
Efficient Online k-Best Lookup in Weighted
Finite-State Cascades

Bryan Jurish

— FINAL DRAFT —

1 Introduction
Weighted finite-state transducers (WFSTs) have proved to be powerful and
efficient aids for a variety of natural-language processing tasks, including
automatic phonetization and phonological rule systems (Kaplan & Kay, 1994;
Laporte, 1997), morphological analysis (Geyken & Hanneforth, 2006), and
shallow syntactic parsing (Roche, 1997). In particular, cascades arising from
the composition of two or more WFSTs can be used to model processing
“pipelines”, each component of which is itself a (weighted) finite-state trans-
ducer. Typically, the input to such a pipeline is a simple string, corresponding
to a lookup operation for the input string in the processing cascade.

Unfortunately, an exhaustive “offline” compilation of the processing
cascade turns out in many cases to be infeasible, due to memory restrictions
and the combinatorial properties of the composition operation itself. Even
for simple lookup operations in “dense” cascades,1 the resulting WFST may
in fact be several times larger than the processing pipeline itself. In many
such cases – particularly in optimization and error-correction problems –
the output WFST itself serves only as an intermediate processing datum,
however: we are not interested in an exhaustive representation of the lookup
output, but rather only in a small finite subset of its language, such as the
k-best paths.

This paper presents a novel algorithm for efficient k-best search in a
subclass of weighted finite-state lookup cascades which avoids the combi-
natorial explosion associated with “dense” cascade relations by means of
online computation:2 dynamic construction of only those states and arcs
required for a k-best search of the lookup output. Use of a greedy termination
clause together with an additional cutoff parameter helps to ensure speedy
completion and simultaneously prune unwanted results from the output.

1Informally, the “density” of a cascade C corresponds to the cardinality of the underlying
rational relation |JCK| ≤ |Σ∗ × Γ∗|; the densest cascades containing at least one valid path
for every pair of in- and output-strings (s, t) ∈ Σ∗ × Γ∗.

2Also sometimes referred to as “lazy evaluation” or “on-the-fly computation”.

1

1.1 Example Application

As an example application, consider the task of orthographic standardization
of historical text, which must precede any adequate treatment of historical
corpora by conventional NLP tools, due to the lack of consistent orthographic
conventions in such corpora (Jurish, 2008). In this scenario, the processing
cascade consists of at least:

• a weighted edit transducer M∆ which robustly models (potential)
diachronic change likelihood as a (dense) weighted rational relation,
and

• a target acceptor AL representing the synchronically active lexicon of
extant word forms.

The processing cascade C∆L = M∆ ◦ AL thus models all potential di-
achronic changes resulting in some extant word form. A lookup cascade
C~w∆L = (Id (~w)◦C∆L) = (Id (~w)◦M∆◦AL) for a historical text form ~w in the
cascade C∆L represents the set of all extant forms ~v into which ~w may have
evolved, weighted by the likelihood of a direct etymological relation ~w ; ~v.
The k-best output strings of the lookup cascade are then simply the k extant
word forms considered most likely to be directly related to the historical form
~w. Restricting the admissable output paths by applying an external cutoff
threshold cmax is equivalent to imposing an a priori upper bound on the
likelihood of acceptable diachronic derivations, which is especially important
in the case of a dense editor M∆.

1.2 Desiderata

In light of the preceding example, a number of important properties for a
candidate solution may be identified:

• Online computation: states and transitions of intermediate process-
ing stages should be computed “on-the-fly” and discarded when no
longer needed, to avoid the combinatorial explosion associated with
dense cascades.

• Type-wise input: the algorithm should function efficiently for type-
wise input, for maximal flexibility.

• k-best strings: output of the algorithm should be an enumeration
of the k best strings of the lookup output for a user-specified natural
number k, thus allowing the user some control over the maximum
degree of ambiguity returned.

• Arbitrary cascade depth: the algorithm should not itself impose
any upper bound on the depth of the processing cascade. In particular,

2

pair-wise “lazy evaluation” of sub-cascades is to be avoided, since such
methods – although elegant and formally correct – tend to introduce
nontrivial amounts of runtime and memory overhead.3

• Arbitrary regular weighting function: the algorithm should func-
tion correctly for arbitrary regular weighting functions, i.e. for arbitrary
cascades of weighted finite-state transducers. In particular, no assump-
tion should be made about the cascade architecture regarding the
presence, placement, content, or disposition of an “editor WFST” such
as M∆.4

• Cutoff threshold: the algorithm should accept as an additional
parameter a cutoff threshold which serves to further restrict the set of
acceptable output paths.

• Greedy termination: the algorithm should terminate and return as
quickly as possible in the average case; i.e. as soon as the k best paths
have been discovered, or it has been determined that no further paths
are to be found below the cutoff threshold.

2 Formal Background
Definition 1 (Semiring). A structure K = 〈K,⊕,⊗, 0, 1〉 is a semiring if

1. 〈K,⊕, 0〉 is a commutative monoid with 0 as the identity element for
⊕,

2. 〈K,⊗, 1〉 is a monoid with 1 as the identity element for ⊗,

3. ⊗ distributes over ⊕, and

4. 0 is an annihilator for ⊗: ∀a ∈ K, a⊗ 0 = 0⊗ a = 0.

K is commutative if ∀a, b ∈ K, a⊗ b = b⊗ a, and K is idempotent if ∀a ∈
K, a⊕ a = a. For an idempotent semiring K, the natural order over K is the
partial order ≤K defined by ∀a, b ∈ K, (a ≤K b) :⇔ ((a⊕b) = a). The natural
order is both negative (i.e. 1̄ ≤K 0̄) and monotonic, ∀a, b, c ∈ K, (a ≤K b)
implies (a ⊕ c) ≤K (b ⊕ c), (a ⊗ c) ≤K (b ⊗ c), and (c ⊗ a) ≤K (c ⊗ b). K
is said to be bounded if 1̄ is an annihilator for ⊕: ∀a ∈ K, 1̄⊕ a = 1̄. In a
bounded semiring, 1̄ ≤K a ≤K 0̄ for all a ∈ K. Every bounded semiring is

3Preliminary tests with the OpenFst library (Allauzen et al., 2007) supported these
intuitions.

4This desideratum is considered a critical feature of any candidate solution, eliminating
specialized techniques such as those described in Oflazer & Güzey (1994); Oflazer (1996),
relying as these do on an implicit edit distance weighting function in the style of Levenshtein
(1966); Wagner & Fischer (1974), rather than the weighting function arising from an
arbitrary WFST cascade.

3

also idempotent (c.f. Mohri, 2002, Lemma 3). For current purposes, we will
restrict our attention to bounded semirings.

Definition 2 (WFST). A weighted finite-state transducer over a semiring
K is a 6-tuple M = 〈Σ,Γ, Q, q0, F, E〉 with:5

1. Σ a finite input (or “lower”) alphabet,

2. Γ a finite output (or “upper”) alphabet,

3. Q a finite set of states,

4. q0 ∈ Q the designated initial state,

5. F ⊆ Q the set of final states, and

6. E ⊆ Q×Q× (Σ ∪ {ε})× (Γ ∪ {ε})×K, a finite set of transitions.

For a transition e = (q1, q2, a, b, c) ∈ E, we denote by p[e] its source state
q1, by n[e] its destination state q2, by i[e] its input label a, by o[e] its output
label b, and by c[e] its weight (or “cost”) c. A weighted finite-state acceptor
(WFSA) can be regarded as a WFST with Σ = Γ and i[e] = o[e] for all
e ∈ E.

Definition 3 (String Transducer). For a string ~w = w1 · · ·wn ∈ Σ∗ over an
alphabet Σ, the string transducer for ~w is the WFSA Id (~w) = 〈Σ, Σ, Q~w, 0,
{n}, E~w〉 with Q~w = {i ∈ N : i ≤ n} and E~w =

⋃n
i=1{(i− 1, i, wi, wi, 1̄)}.

A path π is a finite sequence e1e2 . . . e|π| of |π| transitions such that
n[ei] = p[ei+1] for 1 ≤ i < |π|. Extending the notation for transitions,
we define the source and sink states of a path as p[π] = p[e1] and n[π] =
n[e|π|], respectively. The input label string i[π] yielded by a path π is the
concatenation of the input labels of its transitions: i[π] = i[e1]i[e2] . . . i[e|π|];
the output label string o[π] is defined analogously. The weight c[π] of a path
π is the ⊗-product of its transitions: w[π] =

⊗|π|
i=1 c[ei].

If p[π] = q0 and n[π] ∈ F , π is called successful. A cycle is a path π
with p[π] = n[π]. A string transducer Id (~w) contains exactly one successful
path π~w with i[π~w] = o[π~w] = ~w. A state r ∈ Q is said to be accessible
from a state q ∈ Q if there exists a path π with p[π] = q and n[π] = r; r is
accessible if it is accessible from q0. For q ∈ Q, ~w ∈ Σ∗, ~v ∈ Γ∗, and R ⊆ Q,
Π(q, ~w,~v,R) denotes the set of paths from q to some r ∈ R with input string
~w and output string ~v, and Π(q,R) =

⋃
~w∈Σ∗,~v∈Γ∗ Π(q, ~w,~v,R) denotes the

set of paths originating at q and ending at some r ∈ R.
5WFSTs are sometimes defined with an additional final weight function ρ : Q → K,

and/or a non-deterministic initial weight function α : Q→ K in place of q0. I ignore these
extensions here in the interest of clarity.

4

Definition 4 (Transducer Weight). The weight assigned by a WFST M to
a pair of strings (~w,~v) ∈ Σ∗ × Γ∗ is defined as

JMK(~w,~v) =
⊕

π∈Π(q0, ~w,~v,F)
c[π]

Definition 5 (Composition of WFSTs). Given WFSTs M1 = 〈Σ, Γ, Q1,
q01 , F1, E1〉 and M2 = 〈Γ, ∆, Q2, q02 , F2, E2〉 over a commutative and
complete6 semiring K, the composition of M1 and M2 is written M1 ◦M2,
and is itself a WFST such that for all ~w ∈ Σ∗, ~v ∈ ∆∗:

JM1 ◦M2K(~w,~v) =
⊕
~u∈Γ∗

JM1K(~w, ~u)⊗ JM2K(~u,~v)

Further, M3 = 〈Σ,∆, (Q1 × Q2), E3, (q01 , q02), (F1 × F2)〉 is such a WFST,
JM3K = JM1 ◦M2K, where:7

Q̃ = {(q, q, ε, ε, 1̄) : q ∈ Q}
E3 =

⋃
(q1,r1,a1,a2,c1)∈E1∪Q̃1

(q2,r2,a2,a3,c2)∈E2∪Q̃2

{((q1, q2), (r1, r2), a1, a3, c1 ⊗ c2)}

3 Algorithms

This section develops an algorithm for discovering the k-best label paths in a
dense cascade of weighted finite state transducers over a bounded semiring,
attempting to fulfill the desiderata from section 1.2. We begin with a brief
review of the well-known algorithm which serves as the basis for the current
approach, and consider its generalization to abstract semiring weights in
section 3.1. Section 3.2 extends the algorithm to online lookup operations

Algorithm 1 Dijkstra (1959)
1: function Dijkstra(V,E, v0)
2: d[·] := {v 7→ ∞ : v ∈ V } /* Initialize */
3: d[v0] := 0
4: S := V
5: while S 6= ∅ /* Main loop */
6: u := arg minu∈S d[u] /* Best-first search */
7: S := S\{u}
8: foreach e ∈ E : p[e] = u /* Expand */
9: d′ := d[u] + c[e] /* Accumulate */

10: if d′ < d[v] then /* Relax */
11: d[v] := d′

12: return d[·]

3.1 Semiring Weights

In its original form, Dijkstra’s algorithm assumes a graph G = 〈V,E〉 with
non-negative real-valued weighted edges E ⊆ (V × V × R+), ordered by the
natural linear order <, thus implicitly equating “best” with “<-minimal”.
The first adaptation to be undertaken is a straightforward generalization
of the Dijkstra algorithm to an abstract semiring K = 〈K,⊕,⊗, 0̄, 1̄〉, using
minimality with respect to a partial order ≤K to define “best” weights.

First, the initialization of the best-distance vector d[·] must be adapted
to use the relevant semiring constants 0̄ and 1̄:

2: d[·] := {v 7→ 0̄ : v ∈ V } /* Initialize d[·] : V → K */
3: d[v0] := 1̄

Next, the best-first order of extraction from the vertex-queue S must be
adapted to use the partial order ≤K:

6: u := arg minu∈S,<K d[u] /* Best-first search using <K */

Finally, the relax step is adapted to use the semiring multiplication opera-
tion ⊗ for accumulating the characteristic weight of a path, as well as the
semiring order for the “better-path” check of line 10:

9: d′ := d[u]⊗ c[e] /* Accumulate using ⊗ */
10: if d′ <K d[v] then /* Relax */
11: d[v] := d′

Dijkstra’s original algorithm emerges as an instance of the generalized
algorithm using the non-negative tropical semiring 〈R+ ∪ {∞},min,+,∞, 0〉
(Simon, 1987). Important to note is that the generalization to abstract
semirings has implications for the correctness of the algorithm. In particular,
graph cycles with a net weight c <K 1̄ will cause the algorithm never to

6

terminate at all, inducing an infinite series of <K-decreasing weights d[u] for
the cycle root vertex u, leading to an infinite loop of relax steps. Further,
the relaxability check of line 10 is not meaningful for all partial orders ≤K: a
non-monotonic order may cause a partial path to be disregarded here which
would lead to a better path for some subsequent vertex. We therefore restrict
our attention for current purposes to bounded (idempotent) semirings using
the monotonic natural semiring order (c.f. section 2), ∀a, b ∈ K:

(1̄⊕ a) = 1̄ (Boundedness)
(a⊕ a) = a (Idempotence)

(a ≤K b) ⇔ ((a⊕ b) = a) (Natural Order)

3.2 Online Cascade Lookup

The next task is to extend the algorithm to operate on lookup cascades
C = (Id (~w)◦M2 ◦ · · · ◦M|C|) for ~w ∈ Σ∗2. Suppose the standard construction
for composition of WFSTs given in Definition 5 yields for C the WFST M =
〈Σ,Γ, Q, q0, F, E〉. Clearly, 〈Q,E〉 can be treated as an edge-labelled weighted
graph. By assumption however, M is too large to be computed offline, so
that in particular the composition of transitions E must be performed at
runtime. The resulting algorithm is presented here together with some
auxiliary subroutines as Algorithm 2.

The online expansion of outgoing transitions from a state q = 〈q~w, q2, . . . ,
q|C|〉 ∈ Q is performed by the auxiliary function arcs given in Algorithm 2.8
arcs is implemented as a pair of calls to the function expand-arcs, which
recursively descends the cascade, linking together transitions from adja-
cent components with matching out- rsp. input labels in accordance with
Definition 5.

The only other change made to the core algorithm Dijkstra-cascade
is a move to sparse administrative structures: rather than initialize the
queue S with the set of all cascade states Q, which would entail explicitly
representing such states and thus pre-compiling them, Algorithm 2 instead
uses a dynamic queue S which at any given point in the computation holds
only those states which need to be (re-)investigated. Similarly, the map d[·]
of best weights is implemented as a sparse partial map, and the default case
d[q] = 0̄ is handled by the the auxiliary function cost. For Algorithm 2, the
use of sparse structures has few consequences – states unreachable from q0
will no longer be processed, but the algorithm otherwise proceeds exactly
as in Algorithm 1, with running time growing by a factor of the cascade
depth |C| to allow for online expansion of transitions. Since cascade depth is
expected to be a small constant, we ignore it in the sequel.

8The function arcs takes advantage of the facts that in a lookup cascade, the initial
component Id (~w) has at most one outgoing (non-ε) arc e, and that i[e] = o[e] = ~w[q[1]]. A
generalization to arbitrary WFST cascades would involve iterating over all outgoing arcs
of the initial cascade component here.

7

Algorithm 2 Dijkstra’s algorithm for online lookup cascades
1: function Dijkstra-cascade(w,C)
2: S := {q0} /* Initialize */
3: d[·] := {q0 7→ 1̄}
4: while S 6= ∅ /* Main loop */
5: q := arg minq∈S,<K d[q] /* Best-first search */
6: S := S\{q}
7: foreach e ∈ arcs(w,C, q) /* Expand outgoing arcs */
8: d′ := d[q]⊗ c[e] /* Accumulate */
9: if d′ <K cost(d[·], n[e]) then /* Relax */

10: d[n[e]] := d′

11: S := S ∪ {n[e]} /* Enqueue */
12: return d[·]
13: function arcs(~w,C, q)
14: return expand-arcs

(
C, q, 1, ~w

[
q[1]

])
∪ expand-arcs(C, q, 1, ε)

15: function expand-arcs(C, q, i, a)
16: A := ∅
17: foreach e ∈ Ei ∪

{
(q[i], q[i], ε, ε, 1̄)

}
: p[e] = q[i] & i[e] = a

18: if i = |C| then
19: A := A ∪ {e}
20: else
21: foreach e′ ∈ expand-arcs(C, q, i+ 1, o[e])
22: A := A ∪

{(
〈p[e], p[e′]〉, 〈n[e], n[e′]〉, i[e], o[e′], c[e]⊗ c[e′]

)}
23: return A
24: function cost(d[·], q)
25: if d[q] defined then return d[q]
26: return 0̄

3.3 k-Best Final States

Dijkstra’s algorithm solves the single source shortest distances problem,
returning a map d : Q → K which associates each state with the best
net weight of any path to that state from the designated initial state q0.
In the current problem context, we are not interested in an exhaustive
enumeration d[·] of net weights for all cascade states, but rather only for
the final states of the lookup output: dF : F → K. Even more specifically,
we are interested only in the k-best mappings for some final state, a partial
function dF,k : F partial−−−−→ K such that the following hold:

dF,k ⊆ dF ⊆ d

|dF,k| ≤ k

∀q, r ∈ Q . d[q] <K d[r] & r ∈ dom(dF,k) ⇒ q ∈ dom(dF,k)

8

Clearly, dF = (d

net weight of at least one complete path to each state, Dijkstra-kBest
need only compute weights for at most k paths ending in final states. That
the first such weights computed are indeed the k best weights sought follows
from the correctness of the best-first search order, which in turn follows from
the boundedness of the semiring K. Since immediately upon discovery of
the kth best weight to a final state at line 10, Algorithm 3 breaks out of the
queue-processing loop and returns the partial map dF,k, its time complexity
can be more precisely specified by (1),

O (Dijkstra-kBest) = O (|EF,k|+ |QF,k| log |QF,k|) (1)

where:

QF,k = {q ∈ Q : d[q] ≤K max (rng (dF,k))}
EF,k = {e ∈ E : p[e] ∈ QF,k}

Assuming that k best final weights were indeed found (which will always
be the case if k ≤ |F |), QF,k is the set of states to which at least one path
exists with a net weight less than or equal to some k-best final weight in
dF,k, and EF,k is the set of all transitions leaving any state in QF,k. By
the correctness of the best-first search order for bounded semirings, QF,k
contains all and only those states q which may be extracted from the queue
at line 6 before discovery of the kth best net weight to a final state at line
8 and consequent termination at line 10. It follows that EF,k is the set of
transitions which must be expanded (and possibly relaxed) by the loop of
lines 11-15.

In many interesting cases, QF,k and EF,k will be much smaller than Q
and E respectively, so that the reduced time complexity of Equation (1)
represents a major improvement over a brute force approach using Algorithm 2
directly. Consider for example a simple error-correction cascade similar to
that described in section 1.1, and let pc be the average probability over all
states q ∈ Q~w∆L that a path exists from the initial state q0~w∆L

to q with
net weight c′ ≤K c. If c ∈ K is the maximum weight to a k-best final state,
then the expected size of QF,k is E(|QF,k|) = Epc(1Q~w∆L

) =
∑
q∈Q~w∆L

pc =
pc|Q~w∆L|. The number of states which must be expanded for a k-best search
with maximum net path weight c thus depends crucially on pc, which can be
understood as the probability of the existence of a “neighbor” path with edit
cost c′ ≤K c. It is therefore of paramount importance for purposes of runtime
efficiency both (a) to ensure that M∆ models the phenomena it is intended
to represent as accurately as possible, effectively minimizing pc globally for
all c ∈ K, and (b) to minimize pc locally by preventing c = max(rng(dF,k))
from growing too large, since c ≤ c′ implies pc ≤ pc′ .

10

3.4 Cutoff Threshold

An unsubtle but effective method for local minimization of the maximum
path weight returned by Algorithm 3 is the explicit specification of a user-
specified cutoff threshold cmax ∈ K on path weights as an input parameter.
Intuitively, such a parameter represents an a priori upper bound on the
cost of “acceptable” paths. For the example application from section 1.1,
a parameter cmax can limit the algorithm’s running time even when the
input word ~w represents an extinct lexeme not explicitly accounted for by a
dense M∆, in which case its k nearest neighbors according to JM∆K would
be randomly distributed in L, and their inclusion as “best” paths for ~w
would only introduce noise (both precision and recall errors) into the host
application. Implementing the parameter cmax for Algorithm 3 requires only
the insertion of a simple check after line 7:

if d[q] >K cmax then break /* Cost upper-bound exceeded */

Whenever cmax is exceeded for the minimum-cost state in the queue, it
must also be exceeded for every other queued state as well. Since ≤K is mono-
tonic, queue processing can cease as soon as any any state with a minimum
net path weight exceeding cmax is extracted from the queue. Note that while
it is possible in the case of the example cascade architecture from section 1.1
to incorporate cmax into the edit transducer by modifying M∆ such that
for all ~w ∈ Σ∗∆, ~v ∈ Γ∗∆, Π(q0∆ , ~w,~v, F∆) 6= ∅ implies JM∆K(~w,~v) ≤K cmax,
such a construction not only introduces additional storage requirements
by introducing new states into M∆, but is not in general possible if the
processing cascade (which by assumption is too large to be computed and
stored offline in its entirety) contains multiple independent weighted compo-
nents. Implementation of the upper bound as a parameter does not increase
run time complexity or storage requirements for the algorithm, and allows
additional flexibility: the user may for example choose to instantiate cmax as
a function of input word length, representing the upper bound in terms of
average cost per character rather than a global cost for all words.

3.5 Label Strings

Extending the algorithm to return the k-best (output) label strings rather
than the k-best net path weights is not as trivial a task as it may at first
appear. The traditional method (Cormen et al., 2001) of maintaining a
backtrace vector p[·] : Q → Q mapping states to their best predecessors
causes the number of returned paths |dF,k| be bounded above by the number
of final states |F |, and does not correctly compute the k-best paths if these
are defined to include labels in addition to states. Extending the semiring
K to a k-best semiring Kk as described by Mohri (2002) not only yields a
non-idempotent semiring, but also entails additional modifications for direct
storage of path backtraces in the semiring itself.

11

The current approach instead extends the processing queue S to store
state-string pairs 〈q, s〉 ∈ Q×Γ∗ such that s is the output label string of some
path from q0 to q. The best-weight vector is then re-defined as a (sparse)
map d[·] : Q× Γ∗ → K such that d[q, s] represents the net weight associated
with the best path from q0 to q with output label string s, and the output
buffer dF,k is similarly extended to a buffer dΠ,k. An additional kludge11

parameter xmax ∈ N limits the number of allowable queue extractions. The
resulting algorithm is presented here as Algorithm 4.

Algorithm 4 Adaptation of Dijkstra’s algorithm for k-best output label
strings
1: function Dijkstra-Strings(~w,C, k, cmax, xmax)
2: S := {〈q0, ε〉} /* Initialize */
3: d[·] := {〈q0, ε〉 7→ 1̄}
4: dΠ,k[·] := ∅
5: while S 6= ∅ /* Main loop */
6: 〈q, s〉 := arg min〈q,s〉∈S,<K d[q, s] /* Best-first search */
7: S := S\{〈q, s〉}
8: if xmax = 0 then break /* Too many extractions */
9: xmax := xmax − 1

10: if d[q, s] >K cmax then break /* Cost upper-bound exceeded */
11: if q ∈ F then /* Finality check */
12: dΠ,k[q, s] := d[q, s]
13: if |dΠ,k| = k then break /* Greedy termination */
14: foreach e ∈ arcs(w,C, q) /* Expand outgoing arcs */
15: d′ := d[q, s]⊗ c[e] /* Accumulate */
16: s′ := s_o[e] /* Append */
17: if d′ <K cost(d[·], 〈n[e], s′〉) then /* Relax */
18: d[n[e], s′] := d′

19: S := S ∪ {〈n[e], s′〉}
20: return dΠ,k[·]

Assume for the moment that the kludge parameter is vacuous, e.g. xmax =
−1. If the cascade contains an instance of a certain type of “degenerate”
cycle, then Algorithm 4 may never terminate at all. A degenerate cycle in
this sense can be operationally defined as one which may lead to an infinite
series of relax steps for increasingly long label strings at lines 17 through
19. Formally, we call a cycle π degenerate if (2)-(5) hold for some π′ ∈ E∗

11c.f. Raymond (2010)

12

and for all n ∈ N.

π′π ∈ Π(q0, Q) (2)
i[π] = ε (3)
o[π] 6= ε (4)
c [πn] ≤K cmax (5)

Condition (2) requires that degenerate cycles are accessible. A non-
accessible cycle can never induce an infinite loop, since only accessible states
are ever inserted into the queue at line 19. Condition (3) states that only paths
with an empty input string can be degenerate. This follows from the fact that
C is a lookup cascade with initial component Id (~w), so that the maximum
number of iterations for a cycle with i[π] = s 6= ε is |~w||s| . Condition (4) states
that degenerate cycles must have non-empty output strings, since a cycle
with o[π] = ε generates at most one index configuration 〈q, s〉 for its source
state q = p[π], and this configuration will fail the relaxability check at line
17 after the first iteration. Finally, condition (5) captures the intuition that
a degenerate cycle may be iterated arbitrarily many times without its weight
exceeding the bound parameter12 cmax, c[πn] = c[π]n =

⊗n
i=1 c[π] ≤K cmax,

and thus will never be pruned by the check at line 10. In particular, this
condition attains for c[π] = 1̄ <K cmax, since 1̄n = 1̄ for all n ∈ N. We denote
by Π̃(C) the set of paths for which the weight-independent criteria (2)-(4)
hold, Π̃(C) = {π ∈ E∗ : ∃π′ ∈ E∗ : π′π ∈ Π(q0, Q) & p[π] = n[π] & i[π] =
ε 6= o[π]}

That Algorithm 4 finds the k best label strings in the absence of degenerate
cycles whenever at least k distinctly labelled successful paths exist follows
from the correctness of Algorithm 3. Note in particular that paths with
distinct label strings ending in the same state are treated as distinct objects, as
are paths with identically labelled strings ending in distinct states, analogous
to the trellis construction used in the well-known Viterbi algorithm (Viterbi,
1967).

Rather than rely on an expensive cycle check to detect degenerate cycles,
we introduce the kludge parameter xmax which places an upper bound on
the number of queue extractions performed and limits the running time of
Algorithm 4 to O(xmax(max(deg(Q))+log xmax)), where max(deg(Q)) is the
maximum output degree of any state in Q, deg(q ∈ Q) = |{e ∈ E : p[e] = q}|.
Despite its inelegance, this technique can be useful in both development
and production environments – in the former to detect and report potential
errors in the cascade architecture, and in the latter to place a hard limit on
the computational resources consumed.

12For purposes of defining path degeneracy without a greedy termination clause, the
upper bound variable cmax may be defined in terms of the maximum target weight,
cmax = max(rng(dΠ,k)).

13

When xmax is finite but the break at line 8 is not responsible for its
termination, Algorithm 4 has the running time specified in (6),

O (Dijkstra-Strings) = O (|EΠ,k|+ |VΠ,k| log |VΠ,k|) (6)

where:

VΠ,k = {〈q, s〉 ∈ Q× Γ∗ : d[q, s] ≤K max (rng (dΠ,k))}
EΠ,k = {〈〈q, s〉, e〉 ∈ VΠ,k × E : p[e] = q}

Since xmax is finite, VΠ,k and EΠ,k are as well, since at most finitely many
extractions have been performed and each extraction relaxes only finitely
many transitions. VΠ,k and EΠ,k are further limited by the cutoff threshold
cmax ∈ K as described in section 3.4. In particular, whenever C contains
no degenerate cycles, xmax may be set to kn|Q| ≤ kn|~w|

∏|C|
i=1 |Qi|, where

n = min{n ∈ N : ∀π ∈ Π̃(C) : c[πn] >K cmax} to guarantee both termination
and discovery of the j ≤ k best paths, although this quantity is considered
too large to be of practical use in the dense cascades for which the algorithm
was developed, for which the explicit enumeration and storage of Q itself
would incur unacceptable computational overhead.

4 Summary
We have presented an algorithm for discovery of the k best output label
strings for weighted finite state transducer lookup cascades of arbitrary
depth which computes cascade structure online and is therefore suitable for
use with “dense” cascades which cannot be pre-compiled. The correctness
conditions and running time of the algorithm were discussed for both worst-
and average-case scenarios, as were the implications of a greedy termination
strategy and an external cutoff threshold. Some properties of degenerate
cascades were identified, and the subclass of lookup cascades for which the
algorithm is expected to terminate was restricted accordingly. The algorithm
as presented here has been implemented in the gfsmxl C library (Jurish,
2009), and is being successfully used to implement a robust orthographic
standardization cascade for historical German text.

References
Allauzen, C. & M. Mohri (2009). Linear-space computation of the edit-

distance between a string and a finite automaton. In: London Algorithmics
2008: Theory and Practice. College Publications.

Allauzen, C., M. Riley, J. Schalkwyk, W. Skut & M. Mohri (2007). OpenFst:
A General and Efficient Weighted Finite-State Transducer Library. In:
J. Holub & J. Zdárek (eds.) Implementation and Application of Automata,

14

12th International Conference, CIAA 2007, Prague, Czech Republic, July
16-18, 2007, Revised Selected Papers. Springer. 11–23.

Cormen, T. H., C. E. Leiserson, R. L. Rivest & C. Stein (2001). Introduction
to Algorithms (2nd ed.). Cambridge, MA: MIT Press and McGraw-Hill.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.
Numerische Mathematik 1. 269–271.

Ésik, Z. & W. Kuich (2004). Equational Axioms for a Theory of Automata.
In: C. M. Vide, V. Mitrana & G. Păun (eds.) Formal Languages and
Applications. (Studies in Fuzziness and Soft Computing, vol. 148). Berlin,
Heidelberg: Springer. 183–196.

Fredman, M. L. & R. E. Tarjan (1987). Fibonacci heaps and their uses
in improved network optimization algorithms. Journal of the ACM 34.
596–615.

Geyken, A. & T. Hanneforth (2006). TAGH: A Complete Morphology for
German based on Weighted Finite State Automata. In: Finite State
Methods and Natural Language Processing, 5th International Workshop,
FSMNLP 2005, Revised Papers. (Lecture Notes in Computer Science, vol.
4002). Berlin: Springer. 55–66.

Jurish, B. (2008). Finding canonical forms for historical German text. In:
A. Storrer, A. Geyken, A. Siebert & K.-M. Würzner (eds.) Text Resources
and Lexical Knowledge: Selected Papers from the 9th Conference on Natural
Language Processing KONVENS 2008. Berlin: Mouton de Gruyter. 27–37.

Jurish, B. (2009). libgfsmxl C library, version 0.0.9. URL http://www.ling.
uni-potsdam.de/~jurish/projects/gfsm/#gfsmxl.

Kaplan, R. M. & M. Kay (1994). Regular Models of Phonological Rule
Systems. Computational Linguistics 20. 331–378.

Laporte, É. (1997). Rational Transductions for Phonetic Conversion and
Phonology. In: Roche & Schabes (1997).

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady 10. 707–710.

Mohri, M. (2002). Semiring frameworks and algorithms for shortest-distance
problems. Journal of Automata, Languages and Combinatorics 7. 321–350.

Mohri, M., F. C. N. Pereira & M. Riley (1996). Weighted Automata in Text
and Speech Processing. In: Proceedings of the 12th biennial European
Conference on Artificial Intelligence (ECAI-96), Workshop on Extended
Finite State Models of Language. Chichester: John Wiley and Sons.

Oflazer, K. (1996). Error-tolerant Finite-state Recognition with Applica-
tions to Morphological Analysis and Spelling Correction. Computational
Linguistics 22. 73–89.

Oflazer, K. & C. Güzey (1994). Spelling Correction in Agglutinative Lan-
guages. In: ANLP. 194–195.

Raymond, E. S. (ed.) (2010). Jargon File version 4.4.7. URL http://catb.
org/jargon/html/.

Roche, E. (1997). Parsing with Finite-State Transducers. In: Roche &

15

Schabes (1997).
Roche, E. & Y. Schabes (eds.) (1997). Finite-State Language Processing.
Cambridge, MA: MIT Press.

Simon, I. (1987). The Nondeterministic Complexity of Finite Automata. Tech.
Rep. RT-MAP-8073, Instituto de Matemática e Estatística da Universidade
de São Paulo.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymp-
totically optimal decoding algorithm. IEEE Transactions on Information
Theory . 260–269.

Wagner, R. A. & M. J. Fischer (1974). The String-to-String Correction
Problem. Journal of the ACM 21. 168–173.

16

