures the split quality using estimators = 100 and cri-
terion = “entropy”. Applying the given criterion yields the
maximum accuracy.

3.4 � Performance metrics
An essential part of any machine-learning process is
assessing the model’s output. In this procedure, the
trained model forecasts previously unseen tagged data.
Classification evaluates the percentage of these predic-
tions that the model accurately predicted. Most of the
time, models cannot be completely accurate in real-world
classification scenarios. Therefore, knowing how and in
what way a model was incorrect is helpful when assess-
ing it.

A classification model is assessed using the following
four values: true positive (TP), false positive (FP), true
negative (TN), and false negative (FN). Numerous meas-
ures that assess performance can be obtained from these
anticipated values. This study measures the performance
of the classifier using precision, recall, accuracy, and F1
score.

Fig. 6  Feature importance score of top 48 Android permissions

Table 1  Top 20 important permissions

Permissions Importance score

READ_SMS 0.282916278

FOREGROUND_SERVICE_LOCATION 0.205475003

USE_FINGERPRINT 0.056946058

READ_SYNC_SETTINGS 0.050180726

RECEIVE_MMS 0.046693586

READ_LOGS 0.038653832

SCHEDULE_EXACT_ALARM 0.027465085

INSTALL_SHORTCUT​ 0.026794842

SEND_SMS 0.020696118

BLUETOOTH_CONNECT 0.019080613

GET_TASKS 0.013990888

MODIFY_AUDIO_SETTINGS 0.013627682

GET_ACCOUNTS 0.013404317

MOUNT_UNMOUNT_FILESYSTEMS 0.013162673

BLUETOOTH_ADMIN 0.013102572

BLUETOOTH 0.012360611

CAMERA 0.009172391

ACCESS_COARSE_LOCATION 0.008857181

MANAGE_OWN_CALLS 0.008126509

ACCESS_FINE_LOCATION 0.008015067

Page 8 of 12Pathak et al. EURASIP Journal on Information Security (2024) 2024:33

The easiest way to calculate accuracy is to take the ratio
of accurate forecasts to total predictions.

The precision is the proportion of true positives that
the classifier has actually detected out of all samples that
have been classified as positive.

The recall is the ratio of samples that the classifier cor-
rectly classified as positive overall to samples that were
actually classified as negative.

F1 score is the harmonic mean of precision and recall
values.

4 � Results and discussion
The primary scripting language utilised in this study
is Python 3.12. The libraries and functions offered by
Python are extensive. Throughout several stages of
analysis, operating systems differ. Our preinstalled
operating system is Windows 10. We use the virtualiza-
tion technique with Oracle VirtualBox to establish an
isolated environment for the purpose of collecting mal-
ware samples. The guest operating system for all analy-
sis operations is Kali Linux, which is configured inside

(3)Accuracy =
TP + TN

TP + FP + TN + FN

(4)Precision =
TP

TP + FP

(5)Recall =
TP

TP + FN

(6)F1score =
2× precision × recall

Precision + recall

VirtualBox. An Intel Core i5-8265U CPU with 16 GB
RAM and a 256 GB SSD is used in the experiment.

We will first discuss the performance of the selected
classification models. The performance with the entire
feature set (323 features) is displayed in Table 2. The
random forest classification algorithm, with an accu-
racy score of 96.25%, achieves the best accuracy when
all features are considered.

Next, to minimise the feature set size, we employ the
feature reduction technique utilising the feature impor-
tance score. The performance of the classifiers with a
reduced feature set (48 features) is displayed in Table 3.
The random forest algorithm obtains the best accuracy
of 97.5% with the reduced feature set.

Additionally, we conducted a comparison of the clas-
sification models’ accuracy prior to and following fea-
ture reduction. Table 4 displays the outcomes of the
comparison. Accuracy losses with the K-NN classifi-
cation model, gains in accuracy with the Naive-Bayes
and random forest algorithms, and neither gain nor
loss with the decision tree method are noted. Based on
observations, the random forest classification model
yields the maximum accuracy.

Our customised feature reduction technique reduces
the feature set size by about 85%. Figure 7 displays the
size of the feature set before and after feature reduc-
tion. The classification algorithms’ execution times are
displayed in Fig. 8. We see a significant improvement in
the algorithm’s overall running time. A comparison of
our approach with some of the previous research that
uses attribute selection in Android malware detection
is given in Table 5. The data shows that the random for-
est classifier yields the best results in most studies, and

Table 2  Performance metric with full feature (323 features)

ML models and measures Accuracy score Precision Recall F1 score

KNN classification model 90.00% 97.05% 82.50% 89.18%

Naïve-Bayes classification model 62.50% 14.70% 83.30% 25.00%

Decision tree classification model 95.00% 94.11% 94.11% 94.11%

Random forest classification 96.25% 100.00% 91.89% 95.77%

Table 3  Performance metric with reduced feature (48 features)

ML models and measures Accuracy score Precision Recall F1 score

KNN classification model 86.25% 97.05% 76.74% 85.71%

Naïve-Bayes classification model 86.25% 94.11% 78.04% 85.33%

Decision tree classification model 95.00% 94.11% 94.11% 94.11%

Random forest classification 97.50% 100.00% 94.40% 97.14%

Page 9 of 12Pathak et al. EURASIP Journal on Information Security (2024) 2024:33 	

our method uses only 48 features to obtain the greatest
accuracy of 97.5%.

Dangerous permissions for Android are requests
made by an application during runtime that pro-
vide access to view private information or carry out
banned actions. Although the runtime permission
model strengthens the security of the Android system,
many Android apps in reality have a variety of runtime
problems [30, 31]. Nevertheless, these problems with
runtime permissions can only arise when the applica-
tion is running. All developers using Android OS are
required to specify the list of permissions required for
their applications to function or to correctly invoke

the Android API. As a result, the list of all Android
permissions needed to operate the programme effec-
tively is contained in the AndroidManifest.xml file.
Our suggested method for creating datasets is essen-
tially permission-based static analysis, which looks
into malware without running the programme. It uses
the AndroidManifest.xml file to get the fundamental
data about the operation of the app. A reverse engi-
neering approach is used to study the Android applica-
tion’s source code and extract its features. As a result,
the suggested method is unaffected by Android runt-
ime permission concerns because all attributes are
extracted without running the code.

Table 4  Comparison (accuracy gain or loss)

ML models and measures With the full feature set With the reduced feature set Accuracy gain/loss

KNN classification model 90.00% 86.25%  − 3.75%

Naïve-Bayes classification model 62.50% 86.25% 23.75%

Decision tree classification model 95.00% 95.00% 0.00%

Random forest classification 96.25% 97.50% 1.25%

Fig. 7  Comparison of feature set size

Fig. 8  Model execution time

Page 10 of 12Pathak et al. EURASIP Journal on Information Security (2024) 2024:33

The issue with permission-based datasets is that
when new viruses and Android versions emerge, the
datasets are out of current, and the detection system
can no longer function. One way to solve this is to
retrain the classifier using an updated dataset. When
to retrain a malware detection system is a challeng-
ing decision, though [32]. Dangerous permissions pose
the greatest threat to Android security, given the level
of protection afforded by Android permission sys-
tems. According to official releases from the Android
platform, harmful permissions do not change over
the course of several Android version releases, even
though Android permissions are constantly evolving.
Consequently, our model will remain viable until a
new Android update adds any dangerous permissions.

Dangerous permissions are crucial in permission-
based malware detection systems. We can make our
system as resilient as other cutting-edge malware
detection systems by researching the pattern of devel-
opment of dangerous permissions in Android. We can
include this in our study’s future scope.

Because it is easy to extract static features, static
approaches are typically simpler to implement. Nev-
ertheless, there are several drawbacks to static meth-
ods, and as a result, models constructed using Android
permissions are typically found to be unable to iden-
tify the hidden behaviour of dynamic code loading and
code obfuscation. Consequently, some malicious apps
might use subtle techniques to avoid being detected
based on permissions. Using permissions as a feature
is also limited by the fact that many detection models
cannot track behaviours that do not result in permis-
sion checks.

5 � Conclusion and future works
The number of Android systems has increased dra-
matically during the past 10 years. Because Android
devices are so popular, cybercriminals target them.
According to research, heuristic- and signature-based
detection engines are unable to handle new-generation
malware. Machine learning-based malware detection
has become the most popular defence strategy against
Android malware in recent years. As new malware
appears and changes its behaviour patterns, it is imper-
ative to update the malware features in the dataset. It
is never feasible to assess the defensive mechanism’s
efficacy using older datasets. This research focuses
on the process of creating permission-based datasets
using recent malware samples. The entire process of
generating the permission-based dataset is thoroughly
and methodically explained, beginning with data col-
lecting, reverse engineering, permissions extraction
from the AndroidManifest.xml file, and feature vector
construction. Our analysis shows that feature engi-
neering results in an effective detection system for
Android malware that improves accuracy and short-
ens the model execution time. Our experimental result
reveals that with feature reduction, just 48 permissions
are needed to create a classification model that gives
us 97.5% accuracy, saving a substantial amount of time
throughout the model training and test stages. Future
research in this field will investigate how useful various
feature selection techniques are. Furthermore, besides
traditional machine learning algorithms, we will also
apply deep learning techniques to improve classifica-
tion performance.

Table 5  Comparison of performance with earlier work

Study Dataset size ML classifier Feature selection method Performance

Sanz et al
[17]

1811 benign
249 malware

Random forest Permission tag 86.41%
(accuracy)

Sahin et al
[26]

199 malware
200 benign

K-nearest neighbour Relevance frequency 96.63%
(accuracy)

Santosh K. et al
(K. et al., 2020)

199 malware
199 benign

Randomizable filtered classification Gain ratio 93.46%
(accuracy)

A. Sangal et al
[27]

1126 benign
396 malware

Random forest PCA 96.05%
(accuracy)

Rathore et al
[28]

5560 malware
5721 benign

Random forest Variance threshold 93.3%
(accuracy)

A. Shatnawi et al. [29] 1126 benign
396 malware

Support vector machine RFE 94.36%
(accuracy)

D. O. Sahin et al
[16]

1000 malware
1000 benign

Random forest Linear regression 96.1%
(F-measure)

Our approach 199 malware
199 benign

Random forest Feature importance score 97.5%
(accuracy)

Page 11 of 12Pathak et al. EURASIP Journal on Information Security (2024) 2024:33 	

Acknowledgements
We express our gratitude to the Department of Computer Science and
Engineering, Girijananda Chowdhury University, for providing the necessary
facilities and support.

Authors’ contributions
The authors confirm their contribution to the paper as follows: Amarjyoti
Pathak: Literature survey, study conception and design, malware sample col-
lection, static analysis and featured dataset generation, machine learning clas-
sification algorithm and feature analysis, analysis and interpretation of results,
and draft manuscript preparation. Th. Shanta Kumar: Literature survey, study
conception and design, analysis and interpretation of results, and supervision.
Utpal Barman: Machine learning classification algorithm and feature analysis,
analysis and interpretation of results, and supervision. All authors reviewed the
results and approved the final version of the manuscript.

Funding
Not applicable.

Data availability
The dataset generated and/or analysed during the current study is available
from the corresponding author upon reasonable request.

Declarations

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 2 September 2024 Accepted: 14 October 2024

References
	1.	 A. Sherif, Mobile OS market share worldwide 2009–2024. Statista.

(2024). Available at: https://​www.​stati​sta.​com/​stati​stics/​272698/​
global-​market-​share-​held-​by-​mobile-​opera​ting-​syste​ms-​since-​2009/.
Accessed 24 July 2024

	2.	 M. Yang, S. Wang, Z. Ling, Y. Liu, Z. Ni, Detection of malicious behavior
in android apps through API calls and permission uses analysis. Con-
curr. Comput. 29, e4172 (2017). https://​doi.​org/​10.​1002/​cpe.​4172

	3.	 A.T. Kabakus, What static analysis can utmost offer for Android malware
detection. ITC 48, 235–240 (2019). https://​doi.​org/​10.​5755/​j01.​itc.​48.2.​
21457

	4.	 K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, H. Liu, A review of Android mal-
ware detection approaches based on machine learning. IEEE Access 8,
124579–124607 (2020). https://​doi.​org/​10.​1109/​ACCESS.​2020.​30061​43

	5.	 Ye Y, Li T, Adjeroh D, Iyengar SS (2017) A survey on malware detection
using data mining techniques. ACM. Comput. Surv. 50:41:1–41:40.
https://​doi.​org/​10.​1145/​30735​59

	6.	 Z. Bazrafshan et al., A survey on Heuristic Malware Detection Tech-
niques’, in The 5th Conference on Information and Knowledge Technology
[Preprint]. (2013). https://​doi.​org/​10.​1109/​ikt.​2013.​66200​49

	7.	 P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M.S. Gaur, M. Conti, M.
Rajarajan, Android security: a survey of issues, malware penetration,
and defenses. IEEE Communications Surveys & Tutorials 17, 998–1022
(2015). https://​doi.​org/​10.​1109/​COMST.​2014.​23861​39

	8.	 D. Gibert, C. Mateu, J. Planes, The rise of machine learning for detection
and classification of malware: research developments, trends and chal-
lenges. J. Netw. Comput. Appl. 153, 102526 (2020). https://​doi.​org/​10.​
1016/j.​jnca.​2019.​102526

	9.	 J. Senanayake, H. Kalutarage, O. Al-Kadri, Android mobile mal-
ware detection using machine learning: a systematic review.

Electron. 10(13), 34 (2021). https://​doi.​org/​10.​3390/​elect​ronic​s1013​
1606

	10.	 Y. Sharma, A. Arora, A comprehensive review on permissions-based
Android malware detection. Int. J. Inf. Secur. 23, 1877–1912 (2024).
https://​doi.​org/​10.​1007/​s10207-​024-​00822-2

	11.	 Urcuqui-López C, Cadavid AN (2016) Framework for malware analysis
in Android. Sistemas y Telemática 14:45–56. https://​doi.​org/​10.​18046/​
syt.​v14i37.​2241

	12.	 D. Arp et al., Drebin: Effective and explainable detection of Android
malware in your pocket, in Proceedings 2014 Network and Distributed
System Security Symposium [Preprint]. (2014). https://​doi.​org/​10.​14722/​
ndss.​2014.​23247

	13.	 F. Akbar, M. Hussain, R. Mumtaz, Q. Riaz, A.W.A. Wahab, K.-H. Jung,
Permissions-based detection of Android malware using machine learn-
ing. Symmetry 14, 718 (2022). https://​doi.​org/​10.​3390/​sym14​040718

	14.	 A.P. Felt et al., Android permissions demystified, in Proceedings of the
18th ACM conference on Computer and communications security. (2011).
pp 627–638. https://​doi.​org/​10.​1145/​20467​07.​20467​79

	15.	 K. SJ, S. Chakravarty, P.R.K. Varma, Feature selection and evaluation of
permission-based Android Malware Detection, in 2020 4th International
Conference on Trends in Electronics and Informatics (ICOEI) (48184), vol.
21, (2020), pp.795–799. https://​doi.​org/​10.​1109/​icoei​48184.​2020.​91429​
29

	16.	 D.Ö. Şahin, O.E. Kural, S. Akleylek, E. Kılıç, A novel permission-based
Android malware detection system using feature selection based on
linear regression. Neural Comput. & Applic. 35, 4903–4918 (2023).
https://​doi.​org/​10.​1007/​s00521-​021-​05875-1

	17.	 B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P.G. Bringas, G. Álvarez,
PUMA: permission usage to detect malware in Android, in International
Joint Conference CISIS’12-ICEUTE´12-SOCO´12 Special Sessions. (Springer,
Berlin Heidelberg, Berlin, Heidelberg, 2013), pp.289–298

	18.	 V. Sihag, M. Vardhan, P. Singh, BLADE: robust malware detection against
obfuscation in Android. Forensic Science International: Digital Investi-
gation 38, 301176 (2021). https://​doi.​org/​10.​1016/j.​fsidi.​2021.​301176

	19.	 N.A. Sarah, F.Y. Rifat, Md.S. Hossain, H.S. Narman, An efficient Android
malware prediction using Ensemble machine learning algorithms.
Procedia. Comput. Sci. 191, 184–191 (2021). https://​doi.​org/​10.​1016/j.​
procs.​2021.​07.​023

	20.	 Malware Sample Exchange (no date) MalwareBazaar. Available at:
https://​bazaar.​abuse.​ch/. Accessed 27 July 2024

	21.	 J.M. Roberts, VirusShare.com. (2011). Available at: https://​virus​share.​
com/. Accessed 27 July 2024

	22.	 VirusTotal, Virustotal. (2012). Available at: https://​www.​virus​total.​com/​
gui/​home/​upload. Accessed 27 July 2024

	23.	 Android apps on Google Play (no date) Google. Available at: https://​
play.​google.​com/​store/​games?​hl=​en. Accessed 27 July 2024

	24.	 Android mobile App Developer tools (no date) Android Developers.
Available at: https://​devel​oper.​andro​id.​com/. Accessed 28 July 2024

	25.	 Pathak A, Barman U, Kumar ThS (2024) Machine learning approach
to detect android malware using feature-selection based on feature
importance score. J. Eng. Res. S2307187724000981. https://​doi.​org/​10.​
1016/j.​jer.​2024.​04.​008

	26.	 Sahin DO, Kural OE, Akleylek S, Kilic E (2018) New results on permission
based static analysis for Android malware. In: 2018 6th International
Symposium on Digital Forensic and Security (ISDFS). IEEE, Antalya, pp
1–4

	27.	 Sangal A, Verma HK (2020) A static feature selection-based Android
malware detection using machine learning techniques. In: 2020
International Conference on Smart Electronics and Communication
(ICOSEC). IEEE, Trichy, India, pp 48–51

	28.	 H. Rathore et al., Identification of significant permissions for efficient
Android malware detection, in Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engineering.
(2021), pp 33–52. https://​doi.​org/​10.​1007/​978-3-​030-​68737-3_3

	29.	 A.S. Shatnawi, Q. Yassen, A. Yateem, An Android malware detection
approach based on static feature analysis using machine learning algo-
rithms. Procedia. Comput. Sci. 201, 653–658 (2022). https://​doi.​org/​10.​
1016/j.​procs.​2022.​03.​086

	30.	 M. Dilhara, H. Cai, J. Jenkins, Automated detection and repair of incom-
patible uses of runtime permissions in Android apps, in Proceedings

https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://doi.org/10.1002/cpe.4172
https://doi.org/10.5755/j01.itc.48.2.21457
https://doi.org/10.5755/j01.itc.48.2.21457
https://doi.org/10.1109/ACCESS.2020.3006143
https://doi.org/10.1145/3073559
https://doi.org/10.1109/ikt.2013.6620049
https://doi.org/10.1109/COMST.2014.2386139
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.3390/electronics10131606
https://doi.org/10.3390/electronics10131606
https://doi.org/10.1007/s10207-024-00822-2
https://doi.org/10.18046/syt.v14i37.2241
https://doi.org/10.18046/syt.v14i37.2241
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.3390/sym14040718
https://doi.org/10.1145/2046707.2046779
https://doi.org/10.1109/icoei48184.2020.9142929
https://doi.org/10.1109/icoei48184.2020.9142929
https://doi.org/10.1007/s00521-021-05875-1
https://doi.org/10.1016/j.fsidi.2021.301176
https://doi.org/10.1016/j.procs.2021.07.023
https://doi.org/10.1016/j.procs.2021.07.023
https://bazaar.abuse.ch/
https://virusshare.com/
https://virusshare.com/
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://play.google.com/store/games?hl=en
https://play.google.com/store/games?hl=en
https://developer.android.com/
https://doi.org/10.1016/j.jer.2024.04.008
https://doi.org/10.1016/j.jer.2024.04.008
https://doi.org/10.1007/978-3-030-68737-3_3
https://doi.org/10.1016/j.procs.2022.03.086
https://doi.org/10.1016/j.procs.2022.03.086

Page 12 of 12Pathak et al. EURASIP Journal on Information Security (2024) 2024:33

of the 5th International Conference on Mobile Software Engineering and
Systems. (2018), pp 67–71. https://​doi.​org/​10.​1145/​31972​31.​31972​55

	31.	 Ying Wang et al., Runtime permission issues in Android apps: Tax-
onomy, practices, and Ways Forward. IEEE Trans. Softw. Eng. 49(1),
185–210 (2023). https://​doi.​org/​10.​1109/​tse.​2022.​31482​58

	32.	 K. Xu et al., DroidEvolver: Self-evolving Android Malware Detection
System, in 2019 IEEE European Symposium on Security and Privacy (EuroS&P)
[Preprint]. (2019). https://​doi.​org/​10.​1109/​eurosp.​2019.​00014

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1145/3197231.3197255
https://doi.org/10.1109/tse.2022.3148258
https://doi.org/10.1109/eurosp.2019.00014

	Static analysis framework for permission-based dataset generation and android malware detection using machine learning
	Abstract
	1 Introduction
	2 The proposed system
	2.1 Permission-based dataset generation
	2.2 Classification models

	3 Methodology
	3.1 Permission-based dataset
	3.1.1 Data collection
	3.1.2 Data analysis and permission feature extraction
	3.1.3 Feature vector

	3.2 Feature engineering
	3.2.1 Feature reduction

	3.3 Malware classification models
	3.3.1 K-nearest neighbour (K-NN) algorithm
	3.3.2 Naïve-Bayes algorithm
	3.3.3 Decision tree algorithm
	3.3.4 Random forest algorithm

	3.4 Performance metrics

	4 Results and discussion
	5 Conclusion and future works
	Acknowledgements
	References

