
Finite-State Canonicalization Techniques
for Historical German

Bryan Jurish

Dissertation zur Erlangung des akademischen Grades
doctor philosophiæ (Dr. phil.)

eingereicht bei der
Humanwissenschaftliche Fakultät

der Universität Potsdam

Januar 2011

Gutachter: Prof. Dr. Peter Staudacher,
Prof. Dr. Wolfgang Klein

Datum der mündlichen Prüfung: 6. Oktober 2011

Published online at the
Institutional Repository of the University of Potsdam:
URL http://opus.kobv.de/ubp/volltexte/2012/5578/
URN urn:nbn:de:kobv:517-opus-55789
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55789

Erklärung (Declaration in German)

Ich erkläre hiermit, dass ich an keiner anderen Hochschule ein Promotionsver-
fahren eröffnet habe. Zudem erkläre ich hiermit, dass die Dissertation selb-
ständig und ohne unzulässige Hilfe Dritter verfasst wurde und bei der Ab-
fassung nur die in der Dissertation angegebenen Hilfsmittel benutzt sowie
alle wörtlich oder inhaltlich übernommenen Stellen als solche gekennzeichnet
wurden.

Des Weiteren erkläre ich, dass die Dissertation in der gegenwärtigen oder
einer anderen Fassung bei keiner anderen Fakultät einer wissenschaftlichen
Hochschule zur Begutachtung im Rahmen eines Promotionsverfahrens vorgele-
gen hat.

Bryan Jurish
Berlin, Januar 2011

Acknowledgements
There are a great many people who supported and influenced this work and
to whom thanks are due:

First, to my advisor Peter Staudacher, who despite (or perhaps because of)
his professed ambivalence to impressing others has succeeded in impressing
many of his students – myself included – with a taste for the formally rigorous
study of natural language; and whose patience and repeated administrative
intervention enabled this work eventually to be completed, if not exactly in a
timely fashion.

Thanks to my colleagues past and present in the Deutsches Textarchiv
project, for making the application of the techniques described here possible
and available to the general public. In particular to Oliver Duntze and
Susanne Haaf for language-historical consultations, and to Wolfgang Klein,
whose conception of the Deutsches Textarchiv project anticipated the need for
word recognition beyond the bounds of strict contemporary orthography, for
allowing me to undertake the measures I deemed appropriate in that regard.

Thanks to Burkhard Brehm, Johannes Bubenzer, Jörg Didakowski, Thomas
Hanneforth, Alexander Geyken, Lothar Lemnitzer, Kay-Michael Würzner,
and the various articles’ anonymous reviewers for both asking and answering
relevant questions. Particular thanks are due to Thomas Hanneforth and
Alexander Geyken for their tireless work on the tagh morphology, without
which none of the ‘interesting’ aspects of the current work would have been
possible.

Thanks to Wolfgang Seeker, who wrote a prototype version of the heuristic
rewrite transducer used in the current work; to Marko Drotschmann, who
implemented the semi-automatic alignment procedure used to bootstrap the
DTA evaluation corpus; and to Henriette Scharnhorst and Henriette Ast for
providing the vast majority of the manual annotations used to evaluate the
methods described here.

Thanks to my parents for supporting me throughout my undergraduate
studies, and for their continuing interest in my academic activities involving
‘something with computers’. Finally, 210 thanks to Eva Brehm-Jurish for far
too much to mention, including toleration of laundry unfolded, preparation
of meals unappreciated, and for an ever-available auditory apparatus; and
to Mathilda and Liam Jurish for putting up with a grumpy and preoccupied
Daddy.

The work described here was supported by a Deutsche Forschungsgemein-
schaft (DFG) grant to the Deutsches Textarchiv (DTA) project, and by the
Berlin-Brandenburg Akademie der Wissenschaften.

i

Contents

The Big Picture 1
Introduction . 1
Related Work . 2
Submitted Publications . 3

Article 1 . 3
Article 2 . 4
Article 3 . 5
Article 4 . 6

Conclusion . 7
Document Conventions . 8

I Submitted Publications 11

1 Finding Canonical Forms 13
1.1 Introduction . 13
1.2 Conflation by Phonetic Form 14

1.2.1 Implementation . 15
1.2.2 Performance . 17
1.2.3 Coverage . 18

1.3 Conflation by Lemma Instantiation Heuristics 19
1.3.1 Implementation . 19
1.3.2 Performance . 21
1.3.3 Coverage . 22

1.4 Summary & Outlook . 22

2 Efficient Online k-best Lookup 23
2.1 Introduction . 23

2.1.1 Example Application 24

iii

iv CONTENTS

2.1.2 Desiderata . 25
2.2 Formal Background . 26
2.3 Algorithms . 28

2.3.1 Semiring Weights . 28
2.3.2 Online Cascade Lookup 30
2.3.3 k-Best Final States . 31
2.3.4 Cutoff Threshold . 34
2.3.5 Label Strings . 34

2.4 Summary . 37

3 Comparing Canonicalizations 39
3.1 Introduction . 39
3.2 Canonicalization Methods . 40

3.2.1 Phonetic Conflation . 40
3.2.2 Levenshtein Edit Distance 41
3.2.3 Rewrite Transducer . 42

3.3 Evaluation . 43
3.3.1 Test Corpus . 43
3.3.2 Evaluation Measures 44
3.3.3 Results . 45

3.4 Conclusion & Outlook . 47

4 More Than Words 49
4.1 Introduction . 49
4.2 Type-wise Conflation . 50

4.2.1 String Identity . 51
4.2.2 Transliteration . 51
4.2.3 Phonetization . 53
4.2.4 Rewrite Transduction 54

4.3 Token-wise Disambiguation 55
4.3.1 Basic Model . 56
4.3.2 Transition Probabilities 57
4.3.3 Lexical Probabilities 58
4.3.4 Runtime Disambiguation 60
4.3.5 Expressive Power . 61

4.4 Evaluation . 61
4.4.1 Test Corpus . 61
4.4.2 Evaluation Measures 62

CONTENTS v

4.4.3 Results . 63
4.5 Conclusion . 64

II Appendices 67

A Finite-State Components 69
A.1 Transliteration Rules . 70
A.2 Phonetization Rules . 73

A.2.1 Pre-processing Filters 73
A.2.2 Character Classes . 74
A.2.3 Core LTS Rules . 74
A.2.4 Post-processing Filters 80
A.2.5 Phonetization FST . 83

A.3 TAGH Filters . 84
A.3.1 Syntactic Category Filters 84
A.3.2 Lexical Stem Filters 85
A.3.3 Target Lexica . 87

A.4 Morphological Security . 88
A.5 Heuristic Rewrite Rules . 90

A.5.1 Character Classes . 90
A.5.2 Identity Rules . 91
A.5.3 Consonant Rules . 91
A.5.4 Vowel Rules . 94
A.5.5 Explicit Elision Rules 97
A.5.6 Unrecognized Input Rules 98
A.5.7 Miscellaneous Rules . 99
A.5.8 Rewrite Filters . 101

B Selected Software 105
B.1 unicruft: Transliteration . 105
B.2 gfsm & gfsmxl: Finite-State Operations 105
B.3 Lingua::LTS: LTS Rule Compiler 106
B.4 Taxi: Structured Text Indices 106
B.5 moot: HMM Tagging/Disambiguation 107
B.6 dta-tokwrap: XML/TEI Serialization 107
B.7 DTA::EvalCorpus: Alignment and Annotation 107
B.8 DTA::CAB: Canonicalization 108

vi CONTENTS

C Corpora 109
C.1 DWB Verse Corpus . 109

C.1.1 DWB Evaluation Subcorpus 110
C.2 DTA Corpus . 111

C.2.1 DTA Evaluation Subcorpus 112

Glossary 115

Acronyms 123

Symbols and Notation 125

Bibliography 129

List of Tables

1.1 Phonetization transducer performance 18

3.1 Processing time for elementary canonicalization functions . . . 45
3.2 Evaluation results for the DWB verse corpus subset 46

4.1 Evaluation results for the DTA corpus subset 63

A.1 Latin-1 transliteration rules 70
A.2 Phonetizer modifications . 75
A.3 tagh Lexical stem filters . 86
A.4 Rewrite rules: plosives . 91
A.5 Rewrite rules: fricatives . 92
A.6 Rewrite rules: affricates . 93
A.7 Rewrite rules: sonorant consonants 94
A.8 Rewrite rules: front vowels . 95
A.9 Rewrite rules: back vowels . 96
A.10 Rewrite rules: diphthongs . 96
A.11 Rewrite rules: elisions . 97
A.12 Rewrite rules: miscellaneous 99

vii

List of Figures

1.1 Example festival letter-to-sound transduction 17
1.2 Example phonetic conflations 19

3.1 Example spurious Levenshtein conflations 42
3.2 Example rewrite transducer heuristics 43

4.1 Example of HMM conflator disambiguation 56
4.2 Evaluation results for the DTA corpus subset 64

viii

List of Algorithms

2.1 Dijkstra’s algorithm . 29
2.2 Dijkstra for online lookup cascades 30
2.3 Dijkstra for k-best successful cascade paths 32
2.4 Dijkstra for k-best cascade output strings 35

ix

The Big Picture

Introduction

The four submitted publications (Jurish, 2008, 2010a,b,c) address issues in
the robust automatic canonicalization of unconventional natural language
text, in particular historical German. Five basic methods for automatic
canonicalization using both weighted and unweighted finite-state techniques
were introduced, formally defined, discussed, implemented, and empirically
evaluated on corpora of historical German. This summary provides a brief
overview over the canonicalization strategies discussed in the individual
articles and their comparative strengths and weaknesses as indicated by the
empirical evaluations.

Virtually all conventional text-based natural language processing tech-
niques – from traditional information retrieval systems to full-fledged parsers –
require reference to a fixed lexicon accessed by surface form, typically trained
from or constructed for synchronic input text adhering strictly to contem-
porary orthographic conventions. Unconventional input such as historical
text which violates these conventions therefore presents difficulties for any
such system due to lexical variants present in the input but missing from the
application lexicon.

Traditional approaches to the problems arising from an attempt to incor-
porate historical text into a conventional system rely on the use of additional
application-specific lexical resources to explicitly encode known historical
variants. Such specialized lexica are not only costly and time-consuming to
create, but also – at least in their simplest form of finite static word lists –
necessarily incomplete in the case of a morphologically productive language
like German, since a simple finite lexicon cannot account for highly productive
morphological processes such as nominal composition.

To facilitate the extension of synchronically-oriented natural language
processing techniques to historical text while minimizing the need for special-

1

2 The Big Picture

ized lexical resources, one may first attempt an automatic canonicalization1

of the input text. Canonicalization approaches treat orthographic variation
phenomena in historical text as instances of an error-correction problem,
seeking to map each (unknown) word of the input text to one or more extant
canonical cognates: synchronically active types which preserve both the root
and morphosyntactic features of the associated historical form(s). To the
extent that the canonicalization was successful, application-specific process-
ing can then proceed normally using the returned canonical forms as input,
without any need for additional modifications to the application lexicon.

Related Work

The current approach draws heavily on previous work in error correction
(Kukich, 1992) and approximate string matching (Navarro, 2001), particularly
those techniques descended from the traditional Damerau-Levenshtein (DL)
string edit distance (Damerau, 1964; Levenshtein, 1966). Kernighan et al.
(1990); Church and Gale (1991) describe the use of explicit error models
implemented as edit cost matrices together with local context information in
the form of word unigram and trigram probabilities in a spelling correction
application. Mays et al. (1991) use a full-fledged word trigram language
model to disambiguate confusion sets generated by a traditional DL matcher
in sentential context. Brill and Moore (2000) extend these approaches to
include generic local string-to-string edit operations, reporting significant
improvements in accuracy.

Previous work on automatic conflation of historical variants with extant
word forms has been performed for English by Robertson and Willett (1993),
who investigated the utility of phonetic digest algorithms (Russell, 1918; Gadd,
1988, 1990) and approximate string matching techniques (Levenshtein, 1966;
Pollock and Zamora, 1984) for improving recall in databases of historical
English text. Rayson et al. (2005) describe an automatic “variant detec-
tor” for historical English which uses a manually constructed set of letter
replacement heuristics to canonicalize3 historical forms, reporting a substan-

1Despite its morphological redundance and the existence of a non-redundant cognate
(canonization), the term canonicalization has established itself in the domain of information
processing as the term of choice for denoting “a process for converting data . . . into a
‘standard’, ‘normal’, or canonical form”2, uses of the non-redundant canonization tending
to restrict themselves to the religious domain.

2http://en.wikipedia.org/wiki/Canonicalization, accessed December 10, 2010.
3Rayson et al. use the verb “normalise” rather than “canonicalize” or “canonize” to

denote the mapping of historical variants to equivalent extant forms.

http://en.wikipedia.org/wiki/Canonicalization

Submitted Publications 3

tial improvement in accuracy on a small test set compared to conventional
spell-checkers.

The RSNSR (‘rule-based search in text databases with nonstandard or-
thography’) research group at the University of Duisburg-Essen has performed
extensive research on automatically mapping contemporary German word
forms to their historical spelling variants (i.e. inverse canonicalization) for
use in information retrieval applications (Kempken, 2005; Kempken et al.,
2006; Pilz et al., 2006, 2008; Ernst-Gerlach and Fuhr, 2006, 2007, 2010), with
particular focus on the use of specialized string distance measures trained from
a set of manually confirmed evidence pairs using machine-learning techniques
(Ristad and Yianilos, 1998). More relevant work on historical German has
been performed by the IMPACT (‘Improving Access to Text’) research group
at the University of Munich. The primary focus of the IMPACT project is the
improvement of optical character recognition (OCR) applications for historical
German documents. In this context, the Munich group has investigated the
utility of heuristic canonicalization patterns4 as well as traditional static “wit-
nessed” dictionaries with respect to vocabulary coverage (Gotscharek et al.,
2009c) and information retrieval tasks (Gotscharek et al., 2009b), while Reffle
et al. (2009) use channel error profiles together with a local word trigram
heuristic to identify and correct “false friends” in OCR output for historical
German.

Finite-state approaches to error correction include that of Oflazer (1996),
who defines a specialized algorithm for approximate matching of an input
string with a regular language using traditional DL edit costs to guide the
search. Schulz and Mihov (2002) present constructions for pre-compiling DL
string matchers as finite state machines, while Pirinen and Lindén (2010)
describe a spelling correction architecture expressed as a composition of
weighted finite-state transducers, using the DL edit distance to represent the
error modelling component.

Submitted Publications

Article 1 (Jurish, 2008)

The first submitted article (Jurish, 2008) introduces the basic canonicalization
framework for historical text. Assuming a non-deterministic application anal-
ysis framework, the canonicalization task is characterized in terms of word
type conflation, and two high-level type-wise conflation relations are proposed:

4Gotscharek et al. (2009c) refer to these in terms of a “hypothetical dictionary”.

4 The Big Picture

phonetic conflation and heuristic lemma instantiation. The proposed tech-
niques are evaluated with respect to both runtime processing efficiency and
coverage by the high-precision tagh morphological analyzer for present-day
German (Geyken and Hanneforth, 2006) over a 5.5 million word corpus of
heterogeneous historical German verse extracted from dictionary quotation
evidence.

In general, phonetic conflation equates those word types which share a
common phonetic form, as determined by some computable phonetization
function. The phonetization function used in the current work (Jurish,
2008, 2010b,c) was adapted from a deterministic rule-set (Möhler et al., 2001)
originally designed for the popular text-to-speech synthesis system festival.5
In this article, I present a method by which any such rule-set in the standard
festival syntax may be converted to an equivalent finite state transducer,
achieving an empirical reduction of over 84% in required processing time with
respect to the native festival interpreter.

The second conflation method introduced in this article makes use of
morphology induction techniques (Yarowsky and Wicentowski, 2000; Baroni
et al., 2002) together with domain-specific restrictions to extend phonetic
conflation sets for a corpus of dictionary quotation evidence by means of
lemma instantiation heuritics. I show that by using the dictionary structure
of the corpus to restrict a morphology induction algorithm, the number of
required string comparisons can be reduced by a factor of over ten thousand,
making the use of these techniques viable for large structured corpora. While
not generally applicable to arbitrary corpora of historical text, these heuristics
can be employed to “bootstrap” lexical resources if a dictionary corpus is
available.

Use of the phonetic conflation strategy reduced type-wise tagh coverage
errors on the historical verse corpus by over 21.1%, and token-wise coverage
errors by over 48.2%. Relaxation of the strict identity criterion by the
domain-specific lemma instantiation heuristics provided an additional type-
wise coverage error reduction of over 26.7% and an additional token-wise
coverage error reduction of over 33.8%.

Article 2 (Jurish, 2010a)
The coverage results from Jurish (2008) showed that relaxing the strict identity
criterion of the phonetic conflation technique could improve coverage by a
conventional lexicon. Jurish (2010a) introduces an algorithm by means of
which such relaxed conflation sets may be efficiently computed for arbitrary

5http://www.cstr.ed.ac.uk/projects/festival

http://www.cstr.ed.ac.uk/projects/festival

Submitted Publications 5

input text even in the presence of an infinite target lexicon as exhibited by
morphologically productive languages like German.

The problem is characterized in terms of k-best lookup operations in
weighted finite-state transducer cascades. The case of relaxed conflation is
realized as a simple cascade consisting of a weighted “editor” transducer which
models likelihood of diachronic variation and a (possibly infinite) target accep-
tor representing the synchronic lexicon. Due to the combinatorial properties
of the finite-state composition operation, even such a comparatively modest
cascade cannot be compiled offline by conventional computing architectures.

The algorithm presented in this paper is based on the well-known Dijkstra
algorithm (Dijkstra, 1959) for best-path search in weighted graphs. Neces-
sary extensions to the algorithm to accomodate arbitrary bounded semiring
weights, online expansion of cascade transitions, restriction to the k-best final
states, and direct computation of the k-best output strings are presented. In
particular the latter aspect differentiates this approach from other popular
best-path algorithms (Cormen et al., 2001; Mohri, 2002). The correctness
conditions and running time of the algorithm are discussed for both worst-
and average-case scenarios, as are the implications of a greedy termination
strategy and an external cutoff threshold. Some properties of “degenerate”
cascades are identified, and the subclass of lookup cascades for which the
algorithm is expected to terminate is restricted accordingly.

Article 3 (Jurish, 2010b)

One important question unaddressed by the previous papers is that of the
reliability of the various canonicalization techniques. Improvement in coverage
by a synchronic lexicon is of course desirable, but not if such improvement
comes at the expense of reliability. In order to address this question, a
small test corpus was extracted from the corpus of historical verse used in
Jurish (2008), and a unique canonical form was manually assigned to each
token. In Jurish (2010b), I use this test corpus as a gold standard to provide a
quantitative evaluation of three non-trivial canonicalization strategies in terms
of the information retrieval notions of precision and recall (van Rijsbergen,
1979).

The first of the three canonicalization techniques evaluated here is the
phonetic conflation strategy from Jurish (2008). The remaining two techniques
are both reducible to best-path lookup operations in simple weighted finite-
state cascades, which were computed using a C library implementation of
the algorithm from Jurish (2010a). Both cascade-based canonicalizers use
the (infinite) input language of the tagh morphology transducer to represent

6 The Big Picture

the target lexicon, differing only in the definition of the “editor” transducer:
the component responsible for modelling likelihood of diachronic variation.
The first tested editor transducer is just a finite-state implementation of
the traditional Levenshtein string edit distance (Levenshtein, 1966). The
second editor was compiled from a heuristic two-level “rewrite” rule-set whose
rules were manually constructed to reflect linguistically plausible patterns of
diachronic variation as observed in the set of lemma-instance pairs extracted
in Jurish (2008).

One additional naïve string identity technique was tested to simulate the
lack of any canonicalization preprocessing. With both type- and token-wise
precision values over 99%, this was by far the most precise of all tested
techniques, but the poorest in terms of recall, supporting the claim that
a synchronically-oriented lexicon cannot adequately account for the degree
of graphematic variation in historical text. The phonetic and Levenshtein
distance techniques performed similarly to one another at the type level, but
a sharp drop in phonetic precision was observed at the token level, due to a
small number of phonetic misconflations involving high-frequency types. The
linguistically motivated rewrite cascade performed best overall, achieving a
type-wise harmonic mean F=93.2% and a token-wise F=95.8%, providing a
harmonic mean error reduction of over 45% with respect to both phonetic
and Levenshtein-distance conflation. These results lend empirical support to
the intuition that a fine-grained context-sensitive pseudo-metric incorporating
linguistic knowledge can more accurately model diachronic processes than a
general-purpose metric like the Levenshtein distance.

Article 4 (Jurish, 2010c)

The canonicalization techniques discussed in the previous articles have all
been formally expressible as word type conflation relations: binary relations
over the set of all word strings which induce a (pseudo-) equivalence class
or “conflation set” for each input word type, independent of its surrounding
context. Already apparent in the data from Jurish (2010b) is a typical
precision-recall trade-off pattern among these type-wise conflation techniques:
the ultra-conservative string identity conflator despite its near-perfect precision
shows quite poor recall, while the more ambitious high-recall conflators such as
phonetic identity or rewrite transduction tend to be disappointingly imprecise.
In Jurish (2010c), I present a technique for disambiguation of type conflation
sets at the token level using a Hidden Markov Model whose lexical probability
matrix is dynamically computed from the candidate conflations, and evaluate
its performance on a corpus of historical German prose.

Conclusion 7

The type-wise conflators used in this article are the phonetic and rewrite
conflators from Jurish (2010b). Additionally, a conservative transliteration
conflator is defined and used as an alternative to naïve string identity.6 Treat-
ing the conflation sets returned by these subordinated type-wise conflators as
canonicalization hypotheses, the disambiguator chooses an optimal sequence of
token-wise unique canonical forms for each input sentence. The best-sequence
optimization problem itself is computed by a standard application of the
Viterbi algorithm (Viterbi, 1967). Since the “hidden” states of the disam-
biguator represent extant word forms, the model’s transition probabilities can
be estimated using standard maximum likelihood techniques from a corpus
of contemporary text (Manning and Schütze, 1999). The model’s lexical
probabilities however require reference to both extant and historical forms, so
these cannot be directly estimated in the absence of representative training
data. Instead, lexical probabilities are dynamically re-computed for each input
sentence using a Maxwell-Boltzmann distribution with a conflator-sensitive
distance function.

The proposed disambiguation architecture was evaluated on an informa-
tion retrieval task over a new gold standard corpus of manually confirmed
canonicalizations of historical German prose, which was constructed by a
two-phase procedure of automatic alignment and manual review. Use of the
token-wise disambiguator provided a precision error reduction of over 94%
with respect to the highest-recall method, and a recall error reduction of
over 71% with respect to the most precise method. Overall, the proposed
disambiguation method proved very competitive at the type level (F=96.9%,
versus F=97.0% for the best type-wise method, the heuristic rewrite cascade),
and outperformed all other tested methods at the token level, achieving a
token-wise harmonic mean F=99.4%.

Conclusion
Five basic techniques for automatic canonicalization of historical text were
introduced, implemented, and empirically evaluated: deterministic transliter-
ation, phonetic conflation, lemma instantiation heuristics, best-path lookup
in a weighted finite-state cascade, and dynamic Hidden Markov Model dis-
ambiguation. The poor coverage and low recall displayed by a naïve string

6Only the status of the transliteration function as a conflator in its own right is new
here; the transliterator described in Jurish (2010c) was briefly mentioned already in Jurish
(2008), where it was employed as an “orthographic preprocessor”. The same function was
implicitly used in Jurish (2010b) to preprocess the inputs passed to the phonetic and
cascade conflators.

8 The Big Picture

matching strategy support the initial hypothesis that a synchronically oriented
lexicon cannot adequately account for graphematic variation observable in
historical text.

The substantial improvement in recall by the simple phonetic conflator
with respect to both string identity and transliteration suggests that for
German, the phonological and phonetic properties of the language are more
stable along the diachronic axis than its graphematic properties; or at least
that phonetic and graphematic variations have tended to pattern disjointly.
Further recall improvement by relaxation of the strict (phonetic) identity
criterion through the lemma-instantiation and rewrite cascade conflators
suggest that historical variation phenomena go beyond those which can be
easily captured by simple deterministic techniques. The direct comparison
between the manually constructed rewrite rule-set and a simple Levenshtein
editor indicates that the latter general-purpose metric is too coarse to function
as an accurate predictor of etymological relations.

By optimizing the path probability through the space of canonicalization
hypotheses returned by the type-wise conflators, the Hidden Markov Model
disambiguator was able to eliminate a large number of false positive conflations,
providing a dramatic improvement in precision with only minimal loss of
recall. This supports the intuition that sentential context provides useful
information about the lexical disposition of unfamiliar words, a well-known
phenomenon in the domain of psycholinguistics. Moreover, the fact that
the disambiguator’s transition probabilities were trained on contemporary
text supports the hypothesis that the language’s syntagmatic properties are
considerably more stable than either its phonetic or graphematic properties.

Document Conventions
The rest of this document is organized as follows: The four submitted articles
described above appear in chronological order as the individual chapters 1
through 4. Appendix A contains explicit characterizations of the rule-based
finite-state components used in the rest of the work, appendix B provides
a brief overview of selected software developed in the course of the work
described here, and appendix C contains details on the various corpora
involved.

The articles appearing here as chapters 1 through 4 have been reformatted
for inclusion in this document. Most notably, inconsistent typographical
conventions have been unified and local bibliographic references have been
extracted to a global bibliography beginning on page 129. In some cases,
variable names have been changed to be more consistent with those used in

Document Conventions 9

the rest of this document. Typographical errors appearing in the publications
have been corrected here when they were discovered, and occurrences of first
person plural pronouns as used in anonymous submissions were replaced
with the corresponding singular pronouns. In some cases, comments have
been added to the articles as presented here which did not appear in the
original publications, for example cross-references within this document. Such
comments appear as footnotes explicitly marked with the prefix “edit”.

Part I

Submitted Publications

“. . . meddle first, understand later. You had to meddle a bit before
you had anything to try to understand. And the thing was never, ever
to go back and hide in the Lavatory of Unreason. You have to try to
get your mind around the Universe before you can give it a twist.”

Terry Pratchett, Interesting Times

11

originally appeared as:
Bryan Jurish. Finding canonical forms for historical German text. In A. Storrer, A. Geyken,
A. Siebert, and K.-M. Würzner, editors. Text Resources and Lexical Knowledge, pages
27–37. Mouton de Gruyter, 2008.

Chapter 1

Finding Canonical Forms

1.1 Introduction

Historical text presents numerous challenges for contemporary natural lan-
guage processing techniques. In particular, the absence of consistent ortho-
graphic conventions in historical text presents difficulties for any technique
or system requiring reference to a fixed lexicon accessed by orthographic
form, such as document indexing systems (e.g. Sokirko, 2003), part-of-speech
taggers (e.g. DeRose, 1988; Brill, 1992; Schmid, 1994; Jurish, 2003), simple
word stemmers (e.g. Lovins, 1968; Porter, 1980), or more sophisticated mor-
phological analyzers (e.g. Geyken and Hanneforth, 2006). When adopting
historical text into such a system, one of the most important tasks is the
discovery of one or more canonical extant forms for each word of the input
text: synchronically active text types which best represent the historical input
form.1

The process of collecting variant forms into equivalence classes represented
by one or more canonical extant types is commonly referred to as conflation,
and the equivalence classes themselves are referred to as conflation sets. Given
a high-coverage analysis function for extant forms, an unknown (historical)
form w can then be analyzed as the disjunction of analyses over (the extant

1As an anonymous reviewer pointed out, the absence of consistent orthographic conven-
tions is not restricted to corpora of historical text. Various other types of text corpora
– including transcriptions of spoken language, corpora containing transcription errors,
and corpora for languages with non-standard orthography – might also benefit from a
canonicalization strategy such as those presented here.

13

14 1. Finding Canonical Forms

members of) its conflation set [w]:

analyses(w) :=
⋃
v∈[w]

analyses(v)

This paper describes two methods for finding conflation sets in a corpus
of circa 5.5 million words of historical German verse extracted from quotation
evidence in the digital edition of the Deutsches Wörterbuch (DWB, Bartz
et al., 2004), and indexed with the taxi document indexing system.2 The
conflation methods were implemented on the entire corpus as a taxi plug-in
module (taxi/Grimm), and evaluated with respect to coverage by the tagh
morphology.

The rest of this paper is organized as follows: section 1.2 describes the first
conflation strategy, based on identity of phonetic forms. The second strategy
making use of a priori assumptions regarding corpus structure and permitting
“fuzzy” matching via phonetic edit distance is presented in section 1.3. Finally,
section 1.4 contains a brief summary of the preceding sections and a sketch
of the ongoing development process.

1.2 Conflation by Phonetic Form
Although the lack of consistent orthographic conventions for middle high
German and early new high German texts led to great diversity in surface
graphemic forms, we may assume that graphemic forms were constructed to
reflect phonetic forms.3 Under this assumption, together with the assumption
that the phonetic system of German is diachronically more stable than the
graphematic system, the phonetic form of a word type should provide a
better clue to the extant lemma of a historical word than its graphemic form.
This insight is the essence of the “conflation by phonetic form” strategy as
implemented in the taxi/Grimm index module.

In order to map graphemic forms to phonetic forms, we may avail ourselves
of previous work in the realm of text-to-speech synthesis, a domain in which the
discovery of phonetic forms for arbitrary text is a well-known and often-studied
problem (cf. Allen et al., 1987; Liberman and Church, 1992; Dutoit, 1997), the
so-called “grapheme-to-phoneme”, “grapheme-to-phone”, or “letter-to-sound”
(LTS) conversion problem. Use of a full-fledged LTS conversion module to
estimate phonetic forms provides a more flexible and finer-grained approach
to canonicalization by phonetic form than strategies using language-specific

2edit: See appendix C.1
3edit: This assumption is made explicit in Keller (1978).

1.2 Conflation by Phonetic Form 15

phonetically motivated digest codes such as those described in Robertson and
Willett (1993). The grapheme-to-phone conversion module in the taxi/Grimm
system uses the LTS rule-set distributed with the IMS German Festival
package (Möhler et al., 2001), a German language module for the Festival
text-to-speech system (Black and Taylor, 1997; Taylor et al., 1998).

1.2.1 Implementation
As a first step, the IMS German Festival letter-to-sound (LTS) rule-set was
adapted to better accommodate both historical and contemporary forms;
assumedly at the expense of precision for both historical and contemporary
forms. In particular, the following changes were made:4

1. By default, the grapheme “h” is ignored (considered silent).

2. A single additional rule maps the grapheme sequence “sz” to voiceless
[s].

3. Vowel-length estimates output by the IMS German rule-set are ignored;
thus [e] and [e:] are both mapped to the canonical phonetic form [e].

4. Schwas ([@]) predicted by the IMS German rule-set are replaced by [e]
in the canonical phonetic form.

5. Adjacent occurrences of any single vowel predicted by the IMS German
rule-set are replaced by a single occurrence, thus [aa], [aaa], and [aaaa]
are all mapped to [a].

The adapted rule-set was converted to a deterministic finite-state trans-
ducer (Aho and Ullman, 1972; Roche and Schabes, 1997) using the GFSM
finite-state machine utility library. Formally, the finite-state transducer (FST)
used by the taxi/Grimm LTS module is defined as the machine Mpho aris-
ing from the composition of two Aho-Corasick pattern matchers (Aho and
Corasick, 1975) ML,MR and an additional output filter MO:

Mpho = (ML ◦MR ◦MO) : A∗ → P∗ (1.1)

where A is the finite grapheme alphabet and P is the finite phone alphabet.
To define the individual component machines, let R be the (IMS German)

4edit: Although the changes described here accurately reflect the phonetization rule-set
which was used to acquire the coverage results in section 1.2.3, the rule-set was further
modified in the course of later work, so that the description given here does not encompass
all the changes made. A full list of the changes to the phonetization rule-set can be found
in appendix A.2.

16 1. Finding Canonical Forms

Festival LTS rule-set source, a finite set of rules of the form (α[β]γ → π) ∈
A∗ ×A+ ×A∗ × P∗, read as: the source grapheme string β is to be mapped
to the target phonetic string π if β occurs with left graphemic context α and
right graphemic context γ; let ≺ be a linear precedence order on R which
prevents multiple rules from applying to the same source substring (only the
≺-minimal rule is applied at each source position, proceeding from left to
right); for a nonempty rule subset S ⊆ R, let (αS[βS]γS → πS) = min≺ S; let
AhoCorasick(P) : A∗ → ℘(P)∗ be the Aho-Corasick pattern matcher for a set
P of string patterns from a finite alphabet A; let | · | denote string length or
set cardinality, depending on context; let Reverse(·) denote the transducer or
string reversal operation, and let Concat(· · ·) denote the string concatenation
operation, then:

ML ≈ AhoCorasick ({α : (α[β]γ → π) ∈ R}) (1.2)
: A∗ → (A× ℘(R))∗

: w 7→ Concat|w|i=0

〈
wi,

{
(α[β]γ → π) ∈ R | w(i−|α|)..i = α

}〉
MR ≈ Reverse (AhoCorasick ({Reverse(βγ) : (α[β]γ → π) ∈ R})) (1.3)

: (A× ℘(R))∗ → ℘(R)∗

: 〈wi, Si〉I 7→ Concati∈I
(
Si−1 ∩

{
(α[β]γ → π) ∈ R : wi..(i+|βγ|) = βγ

})
A similar construction also using a pair of Aho-Corasick pattern matchers
(analogous to ML and MR) is employed by Laporte (1997) for compiling a
single bimachine from a set of conflict-free hand-written phonetic conversion
rules. Since festival LTS rule-sets are not conflict-free, Laporte’s technique
cannot be applied directly here, and the choice of which rule to apply must
be delayed until application of the filter transducer MO:

MO ≈

 ⋃
S∈℘(R)

[
(S : πS) (℘(R) : ε)|βS |−1

]∗ (1.4)

: ℘(R)∗ → P∗

In the interest of efficiency, the rule subsets S ∈ ℘(R) on the lower tape
of the filter transducer MO can be restricted to those which actually occur
on the upper tape of the right-context transducer MR: such a restriction
represents a considerable efficiency gain with respect to the “brute force”
powerset construction given in Equation 1.4. Figure 1.1 shows an example of
how the various machine components work together to map the graphemic
form “sache” to the phonetic form [zax@].

1.2 Conflation by Phonetic Form 17

Input # s a c h e #

ML
−→ ∅

[a]ch→a
[a] →a:,
[c] →k,
[e] →@,

#[s]a →z,
[s] →s

[a]ch→a,
[a] →a:,
[c] →k,
[e] →@,
[s] →s

[a]ch→a,
[a] →a:,
a[ch] →x,
[c] →k,
[e] →@,
[s] →s

∅

[a]ch→a,
[a] →a:,
[c] →k,
[e] →@,
[s] →s

 ∅

MR
←− ∅

{
#[s]a→z,

[s] →s

} {
[a]ch→a,
[a] →a:

} {
a[ch]→x,
[c]→k

}
∅

{
[e]→@

}
∅

MO
−→ ε z a x ε @ ε

Figure 1.1: Example Letter-to-Sound transduction from “sache” to [zax@].
Here, italic “ε” indicates the empty (phonetic) string.

Finally, phonetic forms are used to conflate graphemic variants w ∈ W as
equivalence classes [w]pho with respect to the phonetic equivalence relation
∼pho on the corpus word-type alphabet W ⊆ A∗:

w ∼pho v :⇔ Mpho(w) = Mpho(v) (1.5)
[w]pho = {v ∈ W : w ∼pho v} (1.6)

Note that the equivalence class generating function [·]pho :W → ℘(W) can
itself be characterized as a finite-state transducer, defined as the composition
of the LTS transducer with its inverse, and restricted to the alphabet W of
actually occurring corpus word-types:

[·]pho := Mpho ◦M−1
pho ◦ Id (W) (1.7)

1.2.2 Performance
A finite-state LTS transducer Mpho was compiled from the 396 rules of the
adapted IMS German Festival rule-set using the procedure sketched above.
The resulting transducer contained 131,440 arcs and 1,037 states, of which 292
were final states. The compilation lasted less than 30 seconds on a workstation
with a 1.8GHz dual-core processor. Performance results for the transducer
representation of the LTS rule-set and for two methods using festival

18 1. Finding Canonical Forms

LTS Method Throughput (tok/sec) Relative
festival (TCP) 28.53 −4875.57 %
festival (pipe) 1391.45 ± 0.00 %
FST (libgfsm) 9124.69 + 555.77 %

Table 1.1: Performance results for LTS FST compared to direct communica-
tion with a festival process

directly are given in Table 1.1. As expected, the transducer implementation
was considerably faster than either of the methods communicating directly
with a festival process.

1.2.3 Coverage

The phonetic conflation strategy was tested on the full corpus of the verse
quotation evidence extracted from the DWB, consisting of 6,581,501 tokens
of 322,271 distinct graphemic word types. A preprocessing stage removed
punctuation marks, numerals, and known foreign-language material from
the corpus. Additionally, a rule-based graphemic normalization filter was
applied which maps UTF-8 characters not occurring in contemporary German
orthography onto the ISO-8859-1 (Latin-1) character set (e.g. œ, e

o, and ô
are mapped to oe, ö, and o, respectively).5 After preprocessing and filtering,
the corpus contained 5,491,982 tokens of 318,383 distinct ISO-8859-1 encoded
graphemic types.

Of these 318,383 Latin-1 word types occurring in the corpus, 135,070
(42.42%) were known to the tagh morphology (Geyken and Hanneforth, 2006),
representing a total coverage of 4,596,962 tokens (83.70%). By conflating
those word types which share a phonetic form according to the LTS module,
coverage was extended to a total of 173,877 (54.61%) types, representing
5,028,999 tokens (91.57%). Thus, conflation by phonetic form can be seen to
provide a reduction of 21.17% in type-wise coverage errors, and of 48.27% in
token-wise coverage errors. Some examples of word types conflated by the
phonetic canonicalization strategy are given in Figure 1.2.

5edit: The “graphemic normalization filter” used here was an early version of the
conservative transliterator formally introduced in chapter 4 and explicitly defined in
appendix A.1.

1.3 Conflation by Lemma Instantiation Heuristics 19

Extant Form w Phonetic Equivalence Class [w]pho

fröhlich frölich, fröhlich, vrœlich, frœlich, fr e
olich, fr e

ohlich,
vrölich, fröhlig, frölig, . . .

Herzenleid hertzenleid, herzenleid, herzenleit, hertzenleyd,
hertzenleidt, herzenlaid, hertzenlaid, hertzenlaidt,
hertzenlaydt, herzenleyd, . . .

Hochzeit hochtzeit, hochzeit, hochzeyt, hochzît, hôchzît,
hochzeid, . . .

Schäfer schäfer, schäffer, scheffer, scheppher, schepher,
sch e

afer, sch e
affer, schähffer, . . .

Figure 1.2: Some words conflated by identity of phonetic form

1.3 Conflation by Lemma Instantiation Heu-
ristics

Despite its encouragingly high coverage, conflation by identity of phonetic
form is in many cases too strict a criterion for lemma-based canonicalization
– many word pairs which intuitively should be considered instances of the
same lemma are assigned to distinct phonetic equivalence classes. Examples
of such desired conflations undiscovered by the phonetic conflation strategy
include the pairs (abbrechen, abprechen), (geschickt, geschicket), (gut, guot),
(Licht, liecht), (Teufel, tiuvel), (umgehen, umbgehn), (voll, vol), and (wollen,
wolln). In an attempt to address these shortcomings of the phonetic conflation
method, additional conflation heuristics were developed which make use of
the dictionary structure of the taxi/Grimm corpus in order to estimate and
maximize a lemma instantiation likelihood function.

1.3.1 Implementation
The taxi/Grimm corpus is comprised of verse quotation evidence drawn from
a dictionary corpus (Bartz et al., 2004). It is plausible to assume that each
of the quotations occurring in an article for a particular dictionary lemma
contain some variant of that lemma – otherwise there would not be much
sense including the quotation as “evidence” for the lemma in question.

Working from this assumption that each quotation contains at least one
variant of the dictionary lemma for which that quotation appears as evidence,
a lemma instantiation conflation heuristic has been developed which does
not require strict identity of phonetic forms – instead, string edit distance

20 1. Finding Canonical Forms

(Levenshtein, 1966; Wagner and Fischer, 1974; Navarro, 2001) on phonetic
forms is used to estimate similarity between each word in the corpus and
each of the dictionary lemmata under which it occurs. Further, inspired by
previous work in unsupervised approximation of semantics and morphology
(Church and Hanks, 1990; Yarowsky and Wicentowski, 2000; Baroni et al.,
2002), pointwise mutual information (McGill, 1955; Cover and Thomas, 1991;
Manning and Schütze, 1999) between dictionary lemmata and their candidate
instances is employed to detect and filter out “chance” similarities between
rare lemmata and high-frequency words.

Formally, the lemma instantiation heuristics attempt to determine for
each quotation q which phonetic type i occurring in q best instantiates the
dictionary lemma ` associated with the article containing q. For W the set
of all word types occurring in the corpus, L ⊆ W the set of all dictionary
lemmata, and Q ⊆ ℘(W∗) the set of all quotations:

bestInstance(·) : Q →W (1.8)
: q 7→ arg max

w∈q L(Mpho(w),Mpho(lemma(q)))

where the probabilities P(`, i),P(`), and P(i) used to compute pointwise mu-
tual information are first instantiated by their maximum likelihood estimates
over the entire corpus:

P(`, i) =
∑
wi∈M−1

pho(i)
∑
w`∈M−1

pho(`) f(Token = wi, Lemma = w`)
|Corpus|

(1.9)

P(`) =
∑
i

P(`, i) (1.10)

P(i) =
∑
`

P(`, i) (1.11)

Raw bit-length pointwise mutual information values Ĩ(`, i) are computed and
normalized to the unit interval [0, 1] for each lemma and candidate instance,
defining Ĩ(i|`) and Ĩ(`|i) respectively:

Ĩ(`, i) = log2
P(`, i)

P(`) P(i) (1.12)

Ĩ(i|`) = Ĩ(`, i)−min Ĩ(`,W)
max Ĩ(`,W)−min Ĩ(`,W)

(1.13)

Ĩ(`|i) = Ĩ(`, i)−min Ĩ(L, i)
max Ĩ(L, i)−min Ĩ(L, i)

(1.14)

The user-specified function dmax(`, i) serves a dual purpose: first as a normal-
ization factor for the fuzzy phonetic similarity estimate sim(`, i), and second

1.3 Conflation by Lemma Instantiation Heuristics 21

as a cutoff threshold for absolute phonetic edit distances dedit(`, i), blocking
instantiation hypotheses when phonetic dissimilarity grows “too large”:

dmax(`, i) = min{|`|, |i|} − 1 (1.15)

The lemma instantiation likelihood function L(i, `) is defined as the product
of the normalized phonetic similarity and the arithmetic average component-
normalized mutual information score:

sim(`, i) =
{

dmax(`,i)−dedit(`,i)
dmax(`,i) if dedit(`, i) ≤ dmax(`, i)

0 otherwise
(1.16)

L(i, `) = sim(`, i)× (̃I(`|i) + Ĩ(i|`))
2 (1.17)

Finally, the edit-distance lemma instantiation heuristic conflates those word
pairs which either share a phonetic form or appear as best instances of some
common dictionary lemma:6

w ∼li v :⇔ (w ∼pho v) or (1.18)
(lemma(bestInstance−1(w)) ∩ lemma(bestInstance−1(v)) 6= ∅)

1.3.2 Performance
A major advantage of this approach arises from the relatively small number
of edit distance comparisons which must be performed. Since the Wagner-
Fischer algorithm (Wagner and Fischer, 1974) used to compute phonetic edit
distances has quadratic running time, O(dedit(w, v)) = O(|w||v|), the number
of edit distance comparisons comprises the bulk of the heuristic’s running
time, and should be kept as small as possible. Restricting the comparisons
to those pairs (`, i) of dictionary lemmata and phonetic types occurring in
quotation evidence for those lemmata requires that approximately 3.38 million
comparisons be made during analysis of the entire taxi/Grimm quotation
corpus. If instead every possible unordered pair of phonetic types were to
be compared – as required by some morphology induction techniques – a
total of circa 340 billion comparisons would be required, over ten thousand
times as many! With restriction of comparisons to dictionary lemmata, the
heuristic analysis completes in 28 minutes on a 1.8GHz dual-core processor
workstation, which corresponds to a projected running time of about 5.35
years for a method comparing all unordered word pairs, which is clearly
unacceptable.

6Note that ∼li is not an equivalence relation in the strict sense, since although it is
reflexive and symmetric, it is not transitive.

22 1. Finding Canonical Forms

1.3.3 Coverage
Using the verse quotation evidence corpus described above in section 1.2.3, the
lemma instantiation conflation heuristics discovered conflations with extant
forms known to the tagh morphology for 29,248 additional word types not
discovered by phonetic conflation, including all of the example word pairs
given in the introduction to this section. Additionally, 9,415 word types
were identified as “best instances” for DWB lemmata unknown to the tagh
morphology. Together with phonetic conflation, the lemma instantiation
heuristics achieve a total coverage of 212,540 types (66.76%), representing
5,185,858 tokens (94.43%). Thus, the lemma instantiation heuristic conflation
method provides a reduction of 26.76% in type-wise coverage errors and of
33.88% in token-wise coverage errors with respect to the phonetic identity
conflation method alone, resulting in a total reduction of 42.26% in type-wise
coverage errors and of 65.80% in token-wise coverage errors with respect to
the literal tagh morphology.

1.4 Summary & Outlook
Two strategies were presented for discovering synchronically active canonical
forms for unknown historical text forms. Together, the two methods achieve
tagh morphological analyses for 94.43% of tokens, reducing the number of
unknown tokens by 65.8% in a corpus of circa 5.5 million words of historical
German verse. In the interest of generalizing these strategies to arbitrary
input texts, a robust system for lazy online best-path lookup operations
in weighted finite-state transducer cascades (such as phonetic equivalence
classes or best-alignments with a target language in the form of a finite-state
acceptor) is currently under development.

While the high coverage rate of the conflation strategies presented here is
encouraging, a number of important questions remain. Chief among these is
the question of the canonicalization strategies’ reliability: how many of the
discovered extant “canonical” forms are in fact morphologically related to
the source forms? Conversely, were all valid canonical forms for each covered
source word indeed found, or were some missed? A small gold standard
test corpus is currently under construction which should enable quantitative
answers to these questions in terms of the information retrieval notions of
precision and recall.

originally appeared as:
Bryan Jurish. Efficient online k-best lookup in weighted finite-state cascades. In T. Han-
neforth and G. Fanselow, editors, Language and Logos: Studies in Theoretical and Compu-
tational Linguistics, pages 313-327. Akademie Verlag, 2010a.

Chapter 2

Efficient Online k-best Lookup

2.1 Introduction
Weighted finite-state transducers (WFSTs) have proved to be powerful and
efficient aids for a variety of natural-language processing tasks, including
automatic phonetization and phonological rule systems (Kaplan and Kay,
1994; Laporte, 1997), morphological analysis (Geyken and Hanneforth, 2006),
and shallow syntactic parsing (Roche, 1997). In particular, cascades arising
from the composition of two or more WFSTs can be used to model processing
“pipelines”, each component of which is itself a (weighted) finite-state trans-
ducer.1 Typically, the input to such a pipeline is a simple string, corresponding
to a lookup operation for the input string in the processing cascade.

Unfortunately, an exhaustive “offline” compilation of the processing cas-
cade turns out in many cases to be infeasible, due to memory restrictions
and the combinatorial properties of the composition operation itself. Even
for simple lookup operations in “dense” cascades,2 the resulting WFST may
in fact be several times larger than the processing pipeline itself. In many
such cases – particularly in optimization and error-correction problems – the
output WFST itself serves only as an intermediate processing datum, however:
we are not interested in an exhaustive representation of the lookup output,
but rather only in a small finite subset of its language, such as the k-best
paths.

This paper presents a novel algorithm for efficient k-best search in a
1edit: cf. Pereira and Riley (1997)
2Informally, the “density” of a cascade C corresponds to the cardinality of the underlying

rational relation |JCK| ≤ |A∗ × B∗|; the densest cascades containing at least one valid path
for every pair of in- and output-strings (s, t) ∈ A∗ × B∗.

23

24 2. Efficient Online k-best Lookup

subclass of weighted finite-state lookup cascades which avoids the combi-
natorial explosion associated with “dense” cascade relations by means of
online computation:3 dynamic construction of only those states and arcs
required for a k-best search of the lookup output. Use of a greedy termination
clause together with an additional cutoff parameter helps to ensure speedy
completion and simultaneously prune unwanted results from the output.

2.1.1 Example Application

As an example application, consider the task of orthographic standardization
of historical text, which must precede any adequate treatment of historical
corpora by conventional NLP tools, due to the lack of consistent orthographic
conventions in such corpora (Jurish, 2008). In this scenario, the processing
cascade consists of at least:

• a weighted edit transducer M∆ which robustly models (potential) di-
achronic change likelihood as a (dense) weighted rational relation, and

• a target acceptor AL representing the synchronically active lexicon of
extant word forms.

The processing cascade C∆L = M∆ ◦ AL thus models all potential di-
achronic changes resulting in some extant word form.4 A lookup cascade
C~w∆L = (Id (~w)◦C∆L) = (Id (~w)◦M∆ ◦AL) for a historical text form ~w in the
cascade C∆L represents the set of all extant forms ~v into which ~w may have
evolved, weighted by the likelihood of a direct etymological relation ~w ; ~v.
The k-best output strings of the lookup cascade are then simply the k extant
word forms considered most likely to be directly related to the historical
form ~w. Restricting the admissible output paths by applying an external
cutoff threshold cmax is equivalent to imposing an a priori upper bound on the
likelihood of acceptable diachronic derivations, which is especially important
in the case of a dense editor M∆.

3Also sometimes referred to as “lazy evaluation” or “on-the-fly computation”.
4edit: The Levenshtein and heuristic rewrite canonicalization cascades used in chapters

3 and 4 are instances of just this sort of processing cascade. The Levenshtein cascade is
defined as CLev = MLev ◦ALexLev and the heuristic rewrite cascade as Crw = Mrw ◦ALexrw ,
where MLev is a WFST representation of the Levenshtein string edit distance (Schulz and
Mihov, 2002), Mrw is the rewrite editor transducer formally specified in appendix A.5, and
ALexLev , ALexrw are weighted acceptors representing the contemporary lexicon extracted
from the tagh morphology as described in appendix A.3.

2.1 Introduction 25

2.1.2 Desiderata
In light of the preceding example, a number of important properties for a
candidate solution may be identified:

• Online computation: states and transitions of intermediate process-
ing stages should be computed “on-the-fly” and discarded when no
longer needed, to avoid the combinatorial explosion associated with
dense cascades.

• Type-wise input: the algorithm should function efficiently for type-
wise input, for maximal flexibility.

• k-best strings: output of the algorithm should be an enumeration
of the k best strings of the lookup output for a user-specified natural
number k, thus allowing the user some control over the maximum degree
of ambiguity returned.

• Arbitrary cascade depth: the algorithm should not itself impose
any upper bound on the depth of the processing cascade. In particular,
pair-wise “lazy evaluation” of sub-cascades is to be avoided, since such
methods – although elegant and formally correct – tend to introduce
nontrivial amounts of runtime and memory overhead.5

• Arbitrary regular weighting function: the algorithm should func-
tion correctly for arbitrary regular weighting functions, i.e. for arbitrary
cascades of weighted finite-state transducers. In particular, no as-
sumption should be made about the cascade architecture regarding the
presence, placement, content, or disposition of an “editor WFST” such
as M∆.6

• Cutoff threshold: the algorithm should accept as an additional pa-
rameter a cutoff threshold which serves to further restrict the set of
acceptable output paths.

• Greedy termination: the algorithm should terminate and return as
quickly as possible in the average case; i.e. as soon as the k best paths

5Preliminary tests with the OpenFst library (Allauzen et al., 2007) supported these
intuitions.

6This desideratum is considered a critical feature of any candidate solution, eliminating
specialized techniques such as those described in Oflazer and Güzey (1994); Oflazer (1996),
relying as these do on an implicit edit distance weighting function in the style of Levenshtein
(1966); Wagner and Fischer (1974), rather than the weighting function arising from an
arbitrary WFST cascade.

26 2. Efficient Online k-best Lookup

have been discovered, or it has been determined that no further paths
are to be found below the cutoff threshold.

2.2 Formal Background
Definition 2.1 (Semiring). A structure K = 〈K,⊕,⊗, 0, 1〉 is a semiring if

1. 〈K,⊕, 0〉 is a commutative monoid with 0 as the identity element for ⊕,

2. 〈K,⊗, 1〉 is a monoid with 1 as the identity element for ⊗,

3. ⊗ distributes over ⊕, and

4. 0 is an annihilator for ⊗: ∀a ∈ K, a⊗ 0 = 0⊗ a = 0.

K is commutative if ∀a, b ∈ K, a⊗ b = b⊗ a, and K is idempotent if ∀a ∈
K, a⊕ a = a. For an idempotent semiring K, the natural order over K is the
partial order ≤K defined by ∀a, b ∈ K, (a ≤K b) :⇔ ((a⊕ b) = a). The natural
order is both negative (i.e. 1̄ ≤K 0̄) and monotonic, ∀a, b, c ∈ K, (a ≤K b)
implies (a ⊕ c) ≤K (b ⊕ c), (a ⊗ c) ≤K (b ⊗ c), and (c ⊗ a) ≤K (c ⊗ b). K
is said to be bounded if 1̄ is an annihilator for ⊕: ∀a ∈ K, 1̄ ⊕ a = 1̄. In a
bounded semiring, 1̄ ≤K a ≤K 0̄ for all a ∈ K. Every bounded semiring is
also idempotent (Mohri, 2002, Lemma 3). For current purposes, I will restrict
my attention to bounded semirings.

Definition 2.2 (WFST). A weighted finite-state transducer over a semiring
K is a 6-tuple M = 〈A,B, Q, q0, F, E〉 with:7

1. A a finite input (or “lower”) alphabet,

2. B a finite output (or “upper”) alphabet,

3. Q a finite set of states,

4. q0 ∈ Q the designated initial state,

5. F ⊆ Q the set of final states, and

6. E ⊆ Q×Q× (A ∪ {ε})× (B ∪ {ε})×K, a finite set of transitions.
7WFSTs are sometimes defined with an additional final weight function ρ : Q → K,

and/or a non-deterministic initial weight function α : Q→ K in place of q0. I ignore these
extensions here in the interest of clarity.

2.2 Formal Background 27

For a transition e = (q1, q2, a, b, c) ∈ E, I denote by p[e] its source state
q1, by n[e] its destination state q2, by i[e] its input label a, by o[e] its output
label b, and by c[e] its weight (or “cost”) c. A weighted finite-state acceptor
(WFSA) can be regarded as a WFST with A = B and i[e] = o[e] for all e ∈ E.

Definition 2.3 (String Transducer). For a string ~w = w1 · · ·wn ∈ A∗ over
an alphabet A, the string transducer for ~w is the WFSA Id (~w) = 〈A, A, Q~w,
0, {n}, E~w〉 with Q~w = {i ∈ N : i ≤ n} and E~w = ⋃n

i=1{(i− 1, i, wi, wi, 1̄)}.

A path π is a finite sequence e1e2 . . . e|π| of |π| transitions such that n[ei] =
p[ei+1] for 1 ≤ i < |π|. Extending the notation for transitions, I define the
source and sink states of a path as p[π] = p[e1] and n[π] = n[e|π|], respectively.
The input label string i[π] yielded by a path π is the concatenation of the
input labels of its transitions: i[π] = i[e1]i[e2] . . . i[e|π|]; the output label string
o[π] is defined analogously. The weight c[π] of a path π is the ⊗-product of
its transitions: w[π] = ⊗|π|

i=1 c[ei].
If p[π] = q0 and n[π] ∈ F , π is called successful. A cycle is a path π

with p[π] = n[π]. A string transducer Id (~w) contains exactly one successful
path π~w with i[π~w] = o[π~w] = ~w. A state r ∈ Q is said to be accessible
from a state q ∈ Q if there exists a path π with p[π] = q and n[π] = r; r is
accessible if it is accessible from q0. For q ∈ Q, ~w ∈ A∗, ~v ∈ B∗, and R ⊆ Q,
Π(q, ~w,~v, R) denotes the set of paths from q to some r ∈ R with input string
~w and output string ~v, and Π(q, R) = ⋃

~w∈A∗,~v∈B∗ Π(q, ~w,~v,R) denotes the set
of paths originating at q and ending at some r ∈ R.

Definition 2.4 (Transducer Weight). The weight assigned by a WFST M to
a pair of strings (~w,~v) ∈ A∗ × B∗ is defined as

JMK(~w,~v) =
⊕

π∈Π(q0, ~w,~v,F)
c[π]

Definition 2.5 (Composition of WFSTs). Given WFSTs M1 = 〈A, B, Q1,
q01 , F1, E1〉 and M2 = 〈B, C, Q2, q02 , F2, E2〉 over a commutative and
complete8 semiring K, the composition of M1 and M2 is written M1 ◦M2,
and is itself a WFST such that for all ~w ∈ A∗, ~v ∈ C∗:

JM1 ◦M2K(~w,~v) =
⊕
~u∈B∗

JM1K(~w, ~u)⊗ JM2K(~u,~v)

Further, M3 = 〈A, C, (Q1 × Q2), E3, (q01 , q02), (F1 × F2)〉 is such a WFST,

8cf. Ésik and Kuich (2004)

28 2. Efficient Online k-best Lookup

JM3K = JM1 ◦M2K, where:9

Q̃ = {(q, q, ε, ε, 1̄) : q ∈ Q}
E3 =

⋃
(q1,r1,a1,a2,c1)∈E1∪Q̃1

(q2,r2,a2,a3,c2)∈E2∪Q̃2

{((q1, q2), (r1, r2), a1, a3, c1 ⊗ c2)}

2.3 Algorithms
This section develops an algorithm for discovering the k-best label paths in a
dense cascade of weighted finite state transducers over a bounded semiring,
attempting to fulfill the desiderata from section 2.1.2. I begin with a brief
review of the well-known algorithm which serves as the basis for the current
approach, and consider its generalization to abstract semiring weights in
section 2.3.1. Section 2.3.2 extends the algorithm to online lookup operations
in weighted finite-state cascades. Section 2.3.3 explores the implications of a
greedy k-best termination strategy, and section 2.3.4 extends the discussion
to include a user-specified cutoff threshold. Finally, section 2.3.5 addresses
the problem of extending the algorithm to return output label strings.

The current approach is best understood as a variant of the well-known
Dijkstra Algorithm (Dijkstra, 1959; Cormen et al., 2001), presented here
as Algorithm 2.1. Using a Fibonacci heap (Fredman and Tarjan, 1987) to
implement the processing queue S, and assuming constant time access to
outgoing edges for a vertex, Algorithm 2.1 has running time O(Dijkstra) =
O (|E|+ |V | log |V |).

2.3.1 Semiring Weights
In its original form, Dijkstra’s algorithm assumes a graph G = 〈V,E〉 with
non-negative real-valued weighted edges E ⊆ (V × V × R+), ordered by the
natural linear order <, thus implicitly equating “best” with “<-minimal”.
The first adaptation to be undertaken is a straightforward generalization
of the Dijkstra algorithm to an abstract semiring K = 〈K,⊕,⊗, 0̄, 1̄〉, using
minimality with respect to a partial order ≤K to define “best” weights.

First, the initialization of the best-distance vector d[·] must be adapted to
use the relevant semiring constants 0̄ and 1̄:

2: d[·] := {v 7→ 0̄ : v ∈ V } /* Initialize d[·] : V → K */
3: d[v0] := 1̄

9The construction given here for E3 is only valid for idempotent semirings; cf. Mohri
et al. (1996) for a generalization to non-idempotent semirings.

2.3 Algorithms 29

Algorithm 2.1 Dijkstra (1959)
1: function Dijkstra(V,E, v0)
2: d[·] := {v 7→ ∞ : v ∈ V } /* Initialize */
3: d[v0] := 0
4: S := V
5: while S 6= ∅ /* Main loop */
6: u := arg minu∈S d[u] /* Best-first search */
7: S := S\{u}
8: foreach e ∈ E : p[e] = u /* Expand */
9: d′ := d[u] + c[e] /* Accumulate */
10: if d′ < d[v] then /* Relax */
11: d[v] := d′

12: return d[·]

Next, the best-first order of extraction from the vertex-queue S must be
adapted to use the partial order ≤K:

6: u := arg minu∈S,<K d[u] /* Best-first search using <K */

Finally, the relax step is adapted to use the semiring multiplication operation
⊗ for accumulating the characteristic weight of a path, as well as the semiring
order for the “better-path” check of line 10:

9: d′ := d[u]⊗ c[e] /* Accumulate using ⊗ */
10: if d′ <K d[v] then /* Relax */
11: d[v] := d′

Dijkstra’s original algorithm emerges as an instance of the generalized
algorithm using the non-negative tropical semiring 〈R+ ∪ {∞},min,+,∞, 0〉
(Simon, 1987). Important to note is that the generalization to abstract
semirings has implications for the correctness of the algorithm. In particular,
graph cycles with a net weight c <K 1̄ will cause the algorithm never to
terminate at all, inducing an infinite series of <K-decreasing weights d[u] for
the cycle root vertex u, leading to an infinite loop of relax steps. Further,
the relaxability check of line 10 is not meaningful for all partial orders ≤K: a
non-monotonic order may cause a partial path to be disregarded here which
would lead to a better path for some subsequent vertex. I therefore restrict
my attention for current purposes to bounded (idempotent) semirings using
the monotonic natural semiring order, ∀a, b ∈ K:

(1̄⊕ a) = 1̄ (Boundedness)
(a⊕ a) = a (Idempotence)

(a ≤K b) ⇔ ((a⊕ b) = a) (Natural Order)

30 2. Efficient Online k-best Lookup

2.3.2 Online Cascade Lookup
The next task is to extend the algorithm to operate on lookup cascades
C = (Id (~w) ◦M2 ◦ · · · ◦M|C|) for ~w ∈ A∗2. Suppose the standard construction
for composition of WFSTs given in Definition 2.5 yields for C the WFST
M = 〈A,B, Q, q0, F, E〉. Clearly, 〈Q,E〉 can be treated as an edge-labelled
weighted graph. By assumption however,M is too large to be computed offline,
so that in particular the composition of transitions E must be performed
at runtime. The resulting algorithm is presented here together with some
auxiliary subroutines as Algorithm 2.2.

Algorithm 2.2 Dijkstra’s algorithm for online lookup cascades
1: function Dijkstra-cascade(w,C)
2: S := {q0} /* Initialize */
3: d[·] := {q0 7→ 1̄}
4: while S 6= ∅ /* Main loop */
5: q := arg minq∈S,<K d[q] /* Best-first search */
6: S := S\{q}
7: foreach e ∈ arcs(w,C, q) /* Expand outgoing arcs */
8: d′ := d[q]⊗ c[e] /* Accumulate */
9: if d′ <K cost(d[·], n[e]) then /* Relax */
10: d[n[e]] := d′

11: S := S ∪ {n[e]} /* Enqueue */
12: return d[·]
13: function arcs(~w,C, q)
14: return expand-arcs

(
C, q, 1, ~w

[
q[1]

])
∪ expand-arcs(C, q, 1, ε)

15: function expand-arcs(C, q, i, a)
16: A := ∅
17: foreach e ∈ Ei ∪

{
(q[i], q[i], ε, ε, 1̄)

}
: p[e] = q[i] & i[e] = a

18: if i = |C| then
19: A := A ∪ {e}
20: else
21: foreach e′ ∈ expand-arcs(C, q, i+ 1, o[e])
22: A := A ∪

{(
〈p[e], p[e′]〉, 〈n[e], n[e′]〉, i[e], o[e′], c[e]⊗ c[e′]

)}
23: return A
24: function cost(d[·], q)
25: if d[q] defined then return d[q]
26: return 0̄

The online expansion of outgoing transitions from a state q = 〈q~w, q2, . . . ,

2.3 Algorithms 31

q|C|〉 ∈ Q is performed by the auxiliary function arcs given in Algorithm 2.2.10

arcs is implemented as a pair of calls to the function expand-arcs, which
recursively descends the cascade, linking together transitions from adjacent
components with matching out- rsp. input labels in accordance with Defini-
tion 2.5.

The only other change made to the core algorithm Dijkstra-cascade
is a move to sparse administrative structures: rather than initialize the
queue S with the set of all cascade states Q, which would entail explicitly
representing such states and thus pre-compiling them, Algorithm 2.2 instead
uses a dynamic queue S which at any given point in the computation holds
only those states which need to be (re-)investigated. Similarly, the map d[·]
of best weights is implemented as a sparse partial map, and the default case
d[q] = 0̄ is handled by the auxiliary function cost. For Algorithm 2.2, the
use of sparse structures has few consequences – states unreachable from q0
will no longer be processed, but the algorithm otherwise proceeds exactly
as in Algorithm 2.1, with running time growing by a factor of the cascade
depth |C| to allow for online expansion of transitions. Since cascade depth is
expected to be a small constant, I ignore it in the sequel.

2.3.3 k-Best Final States
Dijkstra’s algorithm solves the single source shortest distances problem,
returning a map d : Q → K which associates each state with the best net
weight of any path to that state from the designated initial state q0. In the
current problem context, we are not interested in an exhaustive enumeration
d[·] of net weights for all cascade states, but rather only for the final states of
the lookup output: dF : F → K. Even more specifically, we are interested only
in the k-best mappings for some final state, a partial function dF,k : F partial−−−→ K
such that the following hold:

dF,k ⊆ dF ⊆ d

|dF,k| ≤ k

∀q, r ∈ F . d[q] <K d[r] & r ∈ dom(dF,k) ⇒ q ∈ dom(dF,k)

Clearly, dF = (d � F) is simply the restriction of the map d[·] to the
subset F of final states, and dF,k can be generated from dF by extraction

10The function arcs takes advantage of the facts that in a lookup cascade, the initial
component Id (~w) has at most one outgoing (non-ε) arc e, and that i[e] = o[e] = ~w[q[1]]. A
generalization to arbitrary WFST cascades would involve iterating over all outgoing arcs
of the initial cascade component here.

32 2. Efficient Online k-best Lookup

of the j ≤ k <K-minimal elements. Not only does such an extraction add
additional runtime complexity,11 it requires that Algorithm 2.2 first run in its
entirety, which as noted above is unacceptable for dense cascades. Instead,
the algorithm can be optimized for the task of discovering dF,k[·] as given in
Algorithm 2.3.12

Algorithm 2.3 Dijkstra’s algorithm adapted for k-best net weights to final
states
1: function Dijkstra-kBest(w,C, k)
2: S := {q0} /* Initialize */
3: d[·] := {q0 7→ 1̄}
4: dF,k[·] := ∅
5: while S 6= ∅ /* Main loop */
6: q := arg minq∈S,<K d[q] /* Best-first search */
7: S := S\{q}
8: if q ∈ F then /* Finality check */
9: dF,k[q] := d[q]
10: if |dF,k| = k then break /* Greedy termination */
11: foreach e ∈ arcs(w,C, q) /* Expand outgoing arcs */
12: d′ := d[q]⊗ c[e] /* Accumulate */
13: if d′ <K cost(d[·], n[e]) then /* Relax */
14: d[n[e]] := d′

15: S := S ∪ {n[e]} /* Enqueue */
16: return dF,k[·]

The best-first queue management and relaxation strategy of Algorithms 2.1
and 2.2 remains unchanged in the function Dijkstra-kBest of Algorithm 2.3,
thus Dijkstra-kBest terminates whenever Dijkstra does, and the correct-
ness conditions are unaffected – termination is guaranteed for bounded semir-
ings. The additional statements in lines 8-10 can all be implemented as (amor-
tized) constant-time operations, so the worst-case running time also remains
unchanged: O(Dijkstra-kBest) = O(Dijkstra) = O(|E| + |Q| log |Q|).
Memory use grows in the worst case by at most O(|F |) for storage of the
partial output map dF,k[·].

More important for the current problem context are the average case time
and space complexity for Dijkstra-kBest versus the original Dijkstra-

11O(|F |k), using a standard implementation for small k.
12As originally presented by Dijkstra (1959), the algorithm includes a single designated

sink vertex parameter as well as a greedy termination clause, which is extended here to a
set of designated final states.

2.3 Algorithms 33

cascade function. Whereas Dijkstra-cascade must always compute the
net weight of at least one complete path to each state, Dijkstra-kBest
need only compute weights for at most k paths ending in final states. That
the first such weights computed are indeed the k best weights sought follows
from the correctness of the best-first search order, which in turn follows from
the boundedness of the semiring K. Since immediately upon discovery of the
kth best weight to a final state at line 10, Algorithm 2.3 breaks out of the
queue-processing loop and returns the partial map dF,k, its time complexity
can be more precisely specified by (2.1),

O (Dijkstra-kBest) = O (|EF,k|+ |QF,k| log |QF,k|) (2.1)

where:

QF,k = {q ∈ Q : d[q] ≤K max (rng (dF,k))}
EF,k = {e ∈ E : p[e] ∈ QF,k}

Assuming that k best final weights were indeed found (which will always
be the case if k ≤ |F |), QF,k is the set of states to which at least one path
exists with a net weight less than or equal to some k-best final weight in
dF,k, and EF,k is the set of all transitions leaving any state in QF,k. By the
correctness of the best-first search order for bounded semirings, QF,k contains
all and only those states q which may be extracted from the queue at line
6 before discovery of the kth best net weight to a final state at line 8 and
consequent termination at line 10. It follows that EF,k is the set of transitions
which must be expanded (and possibly relaxed) by the loop of lines 11-15.

In many interesting cases, QF,k and EF,k will be much smaller than Q and
E respectively, so that the reduced time complexity of Equation (2.1) repre-
sents a major improvement over a brute force approach using Algorithm 2.2
directly. Consider for example a simple error-correction cascade similar to
that described in section 2.1.1, and let pc be the average probability over all
states q ∈ Q~w∆L that a path exists from the initial state q0~w∆L

to q with net
weight c′ ≤K c. If c ∈ K is the maximum weight to a k-best final state, then
the expected size of QF,k is E(|QF,k|) = Epc(1Q~w∆L

) = ∑
q∈Q~w∆L

pc = pc|Q~w∆L|.
The number of states which must be expanded for a k-best search with maxi-
mum net path weight c thus depends crucially on pc, which can be understood
as the probability of the existence of a “neighbor” path with edit cost c′ ≤K c.
It is therefore of paramount importance for purposes of runtime efficiency
both (a) to ensure that M∆ models the phenomena it is intended to represent
as accurately as possible, effectively minimizing pc globally for all c ∈ K, and
(b) to minimize pc locally by preventing c = max(rng(dF,k)) from growing too
large, since c ≤ c′ implies pc ≤ pc′ .

34 2. Efficient Online k-best Lookup

2.3.4 Cutoff Threshold
An unsubtle but effective method for local minimization of the maximum path
weight returned by Algorithm 2.3 is the explicit specification of a user-specified
cutoff threshold cmax ∈ K on path weights as an input parameter. Intuitively,
such a parameter represents an a priori upper bound on the cost of “acceptable”
paths. For the example application from section 2.1.1, a parameter cmax can
limit the algorithm’s running time even when the input word ~w represents
an extinct lexeme not explicitly accounted for by a dense M∆, in which case
its k nearest neighbors according to JM∆K would be randomly distributed
in L, and their inclusion as “best” paths for ~w would only introduce noise
(both precision and recall errors) into the host application. Implementing the
parameter cmax for Algorithm 2.3 requires only the insertion of a simple check
after line 7:

if d[q] >K cmax then break /* Cost upper-bound exceeded */

Whenever cmax is exceeded for the minimum-cost state in the queue, it
must also be exceeded for every other queued state as well. Since ≤K is mono-
tonic, queue processing can cease as soon as any any state with a minimum
net path weight exceeding cmax is extracted from the queue. Note that while
it is possible in the case of the example cascade architecture from section 2.1.1
to incorporate cmax into the edit transducer by modifying M∆ such that
for all ~w ∈ A∗∆, ~v ∈ B∗∆, Π(q0∆ , ~w,~v, F∆) 6= ∅ implies JM∆K(~w,~v) ≤K cmax,
such a construction not only introduces additional storage requirements by
introducing new states into M∆, but is not in general possible if the process-
ing cascade (which by assumption is too large to be computed and stored
offline in its entirety) contains multiple independent weighted components.
Implementation of the upper bound as a parameter does not increase run time
complexity or storage requirements for the algorithm, and allows additional
flexibility: the user may for example choose to instantiate cmax as a function
of input word length, representing the upper bound in terms of average cost
per character rather than a global cost for all words.

2.3.5 Label Strings
Extending the algorithm to return the k-best (output) label strings rather
than the k-best net path weights is not as trivial a task as it may at first
appear. The traditional method (Cormen et al., 2001) of maintaining a
backtrace vector p[·] : Q → Q mapping states to their best predecessors
causes the number of returned paths |dF,k| be bounded above by the number
of final states |F |, and does not correctly compute the k-best paths if these

2.3 Algorithms 35

are defined to include labels in addition to states. Extending the semiring
K to a k-best semiring Kk as described by Mohri (2002) not only yields a
non-idempotent semiring, but also entails additional modifications for direct
storage of path backtraces in the semiring itself.

The current approach instead extends the processing queue S to store
state-string pairs 〈q, s〉 ∈ Q×B∗ such that s is the output label string of some
path from q0 to q. The best-weight vector is then re-defined as a (sparse) map
d[·] : Q× B∗ → K such that d[q, s] represents the net weight associated with
the best path from q0 to q with output label string s, and the output buffer
dF,k is similarly extended to a buffer dΠ,k. An additional kludge13 parameter
xmax ∈ N limits the number of allowable queue extractions. The resulting
algorithm is presented here as Algorithm 2.4.

Algorithm 2.4 Adaptation of Dijkstra’s algorithm for k-best output label
strings
1: function Dijkstra-Strings(~w,C, k, cmax, xmax)
2: S := {〈q0, ε〉} /* Initialize */
3: d[·] := {〈q0, ε〉 7→ 1̄}
4: dΠ,k[·] := ∅
5: while S 6= ∅ /* Main loop */
6: 〈q, s〉 := arg min〈q,s〉∈S,<K d[q, s] /* Best-first search */
7: S := S\{〈q, s〉}
8: if xmax = 0 then break /* Too many extractions */
9: xmax := xmax − 1
10: if d[q, s] >K cmax then break /* Cost upper-bound exceeded */
11: if q ∈ F then /* Finality check */
12: dΠ,k[q, s] := d[q, s]
13: if |dΠ,k| = k then break /* Greedy termination */
14: foreach e ∈ arcs(w,C, q) /* Expand outgoing arcs */
15: d′ := d[q, s]⊗ c[e] /* Accumulate */
16: s′ := s_o[e] /* Append */
17: if d′ <K cost(d[·], 〈n[e], s′〉) then /* Relax */
18: d[n[e], s′] := d′

19: S := S ∪ {〈n[e], s′〉}
20: return dΠ,k[·]

Assume for the moment that the kludge parameter is vacuous, e.g. xmax =
−1. If the cascade contains an instance of a certain type of “degenerate”

13cf. Raymond (2010)

36 2. Efficient Online k-best Lookup

cycle, then Algorithm 2.4 may never terminate at all. A degenerate cycle in
this sense can be operationally defined as one which may lead to an infinite
series of relax steps for increasingly long label strings at lines 17 through
19. Formally, I call a cycle π degenerate if (2.2)-(2.5) hold for some π′ ∈ E∗
and for all n ∈ N.

π′π ∈ Π(q0, Q) (2.2)
i[π] = ε (2.3)
o[π] 6= ε (2.4)
c [πn] ≤K cmax (2.5)

Condition (2.2) requires that degenerate cycles are accessible. A non-
accessible cycle can never induce an infinite loop, since only accessible states
are ever inserted into the queue at line 19. Condition (2.3) states that only
paths with an empty input string can degenerate. This follows from the fact
that C is a lookup cascade with initial component Id (~w), so that the maximum
number of iterations for a cycle with i[π] = s 6= ε is |~w||s| . Condition (2.4) states
that degenerate cycles must have non-empty output strings, since a cycle
with o[π] = ε generates at most one index configuration 〈q, s〉 for its source
state q = p[π], and this configuration will fail the relaxability check at line 17
after the first iteration. Finally, condition (2.5) captures the intuition that a
degenerate cycle may be iterated arbitrarily many times without its weight
exceeding the bound parameter14 cmax, c[πn] = c[π]n = ⊗n

i=1 c[π] ≤K cmax,
and thus will never be pruned by the check at line 10. In particular, this
condition attains for c[π] = 1̄ <K cmax, since 1̄n = 1̄ for all n ∈ N. I denote by
Π̃(C) the set of paths for which the weight-independent criteria (2.2)-(2.4)
hold:

Π̃(C) = {π ∈ E∗ : ∃π′ ∈ E∗ : π′π ∈ Π(q0, Q) & p[π] = n[π] & i[π] = ε 6= o[π]}

That Algorithm 2.4 finds the k best label strings in the absence of de-
generate cycles whenever at least k distinctly labelled successful paths exist
follows from the correctness of Algorithm 2.3. Note in particular that paths
with distinct label strings ending in the same state are treated as distinct
objects, as are paths with identically labelled strings ending in distinct states,
analogous to the trellis construction used in the well-known Viterbi algorithm
(Viterbi, 1967).

14For purposes of defining path degeneracy without a greedy termination clause, the
upper bound variable cmax may be defined in terms of the maximum target weight,
cmax = max(rng(dΠ,k)).

2.4 Summary 37

Rather than rely on an expensive cycle check to detect degenerate cycles, I
introduce a kludge parameter xmax which places an upper bound on the number
of queue extractions performed and limits the running time of Algorithm 2.4
to O(xmax(max(deg(Q)) + log xmax)), where max(deg(Q)) is the maximum
output degree of any state in Q, deg(q ∈ Q) = |{e ∈ E : p[e] = q}|.
Despite its inelegance, this technique can be useful in both development and
production environments – in the former to detect and report potential errors
in the cascade architecture, and in the latter to place a hard limit on the
computational resources consumed.

When xmax is finite but the break at line 8 is not responsible for its
termination, Algorithm 2.4 has the running time specified in (2.6),

O (Dijkstra-Strings) = O (|EΠ,k|+ |VΠ,k| log |VΠ,k|) (2.6)

where:

VΠ,k = {〈q, s〉 ∈ Q× B∗ : d[q, s] ≤K max (rng (dΠ,k))}
EΠ,k = {〈〈q, s〉, e〉 ∈ VΠ,k × E : p[e] = q}

Since xmax is finite, VΠ,k and EΠ,k are as well, since at most finitely many
extractions have been performed and each extraction relaxes only finitely
many transitions. VΠ,k and EΠ,k are further limited by the cutoff threshold
cmax ∈ K as described in section 2.3.4. In particular, whenever C contains
no degenerate cycles, xmax may be set to kn|Q| ≤ kn|~w|∏|C|i=1 |Qi|, where
n = min{n ∈ N : ∀π ∈ Π̃(C) : c[πn] >K cmax} to guarantee both termination
and discovery of the j ≤ k best paths, although this quantity is considered
too large to be of practical use in the dense cascades for which the algorithm
was developed, for which the explicit enumeration and storage of Q itself
would incur unacceptable computational overhead.

2.4 Summary
I have presented an algorithm for discovery of the k best output label strings
for weighted finite state transducer lookup cascades of arbitrary depth which
computes cascade structure online and is therefore suitable for use with
“dense” cascades which cannot be pre-compiled. The correctness conditions
and running time of the algorithm were discussed for both worst- and average-
case scenarios, as were the implications of a greedy termination strategy and
an external cutoff threshold. Some properties of degenerate cascades were
identified, and the subclass of lookup cascades for which the algorithm is
expected to terminate was restricted accordingly. The algorithm as presented

38 2. Efficient Online k-best Lookup

here has been implemented in the gfsmxl C library,15 and is being successfully
used to implement a robust orthographic standardization cascade for historical
German text.

15http://www.ling.uni-potsdam.de/~moocow/projects/gfsm/#gfsmxl

http://www.ling.uni-potsdam.de/~moocow/projects/gfsm/#gfsmxl

originally appeared as:
Bryan Jurish. Comparing canonicalizations of historical German text. In Proceedings of
the 11th Meeting of the ACL Special Interest Group on Computational Morphology and
Phonology (SIGMORPHON), pages 72-77, 2010b.

Chapter 3

Comparing Canonicalizations

3.1 Introduction

Historical text presents numerous challenges for contemporary natural lan-
guage processing techniques. In particular, the absence of consistent ortho-
graphic conventions in historical text presents difficulties for any system
requiring reference to a fixed lexicon accessed by orthographic form, such
as document indexing systems (Sokirko, 2003; Cafarella and Cutting, 2004),
part-of-speech taggers (DeRose, 1988; Brill, 1992; Schmid, 1994), simple word
stemmers (Lovins, 1968; Porter, 1980), or more sophisticated morphological
analyzers (Geyken and Hanneforth, 2006; Clematide, 2008).

When adopting historical text into such a system, one of the most crucial
tasks is the association of one or more extant equivalents with each word of
the input text: synchronically active types which best represent the relevant
features of the input word. Which features are considered “relevant” here
depends on the application in question: for a lemmatization task only the
root lexeme is relevant, whereas syntactic parsing may require additional
morphosyntactic features. For current purposes, extant equivalents are to
be understood as canonical cognates, preserving both the root(s) and mor-
phosyntactic features of the associated historical form(s), which should suffice
(modulo major grammatical and/or lexical semantic shifts) for most natural
language processing tasks.

In this paper, I present three methods for automatic discovery of extant
canonical cognates for historical German text, and evaluate their performance
on an information retrieval task over a small gold-standard corpus.

39

40 3. Comparing Canonicalizations

3.2 Canonicalization Methods

In this section, I present three methods for automatic discovery of extant
canonical cognates for historical German input: phonetic conflation (Pho),
Levenshtein edit distance (Lev), and a heuristic rewrite transducer (rw).
The various methods are presented individually below, and characterized
in terms of the linguistic resources required for their application. Formally,
each canonicalization method R is defined by a characteristic conflation
relation ∼R, a binary relation on the set A∗ of all strings over the finite
grapheme alphabet A. Prototypically, ∼R will be a true equivalence relation,
inducing a partitioning of A∗ into equivalence classes or “conflation sets”
[w]R = {v ∈ A∗ : v ∼R w}.

3.2.1 Phonetic Conflation

If we assume despite the lack of consistent orthographic conventions that
historical graphemic forms were constructed to reflect phonetic forms, and if
the phonetic system of the target language is diachronically more stable than
the graphematic system, then the phonetic form of a word should provide
a better clue to its extant cognates (if any) than a historical graphemic
form alone. Taken together, these assumptions lead to the canonicalization
technique referred to here as phonetic conflation.

In order to map graphemic forms to phonetic forms, we may avail ourselves
of previous work in the realm of text-to-speech synthesis, a domain in which
the discovery of phonetic forms for arbitrary text is an often-studied problem
(Allen et al., 1987; Dutoit, 1997), the so-called “letter-to-sound” (LTS) conver-
sion problem. The phonetic conversion module used here was adapted from
the LTS rule-set distributed with the IMS German Festival package (Möhler
et al., 2001), and compiled as a finite-state transducer (Jurish, 2008).1

In general, the phonetic conflation strategy maps each (historical or
extant) input word w ∈ A∗ to a unique phonetic form pho(w) by means of a
computable function pho : A∗ → P∗,2 conflating those strings which share a
common phonetic form:

w ∼Pho v :⇔ pho(w) = pho(v) (3.1)

1edit: See section 1.2.1 for the construction of the phonetization transducer from a
festival LTS rule-set, and see appendix A.2 for details on the rule-set used here.

2P is a finite phonetic alphabet.

3.2 Canonicalization Methods 41

3.2.2 Levenshtein Edit Distance
Although the phonetic conflation technique described in the previous section is
capable of successfully identifying a number of common historical graphemic
variation patterns3 such as ey/ei, œ/ö, th/t, and tz/z, it fails to conflate
historical forms with any extant equivalent whenever the graphemic variation
leads to non-identity of the respective phonetic forms, as determined by
the LTS rule-set employed. In particular, whenever a historical variation
would effect a pronunciation difference in synchronic forms, that variation
will remain uncaptured by a phonetic conflation technique. Examples of such
phonetically salient variations with respect to the simplified IMS German
Festival rule-set include guot/gut “good”, liecht/licht “light”, tiuvel/teufel
“devil”, and wolln/wollen “want”.

In order to accommodate graphematic variation phenomena beyond those
for which strict phonetic identity of the variant forms obtains, we may employ
an approximate search strategy based on the simple Levenshtein edit distance
(Levenshtein, 1966; Navarro, 2001). Formally, let Lex ⊆ A∗ be the lexicon
of all extant forms, and let dLev : A∗ × A∗ → N represent the Levenshtein
distance over grapheme strings, then define for every input word w ∈ A∗ the
“best” synchronic equivalent bestLev(w) as the unique extant word v ∈ Lex
with minimal edit-distance to the input word:4

bestLev(w) = arg min
v∈Lex

dLev(w, v) (3.2)

Ideally, the image of a word w under bestLev will itself be the canonical
cognate sought,5 leading to conflation of all strings which share a common
image under bestLev:

w ∼Lev v :⇔ bestLev(w) = bestLev(v) (3.3)

The function bestLev(w) : A∗ → Lex can be computed using a variant of
the Dijkstra algorithm (Dijkstra, 1959) even when the lexicon is infinite (as
in the case of productive nominal composition in German) whenever the set
Lex can be represented by a finite-state acceptor (Mohri, 2002; Allauzen and
Mohri, 2009; Jurish, 2010a). For current purposes, I used the (infinite) input

3edit: Pilz et al. (2006) refer to such variation patterns as “allographs”, based on
the intuition that the distinct surface forms are but variant realizations of a single lexi-
cal/phonological unit.

4I assume that whenever multiple extant minimal-distance candidate forms exist, one is
chosen randomly.

5Note here that every extant form is its own “best” equivalent: w ∈ Lex implies
bestLev(w) = w, since dLev(w,w) = 0 < dLev(w, v) for all v 6= w.

42 3. Comparing Canonicalizations

w bestLev(w) Extant Equivalent
aug aus “out” auge “eye”
faszt fast “almost” fasst “grabs”
ouch buch “book” auch “also”
ram rat “advice” rahm “cream”
vol volk “people” voll “full”

Figure 3.1: Example spurious Levenshtein distance conflations

language of the tagh morphology transducer (Geyken and Hanneforth, 2006)
stripped of proper names, abbreviations, and foreign-language material to
approximate Lex.6

3.2.3 Rewrite Transducer
While the simple edit distance conflation technique from the previous section
is quite powerful and requires for its implementation only a lexicon of extant
forms, the Levenshtein distance itself appears in many cases too coarse
to function as a reliable predictor of etymological relations, since each edit
operation (deletion, insertion, or substitution) is assigned a cost independent of
the characters operated on and of the immediate context in the strings under
consideration. This operand-independence of the traditional Levenshtein
distance results in a number of spurious conflations such as those given in
Figure 3.1.

In order to achieve a finer-grained and thus more precise mapping from
historical forms to extant canonical cognates while preserving some degree of
the robustness provided by the relaxation of the strict identity criterion implicit
in the edit-distance conflation technique, a non-deterministic weighted finite-
state “rewrite” transducer was developed to replace the simple Levenshtein
metric. The rewrite transducer was compiled from a heuristic two-level rule-
set (Karttunen et al., 1987; Kaplan and Kay, 1994; Laporte, 1997) whose 306
rules were manually constructed to reflect linguistically plausible patterns of
diachronic variation as observed in the lemma-instance pairs automatically
extracted from the full 5.5 million word DWB verse corpus (Jurish, 2008).7

6edit: See appendix A.3 for a precise specification of the modified tagh lexical acceptor.
7edit: The method used for automatic extraction of lemma-instance pairs is described

in section 1.3. Although some spurious pairs were extracted by this method, manual
inspection of the most frequent corresponding string alignments was used to eliminate
most “noise” from the heuristic rule-set. Preliminary experiments comparing an early
version of the manual rule-set to a weighted editor FST supporting only context-insensitive

3.3 Evaluation 43

From → To / Left Right 〈Cost〉 Example(s)
ε → e / (A\{e}) # 〈 5 〉 aug ; auge “eye”
z → s / s 〈 1 〉 faszt ; fasst “grabs”
o → a / u 〈 1 〉 ouch ; auch “also”
ε → h / V C 〈 5 〉 ram ; rahm “cream”
l → ll / 〈 8 〉 vol ; voll “full”

Figure 3.2: Some example heuristics used by the rewrite transducer. Here, ε
represents the empty string, # represents a word boundary, and V,C ⊂ A
are sets of vowel-like and consonant-like characters, respectively.

In particular, phonetic phenomena such as schwa deletion, vowel shift, voicing
alternation, and articulatory location shift are easily captured by such rules.

Of the 306 heuristic rewrite rules, 131 manipulate consonant-like strings,
115 deal with vowel-like strings, and 14 operate directly on syllable-like units.
The remaining 46 rules define expansions for explicitly marked elisions and
unrecognized input. Some examples of rules used by the rewrite transducer
are given in Figure 3.2.

Formally, the rewrite transducer Mrw defines a pseudo-metric JMrwK :
A∗ ×A∗ → R∞ on all string pairs (Mohri, 2009). Assuming the non-negative
tropical semiring (Simon, 1987) is used to represent transducer weights, analo-
gous to the transducer representation of the Levenshtein metric (Allauzen and
Mohri, 2009), the rewrite pseudo-metric can be used as a drop-in replacement
for the Levenshtein distance in Equations (3.2) and (3.3), yielding Equations
(3.4) and (3.5):8

bestrw(w) = arg min
v∈Lex

JMrwK(w, v) (3.4)

w ∼rw v :⇔ bestrw(w) = bestrw(v) (3.5)

3.3 Evaluation

3.3.1 Test Corpus
The conflation techniques described above were tested on a corpus of historical
German verse extracted from the quotation evidence in a single volume of

single-character edit operations whose edit costs were automatically trained from the full
set of automatically extracted lemma-instance pairs showed that the manual heuristics
outperformed the automatically trained editor in precision, recall, and processing speed.

8edit: See appendix A.5 for a precise specification of the rewrite editor Mrw.

44 3. Comparing Canonicalizations

the digital first edition of the dictionary Deutsches Wörterbuch (“DWB”,
Bartz et al., 2004).9 The test corpus contained 11,242 tokens of 4157 distinct
word types, discounting non-alphabetic types such as punctuation. Each
corpus type was manually assigned one or more extant equivalents based
on inspection of its occurrences in the whole 5.5 million word DWB verse
corpus in addition to secondary sources.10 Only extinct roots, proper names,
foreign and other non-lexical material were not explicitly assigned any extant
equivalent at all; such types were flagged and treated as their own canonical
cognates, i.e. identical to their respective “extant” equivalents. In all other
cases, equivalence was determined by direct etymological relation of the
root in addition to matching morphosyntactic features. Problematic types
were marked as such and subjected to expert review. 296 test corpus types
representing 585 tokens were ambiguously associated with more than one
canonical cognate. In a second annotation pass, these remaining ambiguities
were resolved on a per-token basis.

3.3.2 Evaluation Measures
The three conflation strategies from section 3.2 were evaluated using the gold-
standard test corpus to simulate a document indexing and query scenario.
Formally, let G ⊂ A∗ ×A∗ represent the finite set of all gold-standard pairs
(w, w̃) with w̃ the manually determined canonical cognate for the corpus
type w, and let Q = {w̃ : ∃(w, w̃) ∈ G} be the set of all canonical cognates
represented in the corpus. Then define for a binary conflation relation ∼R
on A∗ and a query string q ∈ Q the sets relevant(q), retrievedR(q) ⊆ G of
relevant and retrieved gold-standard pairs as:

relevant(q) = {(w, w̃) ∈ G : w̃ = q} (3.6)
retrievedR(q) = {(w, w̃) ∈ G : w ∼R q} (3.7)

Type-wise precision and recall can then be defined directly as:

prtyp =

∣∣∣⋃q∈Q retrievedR(q) ∩ relevant(q)
∣∣∣∣∣∣⋃q∈Q retrievedR(q)

∣∣∣ (3.8)

rctyp =

∣∣∣⋃q∈Q retrievedR(q) ∩ relevant(q)
∣∣∣∣∣∣⋃q∈Q relevant(q)

∣∣∣ (3.9)

9edit: See appendix C.1.1
10edit: In particular, Lexer (1992); Benecke et al. (1986); Kluge and Seebold (1989);

Hennig (2001) were often consulted, in addition to the DWB itself.

3.3 Evaluation 45

Method Time Throughput
Pho 1.82 sec 7322 tok/sec
Lev 278.03 sec 48 tok/sec
rw 7.02 sec 1898 tok/sec

Table 3.1: Processing time for elementary canonicalization functions

If tpR(q) = retrievedR(q) ∩ relevant(q) represents the set of true positives
for a query q, then token-wise precision and recall are defined in terms of the
gold-standard frequency function fG : G→ N as:

prtok =
∑
q∈Q,g∈tpR(q) fG(g)∑

q∈Q,g∈retrievedR(q) fG(g) (3.10)

rctok =
∑
q∈Q,g∈tpR(q) fG(g)∑

q∈Q,g∈relevant(q) fG(g) (3.11)

I use the unweighted harmonic precision-recall average F (van Rijsbergen,
1979) as a composite measure for both type- and token-wise evaluation modes:

F(pr, rc) = 2 · pr · rc
pr + rc

(3.12)

3.3.3 Results
The elementary canonicalization function for each of the conflation tech-
niques11 was applied to the entire test corpus to simulate a corpus indexing
run. Running times for the various methods on a 1.8GHz Linux workstation
using the gfsmxl C library are given in Table 3.1. The Levenshtein edit-
distance technique is at a clear disadvantage here, roughly 150 times slower
than the phonetic technique and 40 times slower than the specialized heuristic
rewrite transducer. This effect is assumedly due to the density of the search
space (which is maximal for an unrestricted Levenshtein editor), since the
gfsmxl greedy k-best search of a Levenshtein transducer cascade generates at
least |A| configurations per character, and a single backtracking step requires
an additional 3|A| heap extractions (Jurish, 2010a). Use of specialized lookup
algorithms (Oflazer, 1996) might ameliorate such problems.

Quantitative results for several conflation techniques with respect to the
DWB verse test corpus are given in Table 3.2. An additional conflation

11pho,bestLev and bestrw for the phonetic, Levenshtein, and heuristic rewrite transducer
methods respectively

46 3. Comparing Canonicalizations

Type-wise % Token-wise %
R prtyp rctyp Ftyp prtok rctok Ftok

id 99.9 70.8 82.9 99.1 83.7 90.7
Pho 96.7 80.1 87.6 92.7 89.6 91.1
Lev 96.6 78.9 86.9 97.2 87.8 92.2
rw 98.5 88.4 93.2 98.2 93.4 95.8

Pho |Lev 94.1 84.3 88.9 91.3 91.6 91.5
Pho | rw 96.1 89.8 92.8 92.5 94.5 93.5

Table 3.2: Evaluation results for various conflation techniques on the DWB
verse corpus. The maximum value in each column appears in boldface type.

relation “id” using strict identity of grapheme strings (w ∼id v :⇔ w = v)
was tested to provide a baseline for the methods described in section 3.2.
As expected, the strict identity baseline relation was the most precise of all
methods tested, achieving 99.9% type-wise and 99.1% token-wise precision.
This is unsurprising, since the id method yields false positives only when a
historical form is indistinguishable from a non-equivalent extant form, as in
the case of the mapping wider ; wieder (“again”) and the non-equivalent
extant form wider (“against”). Despite its excellent precision, the baseline
method’s recall was the lowest of any tested method, which supports the claim
that a synchronically-oriented lexicon cannot adequately account for a corpus
of historical text. Type-wise recall was particularly low (70.8%), indicating
that diachronic variation was more common in low-frequency types.

Surprisingly, the phonetic and Levenshtein edit-distance methods per-
formed similarly for all measures except token-wise precision, in which Lev
incurred 61.6% fewer errors than Pho. Given their near-identical type-wise
precision, this difference can be attributed to a small number of phonetic mis-
conflations involving high-frequency types, such as wider ∼ wieder (“against”
∼ “again”), statt ∼ stadt, (“instead” ∼ “city”), and in ∼ ihn (“in” ∼
“him”). Contrary to expectations, Lev did not yield any recall improve-
ments over Pho, although the union of the two underlying conflation relations
(∼Pho |Lev = ∼Pho ∪ ∼Lev) achieved a type-wise recall of 84.3% (token-wise
recall 91.6%), which suggests that these two methods complement one another
when both an LTS module and a high-coverage lexicon of extant types are
available.

Of the methods described in section 3.2, the heuristic rewrite transducer
Mrw performed best overall, with a type-wise harmonic mean F of 93.2%
and a token-wise F of 95.8%. While Mrw incurred some additional precision

3.4 Conclusion & Outlook 47

errors compared to the naïve graphemic identity method id, these were not
as devastating as those incurred by the phonetic or Levenshtein distance
methods, which supports the claim from section 3.2.3 that a fine-grained
context-sensitive pseudo-metric incorporating linguistic knowledge can more
accurately model diachronic processes than an all-purpose metric like the
Levenshtein distance.

Recall was highest for the composite phonetic-rewrite relation ∼Pho | rw =
∼Pho ∪ ∼rw, although the precision errors induced by the phonetic component
outweighed the comparatively small gain in recall. The best overall perfor-
mance is achieved by the heuristic rewrite transducerMrw on its own, yielding
a reduction of 60.3% in type-wise recall errors and of 59.5% in token-wise
recall errors, while minimizing the number of newly introduced precision
errors.

3.4 Conclusion & Outlook
I have presented three different methods for associating unknown historical
word forms with synchronically active canonical cognates. The heuristic
mapping of unknown forms to extant equivalents by means of linguistically
motivated context-sensitive rewrite rules yielded the best results in an in-
formation retrieval task on a corpus of historical German verse, reducing
type-wise recall errors by over 60% compared to a naïve text-matching strat-
egy. Depending on the availability of linguistic resources (e.g. phonetization
rule-sets, lexica), use of phonetic canonicalization and/or Levenshtein edit
distance may provide a more immediately accessible route to improved recall
for other languages or applications, at the expense of some additional loss of
precision.

I am interested in verifying these results using larger corpora than the
small test corpus used here, as well as extending the techniques described here
to other languages and domains. In particular, I am interested in comparing
the performance of the domain-specific rewrite transducer used here to other
linguistically motivated language-independent metrics such as those described
by Covington (1996); Kondrak (2000).

originally appeared as:
Bryan Jurish. More than words: Using token context to improve canonicalization of historical
German. Journal for Language Technology and Computational Linguistics, 25(1):23-40,
2010c.

Chapter 4

More Than Words

4.1 Introduction
Historical text presents numerous challenges for contemporary natural lan-
guage processing techniques. In particular, the absence of consistent ortho-
graphic conventions in historical text presents difficulties for any system
requiring reference to a fixed lexicon accessed by orthographic form, such as
information retrieval systems (Sokirko, 2003; Cafarella and Cutting, 2004),
part-of-speech taggers (DeRose, 1988; Brill, 1992; Schmid, 1994), simple word
stemmers (Lovins, 1968; Porter, 1980), or more sophisticated morphological
analyzers (Geyken and Hanneforth, 2006; Zielinski et al., 2009).1

Traditional approaches to the problems arising from an attempt to in-
corporate historical text into such a system rely on the use of additional
specialized (often application-specific) lexical resources to explicitly encode
known historical variants. Such specialized lexica are not only costly and
time-consuming to create, but also – in their simplest form of static finite
word lists – necessarily incomplete in the case of a morphologically produc-
tive language like German, since a simple finite lexicon cannot account for
highly productive morphological processes such as nominal composition (cf.
Kempken et al., 2006).

To facilitate the extension of synchronically-oriented natural language pro-
1While neither information retrieval (IR) systems nor stemmers use a static fixed lexicon

in the usual sense, the effective lexicon of an IR system is fixed at indexing time as the set
of all actually occurring word forms. Similarly, the lexicon of a traditional stemmer has
a static portion (hard-coded inflection rules) as well as a dynamic portion (set of stems)
determined by the actual input. In both cases, historical spelling variants will be treated
as distinct lexemes rather than associated with an equivalent contemporary cognate unless
additional measures such as those described here are taken.

49

50 4. More Than Words

cessing techniques to historical text while minimizing the need for specialized
lexical resources, one may first attempt an automatic canonicalization of the
input text. Canonicalization approaches (Jurish, 2008, 2010b; Gotscharek
et al., 2009b) treat orthographic variation phenomena in historical text as in-
stances of an error-correction problem (Shannon, 1948; Kukich, 1992; Brill and
Moore, 2000), seeking to map each (unknown) word of the input text to one
or more extant canonical cognates: synchronically active types which preserve
both the root and morphosyntactic features of the associated historical form(s).
To the extent that the canonicalization was successful, application-specific
processing can then proceed normally using the returned canonical forms
as input, without any need for additional modifications to the application
lexicon.

I distinguish between type-wise canonicalization techniques which process
each input word independently and token-wise techniques which make use of
the context in which a given instance of a word occurs. In this paper, I present
a token-wise canonicalization method which functions as a disambiguator for
sets of hypothesized canonical forms as returned by one or more subordinated
type-wise techniques. Section 4.2 provides a brief review of the type-wise
canonicalizers used to generate hypotheses, while section 4.3 is dedicated to
the formal characterization of the disambiguator itself. Section 4.4 contains a
quantitative evaluation of the disambiguator’s performance on an information
retrieval task over a manually annotated corpus of historical German. Finally,
section 4.5 provides a brief summary and conclusion.

4.2 Type-wise Conflation
Type-wise conflation techniques are those which process each input word
in isolation, independently of its surrounding context. Such a type-wise
treatment allows efficient processing of large documents and corpora (since
each input type need only be processed once), but disregards potentially
useful context information. Formally, a type-wise conflator r is fully specified
by a characteristic conflation relation ∼r, a binary relation on the set A∗ of all
strings over the finite grapheme alphabet A. Prototypically, ∼r will be a true
equivalence relation, inducing a partitioning of the set A∗ of possible word
types into equivalence classes or “conflation sets” [w]r = {v ∈ A∗ : v ∼r w}
induced by some type w ∈ A∗. Where appropriate, I distinguish between
the full conflation set [w]r containing all strings conflated by r with w and a
conflator-specific finite subset ↓[w]r ⊆ [w]r representing the canonicalization
hypotheses provided by r for w: the former sets will be used to characterize
the retrieval function for r used to define the evaluation measures precision

4.2 Type-wise Conflation 51

and recall in section 4.4.2, while the latter will be used in the definition of the
token-wise disambiguator in section 4.3.3. Unless otherwise specified, I assume
↓[w]r = [w]r. In the sequel, I will use the terms “conflation” and “type-wise
canonicalization” interchangeably where no ambiguity will result, and the
term “conflator” will be used to refer to a specific type-wise canonicalization
method.

4.2.1 String Identity
The simplest of all possible conflators is raw identity of surface strings. The
conflation relation ∼id is in this case nothing more or less than the string
identity relation itself:

w ∼id v :⇔ w = v (4.1)

String identity is the easiest conflator to implement (no additional program-
ming effort or resources are required) and provides a high degree of precision,
“false friends” being limited to historical homographs such as the historical
form wider when it occurs as a variant of the contemporary form wieder
(“again”) rather than the lexically distinct contemporary homograph wider
(“against”). Since its coverage is restricted to valid contemporary forms,
string identity cannot account for any spelling variation at all, resulting in
very poor recall – many relevant types are not retrieved in response to a query
in current orthography. Nonetheless, its inclusion as a conflator ensures that
the set of candidate hypotheses [w] for a given input word w is non-empty,2
and it provides a baseline with respect to which the relative utility of more
sophisticated conflators can be evaluated.

As an example, consider the historical form Abſt e
ande, a variant of the

contemporary cognate Abstände (“distances”). The conflation set [Abſt e
ande]id

= {Abſt e
ande} is non-empty, but does not contain the desired contemporary

cognate (Abstände 6∈ [Abſt e
ande]id), so Equation (4.20) from section 4.4.2

dictates that no instances of the historical variant Abſt e
ande will be retrieved

via string identity for a query of the contemporary form Abstände.

4.2.2 Transliteration
A slightly less naïve family of conflation methods are those which employ
a simple deterministic transliteration function to replace input characters

2Since [w]id = {w}, [w]id ⊆ [w] implies w ∈ [w], and thus [w] 6= ∅. Since the more
reliable transliterating conflator described in section 4.2.2 also ensures a non-empty set of
conflation hypotheses, the identity conflator itself was not used to generate hypotheses for
the disambiguator in the current experiments.

52 4. More Than Words

which do not occur in contemporary orthography with extant equivalents.
Formally, a transliteration conflator is defined in terms of a character translit-
eration function xlit : A → Ã∗, where A is as before a “universal” grapheme
alphabet (e.g. the set of all Unicode3 characters) and Ã ⊆ A is that subset of
the universal alphabet allowed by contemporary orthographic conventions.
The elementary character transliteration function is extended to a string
transliteration function xlit∗ : A∗ → Ã∗ in the usual manner by iteratively
applying xlit to each character of the input string in turn (Equation 4.2),
canonicalization hypotheses are limited to the transliterator output (Equation
4.3), and the characteristic conflation relation ∼xlit is defined as identity of
transliterated strings (Equation 4.4):

xlit∗(a1a2 . . . an) := xlit(a1) xlit(a2) . . . xlit(an) (4.2)
↓[w]xlit := {xlit∗(w)} (4.3)

w ∼xlit v :⇔ xlit∗(w) = xlit∗(v) (4.4)

In the case of historical German, deterministic transliteration is especially
useful for its ability to account for typographical phenomena, e.g. by mapping
‘ſ’ (long ‘s’, as commonly appeared in texts typeset in fraktur) to a conventional
round ‘s’, and mapping superscript ‘e’ to the conventional Umlaut diacritic
‘¨’, as in the transliteration Abſt e

ande 7→ Abstände (“distances”). Given this
transliteration, a query for the contemporary form Abstände will successfully
retrieve all instances of the historical form Abſt e

ande: xlit∗(Abstände) =
Abstände = xlit∗(Abſt e

ande), so Abstände ∈ [Abſt e
ande]xlit.

The current work makes use of a conservative transliteration function
based on the Text::Unidecode Perl module.4,5 Due to the fact that the
underlying character transliteration table is comparatively small and can
be implemented as an in-memory array, transliteration is a very efficient
conflation method, with O(xlit) = O(1) and therefore O(xlit∗) = O(n). In
terms of expressive power, since xlit is finite, it can be represented by a finite
state transducer, and therefore so can its reflexive and transitive closure xlit∗.

Despite its efficiency, and although it outdoes even string identity in
terms of its precision, deterministic transliteration suffers from its inability
to account for spelling variation phenomena involving extant characters such
as the th/t and ey/ei allographs common in historical German. As an
example, consider an instance of the historical form Theyl corresponding to
the contemporary cognate Teil (“part”). Both historical and contemporary
forms will be transliterated to themselves, since both strings contain only

3Unicode Consortium (2011), http://www.unicode.org/
4http://search.cpan.org/~sburke/Text-Unidecode-0.04/
5edit: See appendix A.1 for a precise specification of the transliterator used here.

http://www.unicode.org/
http://search.cpan.org/~sburke/Text-Unidecode-0.04/

4.2 Type-wise Conflation 53

extant characters, but the historical form will not be retrieved by a query for
the contemporary form: xlit∗(Teil) = Teil 6= Theyl = xlit∗(Theyl) implies
Teil 6∼xlit Theyl and therefore Teil 6∈ [Theyl]xlit.

4.2.3 Phonetization
A more powerful family of conflation methods is based on the dual intuitions
that graphemic forms in historical text were constructed to reflect phonetic
forms6 and that the phonetic system of the target language is diachronically
more stable than its graphematic system. Phonetic conflators map each
(historical or extant) word w ∈ A∗ to a unique phonetic form pho(w) by
means of a computable function pho : A∗ → P∗,7 conflating those strings
which share a common phonetic form:

w ∼pho v :⇔ pho(w) = pho(v) (4.5)

Since [w]pho may be infinite – if for example pho(·) maps any substring of
one or more instances of a single character (e.g. ‘a’) to a single phone (e.g. [a])
– additional care must be taken to ensure a finite set of canonicalization
hypotheses ↓[w]pho. A straightforward way to ensure a finite hypothesis set
is simply to restrict [w]pho to some finite set of pre-defined target strings
T ⊂ A∗, setting ↓[w]pho = ↓T [w]pho = [w]pho ∩ T . If pho can be represented
as a finite-state transducer Mpho and the target lexicon can be represented
as a finite-state acceptor ALex, a more robust alternative is to use a k-best
string lookup algorithm such as that described in Jurish (2010a) on the
cascade Cpho(w) = Id(w) ◦Mpho ◦M−1

pho ◦ALex, defining ↓[w]pho = ↓C,k[w]pho =
kbest(k, Cpho(w)) for some finite upper bound k on the number of admissible
hypotheses, assuming an appropriate weighting scheme on ALex.

The phonetic conversion module used here was adapted from the phoneti-
zation rule-set distributed with the IMS German Festival package (Möhler
et al., 2001), a German language module for the Festival text-to-speech system
(Black and Taylor, 1997) and compiled as a finite-state transducer (Jurish,
2008).8,9 Phonetic conflation offers a substantial improvement in recall over

6Keller (1978) codified this intuition as the imperative “write as you speak” governing
historical spelling conventions.

7P is a finite phonetic alphabet.
8In the absence of a language-specific phonetization function, a general-purpose phonetic

digest algorithm such as soundex (Russell, 1918), the Kölner Phonetik (Postel, 1969),
phonix (Gadd, 1988, 1990), or Metaphone (Philips, 1990, 2000) may be employed instead
(Robertson and Willett, 1993; Kempken, 2005).

9edit: See section 1.2.1 for the construction of the phonetization transducer from a
festival LTS rule-set, and see appendix A.2 for details on the rule-set used here.

54 4. More Than Words

conservative methods such as transliteration or string identity: variation phe-
nomena such as the th/t and ey/ei allographs mentioned above are correctly
captured by the phonetization transducer: pho(Theyl) = [taIl] = pho(Teil)
which implies Teil ∈ [Theyl]pho. Unfortunately, these improvements often
come at the expense of precision: in particular, many high-frequency types are
misconflated by the simplified phonetization rule-set, including *in ∼ ihn (“in”
∼ “him”), *statt ∼ Stadt, (“instead” ∼ “city”), and *wider ∼ wieder (“against”
∼ “again”). While such high-frequency cases might be easily handled in a
mature system by a small exception lexicon, the underlying tendency of strict
phonetic conflation either to over- or to under-generalize – depending on the
granularity of the phonetization function – is likely to remain, expressing
itself in information retrieval tasks as reduced precision or reduced recall,
respectively.

4.2.4 Rewrite Transduction
Despite its comparatively high recall, the phonetic conflator fails to relate
unknown historical forms with any extant equivalent whenever the graphemic
variation leads to non-identity of the respective phonetic forms (e.g. pho(umb)
= [PUmp] 6= [PUm] = pho(um) for the historical variant umb of the prepo-
sition um (“around”)), suggesting that recall might be further improved by
relaxing the strict identity criterion on the right hand side of Equation (4.5).
Moreover, a fine-grained and appropriately parameterized conflator should
be less susceptible to precision errors than an “all-or-nothing” (phonetic)
identity condition (Kondrak, 2000, 2002). A technique which fulfills both
of the above desiderata is rewrite transduction, which can be understood
as a generalization of the well-known string edit distance (Damerau, 1964;
Levenshtein, 1966).

Formally, let Lex ⊆ A∗ be the (possibly infinite) lexicon of all extant
forms encoded as a finite-state acceptor ALex, and let Mrw be a weighted
finite-state transducer over a bounded semiring K which models (potential)
diachronic change likelihood as a weighted rational relation. Then define for
every input type w ∈ A∗ the “best” extant equivalent bestrw(w) as the unique
extant type v ∈ Lex with minimal edit-distance to the input word:

bestrw(w) = arg min
v∈A∗

JMrw ◦ ALexK(w, v) (4.6)

Ideally, the image of a word w under bestrw will itself be the canonical cognate
sought, leading to conflation of all strings which share a common image under
bestrw:

w ∼rw v :⇔ bestrw(w) = bestrw(v) (4.7)

4.3 Token-wise Disambiguation 55

The current experiments were performed using the heuristic rewrite trans-
ducer described in Jurish (2010b), compiled from 306 manually constructed
two-level rules, while the lexical target acceptor ALex was extracted from the
tagh morphology transducer (Geyken and Hanneforth, 2006).10 The native
tagh weights were scaled for compatibility and used to provide a prior cost
distribution over target word forms based on their derivational complexity.
Best-path lookup was performed using a specialized variant of the well-known
Dijkstra algorithm (Dijkstra, 1959) as described in Jurish (2010a). Related
approaches to historical variant detection include Kempken (2005); Rayson
et al. (2005); Ernst-Gerlach and Fuhr (2006); Gotscharek et al. (2009b).

Although this rewrite cascade does indeed improve both precision and
recall with respect to the phonetic conflator, these improvements are of com-
paratively small magnitude, precision in particular remaining well below the
level of conservative conflators such as naïve string identity or transliteration,
due largely to interference from “false friends” such as the valid contemporary
compound Rockermehl (“rocker-flour”) for the historical variant Rockermel of
the contemporary form Rockärmel (“coat-sleeve”) as appearing in Figure 4.1.

4.3 Token-wise Disambiguation
In an effort to recover some degree of the precision offered by conservative
conflation techniques such as transliteration while still benefiting from the
flexibility and improved recall provided by more ambitious techniques such
as phonetization or rewrite transduction, I have developed a method for
disambiguating type-wise conflation sets which operates on the token level,
using sentential context to determine a unique “best” canonical form for
each input token. Specifically, the disambiguator employs a Hidden Markov
Model (HMM) whose lexical probability matrix is dynamically re-computed
for each input sentence from the conflation sets returned by one or more
subordinated type-wise conflators, and whose transition probabilities are
given by a static word k-gram model of the target language, in this case
contemporary German adhering to current orthographic conventions. Similar
approaches for traditional spell-checking applications using strictly local
context for language modelling have been described by Kernighan et al.
(1990); Church and Gale (1991); Brill and Moore (2000); Verberne (2002).
Most closely related to the current proposal is the approach of Mays et al.
(1991), who use a word trigram model to disambiguate unweighted confusion

10edit: See appendix A.5 for a precise specification of the rewrite heuristics, and see
appendix A.3 for details on the extraction of the rewrite target lexicon from the tagh
morphology transducer.

56 4. More Than Words

Dete sammlete Steyne im RoĘermel

id Dete ſammlete Steyne im Rockermel
xlit Dete sammlete Steyne im Rockermel
pho ∅ ∅ {Steine} {im, ihm} {Rockärmel}
rw Tete〈1〉 sammelte〈5〉 Steine〈1〉 im〈0〉 Rockermehl〈10〉

hmm Dete sammelte Steine im Rockärmel

Figure 4.1: Example of the proposed conflator disambiguation architecture
for the input sentence “Dete ſammlete Steyne im Rockermel” (“Dete gathered
rocks in the coat-sleeve”). Costs assigned by the rewrite transducer appear
in angled brackets, and the conflation hypotheses selected by the HMM
disambiguator are underlined.

sets returned by a traditional approximate Damerau-Levenshtein matcher
analogous to the rewrite cascade from section 4.2.4. An example of the
proposed disambiguation architecture for the conflators described in section 4.2
is given in Figure 4.1.

4.3.1 Basic Model
Formally, let W ⊂ Ã∗ be a finite set of known extant words, let u 6∈ W be a
designated symbol representing an unknown word, let S = 〈w1, . . . , wnS

〉 be
an input sentence of nS (historical) words with wi ∈ A∗ for 1 ≤ i ≤ nS, and
let R = {r1, . . . , rnR

} be a finite set of (opaque) type-wise conflators. Then,
the disambiguator HMM is defined in the usual way (Rabiner, 1989; Charniak
et al., 1993; Manning and Schütze, 1999) as the 5-tupleD = 〈Q,OS,Π, A,BS〉,
where:

1. Q = (W ∪ {u}) × R is a finite set of model states, where each state
q ∈ Q is a pair 〈w̃q, rq〉 composed of an extant word form w̃q and a
conflator rq;

2. OS = ⋃nS
i=1{wi} is the set of observations for the input sentence S;

3. Π : Q → [0, 1] : q 7→ p(Q1 = q) is a static probability distribution over
Q representing the model’s initial state probabilities;

4. A : Qk → [0, 1] : 〈q1, . . . , qk〉 7→ p(Qi = qk|Qi−k+1 = q1, . . . , Qi−1 =
qk−1) is a static conditional probability distribution over state k-grams
representing the model’s state transition probabilities; and

4.3 Token-wise Disambiguation 57

5. BS : Q×OS → [0, 1] : 〈q, o〉 7→ p(O = o|Q = q) is a dynamic probability
distribution over observations conditioned on states representing the
model’s lexical probabilities.

Using the shorthand notation wi+ji for the string wiwi+1 . . . wi+j , the model
D computes sentential probability as the sum of path probabilities over all
possible generating state sequences:

p(S = wnS
1) =

∑
q

nS
1 ∈Q

nS

p(S = wnS
1 , Q = qnS

1) (4.8)

Assuming suitable boundary handling for negative indices, joint path proba-
bilities themselves are computed as:

p(S = wnS
1 , Q = qnS

1) =
nS∏
i=1

p(qi|qi−1
i−k+1)p(wi|qi) (4.9)

Underlying these equations are the following Markov assumptions:

p(qi|qi−1
1 , wi−1

1) = p(qi|qi−1
i−k+1) (4.10)

p(wi|qi1, wi−1
1) = p(wi|qi) (4.11)

Equation (4.10) asserts that state transition probabilities depend on at
most the preceding k − 1 states. Equation (4.11) asserts the independence of
observed surface forms (historical spellings) from all but the model’s current
state. Taken together, these assumptions will lead to the use of a k-gram
distribution over contemporary word forms to model both syntactic and
(local) semantic constraints of the target language as operating on conflator-
dependent type-wise canonicalization hypotheses for historical input forms.
Crucially, the product of these two component distributions as used in the
path probability computation from Equation (4.9) will allow linguistic context
constraints (insofar as they are captured by the k-gram transition probabilities)
to override prior type-wise estimates of a conflation’s reliability (and vice
versa), leading to a disambiguator dependent on both token context and prior
estimates of conflation likelihood.

4.3.2 Transition Probabilities
The finite target lexicon W can easily be extracted from a corpus of contem-
porary text. For estimating the static distributions Π and A, we first make
the following assumptions:

p(Q = 〈w̃q, rq〉) = p(W = w̃q)p(R = rq) (4.12)

p(R = r) = 1
nR

(4.13)

58 4. More Than Words

Equation (4.12) asserts the independence of extant forms and conflators, while
Equation (4.13) assumes a uniform distribution over conflators. Given these
assumptions, the static state distributions Π and A can be estimated as:

Π(q) :≈ p (W1 = w̃q) /nR (4.14)
A(q1, . . . , qk) :≈ p

(
Wi = w̃qk

|W i−1
i−k+1 = w̃q1 . . . w̃qk−1

)
/nR (4.15)

Equations (4.14) and (4.15) are nothing more or less than a word k-gram
model over extant forms, scaled by the constant 1

nR
. One can therefore use

standard maximum likelihood techniques to estimate Π and A from a corpus
of contemporary text (Bahl et al., 1983; Manning and Schütze, 1999).

For the current experiments, a word trigram model (k = 3) was trained
on the tiger corpus of contemporary German (Brants et al., 2002). Proba-
bilities for the “unknown” form u were computed using the simple smoothing
technique of assigning u a pseudo-frequency of 1

2 (Lidstone, 1920; Manning
and Schütze, 1999). To account for unseen trigrams, the resulting trigram
model was smoothed by linear interpolation of uni-, bi-, and trigrams (Jelinek
and Mercer, 1980, 1985), using the method described by Brants (2000) to
estimate the interpolation coefficients.

4.3.3 Lexical Probabilities
In the absence of a representative corpus of conflator-specific manually anno-
tated training data, simple maximum likelihood techniques cannot be used
to estimate the model’s lexical probabilities BS. Instead, lexical probabil-
ities are instantiated as a Maxwell-Boltzmann distribution for a set dr of
conflator-specific distance functions (Jaynes, 1983):

B
(
〈w̃, r〉, w

)
:≈ bβdr(w,w̃)∑

r′∈R
∑
w̃′∈↓[w]r′ b

βdr′ (w,w̃′)
(4.16)

Here, b, β ∈ R are free model parameters with b ≥ 1 and β ≤ 0. For a
conflator r ∈ R, the function dr : A∗ ×W → R+ is a pseudo-metric used
to estimate the reliability of the conflator’s association of an input word w
with the extant form w̃, and the set ↓[w]r ⊆ [w]r ⊆ A∗ is a finite set of
canonicalization hypotheses provided by r for w, as described in section 4.2.

It should be explicitly noted that the denominator of the right-hand side
of Equation (4.16) is a sum over all model states (canonicalization hypotheses)
〈w̃′, r′〉 actually associated with the observation argument w by the type-wise
conflation stage, and not a sum over observations w′ associable with the state
argument 〈w̃, r〉. This latter sum (if it could be efficiently computed) would

4.3 Token-wise Disambiguation 59

adhere to the traditional form
(
sim(o, q)/∑o′ sim(o′, q)

)
for estimating a prob-

ability distribution p(O|Q) over observations conditioned on model states such
as the HMM lexical probability matrix BS is defined to represent; whereas the
estimator in Equation (4.16) is of the form

(
sim(o, q)/∑q′ sim(o, q′)

)
, which

corresponds more closely to a distribution p(Q|O) over states conditioned on
observations.11

From a practical standpoint, it should be clear that Equation (4.16) is
much more efficient to compute than an estimator summing globally over
potential observations, since all the data needed to compute Equation (4.16)
are provided by the type-wise preprocessing of the input sentence S itself,
whereas a theoretically pure global estimator would require a whole arsenal
of inverse conflators as well as a mechanism for restricting their outputs to
some tractable set of admissible historical forms, and hence would be of little
practical use. From a formal standpoint, I believe that Equation (4.16) as
used in the run-time disambiguator can be shown to be equivalent to a global
estimator, provided that the conflator pseudo-metrics dr are symmetric and
the languages of both historical and extant forms have identical and uniform
density with respect to the dr, but a proof of this conjecture is beyond the
scope of this paper.

It was noted above in section 4.2.3 that for the phonetic conflator in par-
ticular, the equivalence class [w]pho = {v ∈ A∗ : w ∼pho v} may not be finite.
In order to ensure the computational tractability of Equation (4.16) therefore,
the phonetic conflation hypotheses considered were implicitly restricted to
the finite set W of known extant forms used to define the model’s states,
↓[w]pho = ↓W [w]pho = [w]pho ∩W . Transliterations and rewrite targets which
were not also known extant forms were implicitly mapped to the designated
symbol u for purposes of estimating transition probabilities for previously
unseen extant word types.

For the current experiments, the following model parameters were used:

b = 2
β = −1
R = {xlit, pho, rw}

dxlit(w, w̃) = 2/|w| if w̃ = xlit∗(w)
dpho(w, w̃) = 1/|w| if w̃ ∈ ↓[w]pho
drw(w, w̃) = JMrw ◦ ALexK(w, w̃)/|w| if w̃ = bestrw(w)

In all other cases, dr(w, w̃) is undefined and B(〈w̃, r〉, w) = 0. Note that all
11See the discussion surrounding Equation 20 in Charniak et al. (1993) for a more

detailed look at these two sorts of lexical probability estimators and their effects on HMM
part-of-speech taggers.

60 4. More Than Words

conflator distance functions are scaled by inverse input word length 1
|w| , thus

expressing an average distance per input character as opposed to an absolute
distance for the input word. Defining distance functions in terms of (inverse)
word length in this manner captures the intuition that a conflator is less
likely to discover a false positive conflation for a longer input word than for a
short one, natural language lexica tending to be maximally dense for short
(usually closed-class) words.12 The transliteration and phonetic conflators are
constants given input word length, whereas the rewrite conflator makes use
of the cost JMrw ◦ ALexK(w, w̃) assigned to the conflation pair by the rewrite
cascade itself.

4.3.4 Runtime Disambiguation
Having defined the disambiguator model D, it can be used to determine a
unique “best” canonical form for each input sentence S by application of the
well-known Viterbi algorithm (Viterbi, 1967). Formally, the Viterbi algorithm
computes the state path with maximal probability for the observed sentence:

Viterbi(S,D) = arg max
〈q1,...,qnS

〉∈QnS

p(q1, . . . , qnS
, S|D) (4.17)

Extracting the disambiguated canonical forms Ŝ = 〈ŵ1, . . . , ŵnS
〉 ∈ (A∗)nS

from the state sequence Q̂ = 〈q̂1, . . . , q̂nS
〉 = Viterbi(S,D) returned by the

Viterbi algorithm is a simple matter of projecting the extant word components
of the HMM state structures, taking care to map the designated symbol u onto
an appropriate output string. Let witness : ℘(A∗)→ A∗ be a choice function
over conflation hypotheses,13 witness(↓[w]r) ∈ ↓[w]r for all w ∈ A∗, r ∈ R
with ↓[w]r 6= ∅, and for 1 ≤ i ≤ nS, define:

ŵi :=
witness

(
↓[w]rq̂i

)
if w̃q̂i

= u
w̃q̂i

otherwise
(4.18)

Following the equivalence class notation for type-wise conflators, I write
[wi]hmm,D to denote the singleton set {ŵi} containing the unique canonical

12Despite this tendency of natural languages, the combinatorial properties of concate-
native monoids dictate that the number of potential “false friends” grows exponentially
with input string length if for example arbitrary substitutions are allowed, suggesting an
increased likelihood of false positive conflations for longer input words. In this context, note
that the use of per-character distances results in higher-entropy probability distributions
(Shannon, 1948) for longer input strings, effectively treating the dr distance estimates as
increasingly unreliable as input string length grows.

13Since conflation hypothesis sets ↓[w]r are finite, the axiom of choice is not strictly
required here.

4.4 Evaluation 61

form returned by the HMM disambiguatorD for an input token wi in sentential
context S, omitting the model subscript D where no ambiguity will result.

4.3.5 Expressive Power
It was noted in section 4.2 above that each of the type-wise conflators
used in the current approach have representations as (weighted) finite-state
transducers (WFSTs). Since the union of WFSTs is itself a WFST, as is the
concatenation of WFSTs (Mohri, 2009), the type-wise analysis stage which
generates canonicalization hypotheses for the disambiguator can be expressed
by an extended rational algebraic expression, assuming specialized functions
such as the k-best lookup used by the rewrite transducer are included in
the inventory of admissible operations. Hidden Markov Models have been
shown to be equivalent to the sub-family of WFSTs called probabilistic finite-
state automata (PFSAs) by Vidal et al. (2005). Pereira and Riley (1997)
advocate a decomposition of HMM component distributions into dedicated
WFSTs which may then be cascaded (composed) to simulate the original
HMM for use in speech processing applications. Hanneforth and Würzner
(2009) present a technique for creating n-gram language models using only
the algebra of weighted rational languages which can in principle be extended
to implement the disambiguator’s dynamic lexical probability distribution
given by Equation (4.16) as just such a dedicated WFST component. Finally,
since the Viterbi algorithm can be applied directly to PFSAs (Vidal et al.,
2005) and with minimal adaptation to appropriately weighted WFSTs (Mohri,
2002; Jurish, 2010a), the entire proposed canonicalization architecture does
not exceed the expressive power of the weighted rational relations.

4.4 Evaluation

4.4.1 Test Corpus
The conflation and disambiguation techniques described above were tested on
a manually annotated corpus of historical German drawn from the Deutsches
Textarchiv.14,15 The test corpus was comprised of the full body text from 13
volumes published between 1780 and 1880, and contained 152,776 tokens of
17,417 distinct types in 9,079 sentences, discounting non-alphabetic types
such as punctuation. To assign an extant canonical equivalent to each
token of the test corpus, the text of each volume was automatically aligned

14http://www.deutschestextarchiv.de
15edit: See appendix C.2.1

http://www.deutschestextarchiv.de

62 4. More Than Words

token-wise with a contemporary edition of the same volume. Automatically
discovered non-identity alignment pair types were presented to a human
annotator for confirmation. In a second annotation pass, all tokens lacking an
identical or manually confirmed alignment target were inspected in context
and manually assigned a canonical form. Whenever they were presented to a
human annotator, proper names and extinct lexemes were treated as their
own canonical forms. In all other cases, equivalence was determined by direct
etymological relation of the root in addition to matching morphosyntactic
features. Problematic tokens were marked as such and subjected to expert
review. Marginalia, front and back matter, speaker and stage directions, and
tokenization errors were excluded from the final evaluation corpus.

4.4.2 Evaluation Measures

The canonicalization methods from sections 4.2 and 4.3 were evaluated us-
ing the gold-standard test corpus to simulate an information retrieval task
Formally, let C = {c1, . . . , cnC

} be a finite set of canonicalizers, and let
G = 〈g1, . . . , gnG

〉 represent the test corpus, where each token gi is a (2 +nC)-
tuple gi = 〈wi, w̃i, [wi]c1 , . . . , [wi]cnC

〉 ∈ A∗ × A∗ × ℘(A∗)nC , for 1 ≤ i ≤ nG.
Here, wi represents the literal token text as appearing in the historical corpus,
w̃i is its gold-standard canonical cognate, and [wi]cj

is the set of canonical
forms assigned to the token by the canonicalizer cj, for 1 ≤ j ≤ nC . Let
Q = ⋃nG

i=1{w̃i} be the set of all canonical cognates represented in the corpus,
and define for each canonicalizer c ∈ C and query string q ∈ Q the sets
relevant(q), retrievedc(q) ⊂ N of relevant and retrieved corpus tokens as:

relevant(q) = {i ∈ N : q = w̃i} (4.19)
retrievedc(q) = {i ∈ N : q ∈ [wi]c} (4.20)

Token-wise precision (prtok,c) and recall (rctok,c) for the canonicalizer c can
then be defined as:

prtok,c =

∣∣∣⋃q∈Q retrievedc(q) ∩ relevant(q)
∣∣∣∣∣∣⋃q∈Q retrievedc(q)

∣∣∣ (4.21)

rctok,c =

∣∣∣⋃q∈Q retrievedc(q) ∩ relevant(q)
∣∣∣∣∣∣⋃q∈Q relevant(q)

∣∣∣ (4.22)

Type-wise measures prtyp,c and rctyp,c are defined analogously, by mapping
the token index sets of Equations (4.19) and (4.20) to corpus types before

4.4 Evaluation 63

% Types % Tokens
c prtyp rctyp Ftyp prtok rctok Ftok

id 99.0 59.2 74.1 99.8 79.3 88.4
xlit 99.1 89.5 94.1 99.8 96.8 98.3
pho 97.1 96.1 96.6 91.4 99.2 95.1
rw 97.6 96.5 97.0 94.3 99.3 96.7

hmm 98.6 95.3 96.9 99.7 99.1 99.4

Table 4.1: Evaluation data for various canonicalization techniques with respect
to the Deutsches Textarchiv evaluation subset. The maximum value in each
column appears in boldface type.

applying Equations (4.21) and (4.22). I use the unweighted harmonic precision-
recall average F (van Rijsbergen, 1979) as a composite measure for both type-
and token-wise evaluation modes:

F(pr, rc) = 2 · pr · rc
pr + rc

(4.23)

I follow Charniak et al. (1993) in using relative error reduction rates
rather than absolute differences when comparing the performance of different
canonicalizers. The general form for the (relative) error reduction in evaluation
mode x provided by a method c2 over method c1 is: xc2−xc1

1−xc1
, assuming

0 ≤ xc1 ≤ xc2 ≤ 1. For example, given the data in Table 4.1, the error
reduction in type-wise recall x = rctyp provided by c2 = rw with respect to
c1 = xlit is rctyp,rw− rctyp,xlit

1−rctyp,xlit
= .965−.895

1−.895 ≈ 0.67 = 67%.

4.4.3 Results
Evaluation results for the canonicalization techniques described in sections 4.2
and 4.3 with respect to the test corpus are given in Table 4.1 and graphically
depicted in Figure 4.2. Immediately apparent from the data is the typical
precision–recall trade-off pattern discussed above: conservative conflators such
as string identity (id) and transliteration (xlit) have near-perfect precision
(≥ 99% both type- and token-wise), but relatively poor recall. On the other
hand, ambitious conflators such as phonetic identity (pho) or the heuristic
rewrite transducer (rw) reduce type-wise recall errors by over 66% and token-
wise recall errors by over 75% with respect to transliteration, but these recall
gains come at the expense of precision.

As hoped, the HMM disambiguator (hmm) presented in section 4.3 does
indeed recover a large degree of the precision lost by the ambitious type-wise

64 4. More Than Words

id xlit pho rw hmm
88%

90%

92%

94%

96%

98%

100%

Types

pr
rc
F

id xlit pho rw hmm
88%

90%

92%

94%

96%

98%

100%

Tokens

pr
rc
F

Figure 4.2: Evaluation data for various canonicalization techniques: visual-
ization

conflators, achieving a reduction of over 41% of type-wise precision errors and
of over 94% of token-wise precision errors with respect to the heuristic rewrite
conflator. While some additional recall errors are made by the HMM, there
are comparatively few of these, so that the type-wise harmonic average F falls
by a mere 0.1% in absolute magnitude (3% relative error introduction) with
respect to the highest-recall method (rw). Indeed, the token-wise composite
measure F is substantially higher for the HMM disambiguator (99.4%, vs.
96.7% for the rewrite method), with an error reduction rate of over 64%
compared to its closest competitor, deterministic transliteration (xlit).

The most surprising aspect of these results is the recall performance of the
conservative transliterator xlit with rctok = 96.8%, reducing token-wise recall
errors by over 84% compared to the naïve string identity method. While such
performance combined with the ease of implementation and computational
efficiency of the transliteration method makes it very attractive at first glance,
note that the test corpus was drawn from a comparatively recent text sample,
whereas diachronically more heterogeneous corpora have been shown to be
less amenable to such simple techniques (Gotscharek et al., 2009c; Jurish,
2010b).

4.5 Conclusion
I have identified a typical precision–recall trade-off pattern exhibited by
several type-wise conflation techniques used to automatically discover extant
canonical forms for historical German text. Conservative conflators such
as string identity and transliteration return very precise results, but fail to
associate many historical spelling variants with any appropriate contemporary
cognate at all. More ambitious techniques such as conflation by phonetic

4.5 Conclusion 65

form or heuristic rewrite transduction show a marked improvement in recall,
but disappointingly poor precision. To address these problems, I proposed
a method for disambiguating canonicalization hypotheses at the token level
using sentential context to optimize the path probability of candidate canonical
forms given the observed historical forms. The disambiguator uses a Hidden
Markov Model whose lexical probabilities are dynamically re-computed for
every input sentence based on the canonicalization hypotheses returned by a
set of subordinated type-wise conflators, the entire canonicalization cascade
remaining within the domain of weighted rational transductions.

The proposed disambiguation architecture was evaluated on an information
retrieval task over a gold standard corpus of manually confirmed canonical-
izations of historical German text drawn from the Deutsches Textarchiv. Use
of the token-wise disambiguator provided a relative precision error reduction
of over 94% with respect to the best recall method, and a relative recall error
reduction of over 71% with respect to the most precise method. Overall, the
proposed disambiguation method performed best at the token level, achieving
a token-wise harmonic precision-recall average F = 99.4%.

I am interested in verifying these results using larger and less homogeneous
corpora than the test corpus used here, as well as extending the techniques
described here to other languages and domains. In particular, I am interested
in comparing the performance of the manually constructed rewrite transducer
used here with a linguistically motivated language-independent conflator
(Covington, 1996; Kondrak, 2000) on the one hand, and with conflators
induced from a training sample by machine learning techniques (Ristad and
Yianilos, 1998; Kempken et al., 2006; Ernst-Gerlach and Fuhr, 2006) on the
other. Future work on the disambiguator itself should involve a systematic
investigation of the effects of the various model parameters as well as more
sophisticated smoothing techniques for handling previously unseen extant
types and sparse training data.

Part II

Appendices

“There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.”

Shakespeare, Hamlet, Act I, Scene V

67

Appendix A

Finite-State Components

Due to length constraints on the original articles which appear here as
chapters 1 through 4, a complete and precise formal specification of the
rule-based finite-state components used in the canonicalization experiments
was not possible, despite the fact that the relative success or failure of the
corresponding canonicalization methods depends in no small part on the
concrete definition of just these components. For this reason, I present here
formal specifications for all of the rule-based finite-state components used in
the preceding chapters. Section A.1 defines the conservative transliteration
rules, section A.2 defines the construction of the phonetization transducer,
section A.3 defines the extraction of the rewrite target lexicon from the
tagh morphology transducer, section A.4 defines some implicit morphological
security heuristics, and section A.5 defines the construction of the heuristic
rewrite editor.

As Hamlet’s admonition of his friend in the quotation beginning this
appendix suggests, there are numerous phenomena which remain uncaptured
by any of the rule-based components described here. Improvement might be
expected from joint work with a German-language historian e.g. to fine-tune
the symbolic portion of the rewrite rules for specific periods or dialects of origin,
or to define appropriate exception lexica (Gotscharek et al., 2009c). Broader
coverage might be achieved through the use of a language-independent rewrite
editor (Kondrak, 2003), while the use of machine-learning techniques (Ristad
and Yianilos, 1998) might provide better resolution of elementary rewrite
operation costs. Despite their many shortcomings and over-simplifications,
the canonicalization components described here represent more than simple
proof-of-concept “toy” rule-sets, as demonstrated in the preceding chapters
by the degree to which their use improved recall for information retrieval
tasks over real historical corpora.

69

70 A. Finite-State Components

A.1 Transliteration Rules
This section documents the most common character transliteration rules used
by the xlit canonicalizer (section 4.2.2), and implicitly used to pre-process
input forms for all other non-trivial canonicalization methods discussed above.
Input was assumed to be encoded in UTF-8 (Unicode Consortium, 2011).
The following table contains transliteration rules for the Unicode Latin-1
Supplement, which is codepoint-identical with the fixed-width 8-bit ISO-8859-
1 (Latin-1) encoding. Identity mappings (xlit(a) = a) were omitted from the
table.

Table A.1: Transliteration rules

a 7→ xlit(a) Unicode Codepoint
¡ 7→ ! U+00A1: INVERTED EXCLAMATION MARK
a 7→ a U+00AA: FEMININE ORDINAL INDICATOR

« 7→ " U+00AB: LEFT-POINTING DOUBLE ANGLE QUOTATION MARK

± 7→ +/- U+00B1: PLUS-MINUS SIGN
2 7→ 2 U+00B2: SUPERSCRIPT TWO
3 7→ 3 U+00B3: SUPERSCRIPT THREE
1 7→ 1 U+00B9: SUPERSCRIPT ONE
o 7→ o U+00BA: MASCULINE ORDINAL INDICATOR

» 7→ " U+00BB: RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
1
4 7→ 1/4 U+00BC: VULGAR FRACTION ONE QUARTER
1
2 7→ 1/2 U+00BD: VULGAR FRACTION ONE HALF
3
4 7→ 3/4 U+00BE: VULGAR FRACTION THREE QUARTERS

¿ 7→ ? U+00BF: INVERTED QUESTION MARK

À 7→ A U+00C0: CAPITAL LETTER A WITH GRAVE

Á 7→ A U+00C1: CAPITAL LETTER A WITH ACUTE

Â 7→ A U+00C2: CAPITAL LETTER A WITH CIRCUMFLEX

Ã 7→ A U+00C3: CAPITAL LETTER A WITH TILDE

Å 7→ A U+00C5: CAPITAL LETTER A WITH RING ABOVE

Æ 7→ AE U+00C6: CAPITAL LETTER AE

Ç 7→ C U+00C7: CAPITAL LETTER C WITH CEDILLA

È 7→ E U+00C8: CAPITAL LETTER E WITH GRAVE

É 7→ E U+00C9: CAPITAL LETTER E WITH ACUTE

Ê 7→ E U+00CA: CAPITAL LETTER E WITH CIRCUMFLEX

Ë 7→ E U+00CB: CAPITAL LETTER E WITH DIAERESIS

Ì 7→ I U+00CC: CAPITAL LETTER I WITH GRAVE

Í 7→ I U+00CD: CAPITAL LETTER I WITH ACUTE

(continued on following page)

A.1 Transliteration Rules 71

Transliteration rules (continued from previous page)

a 7→ xlit(a) Unicode Codepoint
Î 7→ EI U+00CE: CAPITAL LETTER I WITH CIRCUMFLEX

Ï 7→ I U+00CF: CAPITAL LETTER I WITH DIAERESIS

Ð 7→ D U+00D0: CAPITAL LETTER ETH

Ñ 7→ N U+00D1: CAPITAL LETTER N WITH TILDE

Ò 7→ O U+00D2: CAPITAL LETTER O WITH GRAVE

Ó 7→ O U+00D3: CAPITAL LETTER O WITH ACUTE

Ô 7→ O U+00D4: CAPITAL LETTER O WITH CIRCUMFLEX

Õ 7→ O U+00D5: CAPITAL LETTER O WITH TILDE

× 7→ x U+00D7: MULTIPLICATION SIGN

Ø 7→ Ö U+00D8: CAPITAL LETTER O WITH STROKE

Ù 7→ U U+00D9: CAPITAL LETTER U WITH GRAVE

Ú 7→ U U+00DA: CAPITAL LETTER U WITH ACUTE

Û 7→ AU U+00DB: CAPITAL LETTER U WITH CIRCUMFLEX

Ý 7→ Y U+00DD: CAPITAL LETTER Y WITH ACUTE

Þ 7→ TH U+00DE: CAPITAL LETTER THORN

à 7→ a U+00E0: SMALL LETTER A WITH GRAVE

á 7→ a U+00E1: SMALL LETTER A WITH ACUTE

â 7→ a U+00E2: SMALL LETTER A WITH CIRCUMFLEX

ã 7→ a U+00E3: SMALL LETTER A WITH TILDE

å 7→ a U+00E5: SMALL LETTER A WITH RING ABOVE

æ 7→ ae U+00E6: SMALL LETTER AE

ç 7→ c U+00E7: SMALL LETTER C WITH CEDILLA

è 7→ e U+00E8: SMALL LETTER E WITH GRAVE

é 7→ e U+00E9: SMALL LETTER E WITH ACUTE

ê 7→ e U+00EA: SMALL LETTER E WITH CIRCUMFLEX

ë 7→ e U+00EB: SMALL LETTER E WITH DIAERESIS

ì 7→ i U+00EC: SMALL LETTER I WITH GRAVE

í 7→ i U+00ED: SMALL LETTER I WITH ACUTE

î 7→ ei U+00EE: SMALL LETTER I WITH CIRCUMFLEX

ï 7→ i U+00EF: SMALL LETTER I WITH DIAERESIS

ð 7→ d U+00F0: SMALL LETTER ETH

ñ 7→ n U+00F1: SMALL LETTER N WITH TILDE

ò 7→ o U+00F2: SMALL LETTER O WITH GRAVE

ó 7→ o U+00F3: SMALL LETTER O WITH ACUTE

ô 7→ o U+00F4: SMALL LETTER O WITH CIRCUMFLEX

õ 7→ o U+00F5: SMALL LETTER O WITH TILDE

ø 7→ ö U+00F8: SMALL LETTER O WITH STROKE

(continued on following page)

72 A. Finite-State Components

Transliteration rules (continued from previous page)

a 7→ xlit(a) Unicode Codepoint
ù 7→ u U+00F9: SMALL LETTER U WITH GRAVE

ú 7→ u U+00FA: SMALL LETTER U WITH ACUTE

û 7→ au U+00FB: SMALL LETTER U WITH CIRCUMFLEX

ý 7→ y U+00FD: SMALL LETTER Y WITH ACUTE

þ 7→ th U+00FE: SMALL LETTER THORN

ÿ 7→ y U+00FF: SMALL LETTER Y WITH DIAERESIS

Most of these mappings adhere to the following general schema:

• remove those diacritics which do not occur in contemporary German
orthography (e.g. by mapping À, Á, Â, Ã, and Å to an unadorned A);

• decompose multi-character ligatures into their component symbols
(e.g. by mapping Æ to AE);

• map punctuation and foreign letters to graphical or phonetic approxi-
mations, respectively (e.g. 1

4 7→ 1/4, Þ 7→ TH).

Notable exceptions to the general schema are the two mappings (î 7→ ei)
and (û 7→ au) and the corresponding upper-case mappings (Î 7→ EI) and
(Û 7→ AU). These are diacritic-sensitive non-identity mappings, each of
which incorporates a well-known phonetic shift in historical German1 and
the extinction of the circumflex diacritic into a single phonetically motivated
character replacement heuristic.

The most frequently used replacement heuristics for historical German are
the mappings from the Unicode combining diacritic superscript ‘e’ at codepoint
U+0364 (COMBINING LATIN SMALL LETTER E) to a conventional diaeresis
(Umlaut), and the mapping from the long ‘s’ character (‘ſ’) at codepoint
U+017F (LATIN SMALL LETTER LONG S) to a conventional round ‘s’:

a 7→ xlit(a) Unicode Codepoints
e
A 7→ Ä U+0041 U+0364 7→ U+00C4
e
O 7→ Ö U+004F U+0364 7→ U+00D6
e
U 7→ Ü U+0055 U+0364 7→ U+00DC
ea 7→ ä U+0061 U+0364 7→ U+00E4
eo 7→ ö U+006F U+0364 7→ U+00F6
eu 7→ ü U+0075 U+0364 7→ U+00FC
ſ 7→ s U+017F 7→ U+0073

1The diphthongizations [i:] ; [aI] and [u:] ; [aU], respectively.

A.2 Phonetization Rules 73

While the mappings from superscript ‘e’ to a conventional Umlaut violate
the strict interpretation of xlit(·) as a character transliteration function
(cf. section 4.2.2) if input characters are defined as Unicode codepoints (since
simple character replacements cannot account for string-to-character mappings
such as that from the codepoint string [U+0061 U+0364] ‘e

a’ to the single
codepoint [U+00E4] ‘ä’), no conflict need result if the alphabetA is understood
in terms of logical characters, i.e.

{ e
A,

e
O,

e
U, ea, eo, eu

}
⊂ A. Since the C library

transliterator implementation2 does not make use of any abstract logical
alphabet beyond that defined by the Unicode standard, a deterministic local
preprocessor was used to handle these cases in practice.

Otherwise, characters were mapped according to the transliteration tables
of the Text::Unidecode Perl module3 whenever such a mapping was defined,
e.g. the UTF-8 input string ‘Πλάτων’ was transliterated to ‘Platon’ using the
Text::Unidecode tables. All remaining Unicode codepoints were mapped to
the empty string.

A.2 Phonetization Rules

This section presents the finite-state implementation of the modified IMS
German Festival phonetization module used in chapters 1, 3, and 4.

A.2.1 Pre-processing Filters

A.2.1.1 Transliteration Filter

The transliterator Mxlit described in section A.1 was used to pre-process input
for the phonetization transducer.

A.2.1.2 Lower-Case Filter

All input to the phonetization transducer was converted to lower-case before
being passed into the core phonetization components. Let {Auc,Alc,Anc} be a
partitioning of the input alphabet A into upper-case, lower-case, and caseless
characters respectively, and let lc(a) ∈ Alc represent the unique lower-case
variant of an upper-case character a ∈ Auc. Then, Mlc is a deterministic
finite-state transducer mapping any upper-case character a to its lower-case

2See appendix B.1
3http://search.cpan.org/~sburke/Text-Unidecode-0.04/

http://search.cpan.org/~sburke/Text-Unidecode-0.04/

74 A. Finite-State Components

variant lc(a), and passing other characters through unchanged:4

Mlc := Id(Alc ∪ Anc) ∪ {a 7→ lc(a) : a ∈ Auc}

A.2.1.3 Word Boundary Insertion

The designated symbol ‘#’ was used in the phonetization transducer to
represent a word boundary. This symbol was inserted at the beginning and
end of input strings by a simple transducer M#.

M# := ({ε} × {#})(A\{#})∗({ε} × {#})

A.2.2 Character Classes
The festival LTS rule syntax does not directly support regular operations
such as union or difference. Instead, rule-sets may declare a finite number
of named character classes to represent salient subsets of the input alphabet
for use in rule contexts.5 The IMS German Festival rule-set defined a total
13 character classes. Of these, the following three classes were used in my
modifications:

Apho =
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z,

ä, ö, ü, ß, #, ??

L = Apho\{#, ??}
C = {b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, z, ß}
V = {a, e, i, o, u, ä, ö, ü}

These classes appear in italics when they occur in the rules presented below.

A.2.3 Core LTS Rules
According to the strict licensing conditions of the IMS German Festival
package (Möhler et al., 2001) from which the phonetization transducer used
in the current work was derived (cf. section 1.2), I am forbidden to reproduce
the modified phonetization rule-set in its entirety. Instead, I present here a

4For efficiency reasons, lower-casing was performed in practice by system calls to a
constant-time C library function. The characterization here as a finite-state transducer is
meant for expositional purposes only.

5As the name suggests, character classes are sets of input symbols rather than strings
or other complex expressions, analogous to the UNIX character classes used by programs
such as egrep.

A.2 Phonetization Rules 75

list of the 157 rules from the original rule-set6 which were deleted from the
simplified phonetization transducer, together with those 19 new rules which
were added. The special symbols ‘#’ representing a word boundary and ‘??’
representing unrecognized input were passed through the core LTS transducer
unchanged using a special feature of the LTS rule compiler. For maximal
compliance with the IMS German Festival license, target phonetic strings
have been replaced by an ellipsis (. . .) in deleted rules. For ease of reading,
deleted rules appear in gray text, while inserted rules appear in boldface black
text. Phonetic strings are given in SAMPA7 notation.

Table A.2: Phonetizer modifications

OP : α [β] γ → π

DEL: [a u h] → . . .
DEL: [ä ä h] → . . .
DEL: [ä h] → . . .
DEL: [a e a e h] → . . .
DEL: [a e h] → . . .
DEL: [a a h] → . . .
DEL: [b] b a r → . . .
DEL: [b] c h e n → . . .
DEL: [b] h a f t → . . .
DEL: [b] h e i t → . . .
DEL: [b] l e i n → . . .
DEL: [b] l i n g → . . .
DEL: [b] l i n g s → . . .
DEL: [b] l o s → . . .
DEL: [b] n i s → . . .
DEL: [b] s a l → . . .
DEL: [b] s a m → . . .
DEL: [b] s c h a f t → . . .
DEL: [b] s e l → . . .
DEL: [b] t u m → . . .
DEL: [b] w ä r t s → . . .
DEL: [b] w a e r t s → . . .
DEL: [b b] b a r → . . .
DEL: [b b] c h e n → . . .
DEL: [b b] h a f t → . . .

(continued on following page)
6As contained in the file festival/lib/german/ims_german_lts.scm extracted from

the distribution archive ims_german_1.2c-os.tgz downloaded October 18, 2005 from
http://www.ims.uni-stuttgart.de/phonetik/synthesis/festival_opensource.
html.

7http://www.phon.ucl.ac.uk/home/sampa/home.htm

http://www.ims.uni-stuttgart.de/phonetik/synthesis/festival_opensource.html
http://www.ims.uni-stuttgart.de/phonetik/synthesis/festival_opensource.html
http://www.phon.ucl.ac.uk/home/sampa/home.htm

76 A. Finite-State Components

Phonetizer modifications (continued from previous page)

OP : α [β] γ → π

DEL: [b b] h e i t → . . .
DEL: [b b] l e i n → . . .
DEL: [b b] l i n g → . . .
DEL: [b b] l i n g s → . . .
DEL: [b b] l o s → . . .
DEL: [b b] n i s → . . .
DEL: [b b] s a l → . . .
DEL: [b b] s a m → . . .
DEL: [b b] s c h a f t → . . .
DEL: [b b] s e l → . . .
DEL: [b b] t u m → . . .
DEL: [b b] w ä r t s → . . .
DEL: [b b] w a e r t s → . . .
DEL: [b b] NL → . . .
INS: # [d a r] C L → d a:
DEL: [d d] # → . . .
DEL: [d d s] # → . . .
DEL: [d] b a r → . . .
DEL: [d] c h e n → . . .
DEL: [d] h a f t → . . .
DEL: [d] h e i t → . . .
DEL: [d] l e i n → . . .
DEL: [d] l i n g → . . .
DEL: [d] l i n g s → . . .
DEL: [d] l o s → . . .
DEL: [d] n i s → . . .
DEL: [d] s a l → . . .
DEL: [d] s a m → . . .
DEL: [d] s c h a f t → . . .
DEL: [d] s e l → . . .
DEL: [d] t u m → . . .
DEL: [d] w ä r t s → . . .
DEL: [d] w a e r t s → . . .
DEL: [d d] b a r → . . .
DEL: [d d] c h e n → . . .
DEL: [d d] h a f t → . . .
DEL: [d d] h e i t → . . .
DEL: [d d] l e i n → . . .
DEL: [d d] l i n g → . . .
DEL: [d d] l i n g s → . . .

(continued on following page)

A.2 Phonetization Rules 77

Phonetizer modifications (continued from previous page)

OP : α [β] γ → π

DEL: [d d] l o s → . . .
DEL: [d d] n i s → . . .
DEL: [d d] s a l → . . .
DEL: [d d] s a m → . . .
DEL: [d d] s c h a f t → . . .
DEL: [d d] s e l → . . .
DEL: [d d] t u m → . . .
DEL: [d d] w ä r t s → . . .
DEL: [d d] w a e r t s → . . .
DEL: [d d s] t → . . .
DEL: [d d] NL → . . .
DEL: [e i h] → . . .
DEL: [e e h] → . . .
DEL: [g] b a r → . . .
DEL: [g] c h e n → . . .
DEL: [g] h a f t → . . .
DEL: [g] h e i t → . . .
DEL: [g] l e i n → . . .
DEL: [g] l i n g → . . .
DEL: [g] l i n g s → . . .
DEL: [g] l o s → . . .
DEL: [g] n i s → . . .
DEL: [g] s a l → . . .
DEL: [g] s a m → . . .
DEL: [g] s c h a f t → . . .
DEL: [g] s e l → . . .
DEL: [g] t u m → . . .
DEL: [g] w ä r t s → . . .
DEL: [g] w a e r t s → . . .
DEL: [g g] b a r → . . .
DEL: [g g] c h e n → . . .
DEL: [g g] h a f t → . . .
DEL: [g g] h e i t → . . .
DEL: [g g] l e i n → . . .
DEL: [g g] l i n g → . . .
DEL: [g g] l i n g s → . . .
DEL: [g g] l o s → . . .
DEL: [g g] n i s → . . .
DEL: [g g] s a l → . . .
DEL: [g g] s a m → . . .

(continued on following page)

78 A. Finite-State Components

Phonetizer modifications (continued from previous page)

OP : α [β] γ → π

DEL: [g g] s c h a f t → . . .
DEL: [g g] s e l → . . .
DEL: [g g] t u m → . . .
DEL: [g g] w ä r t s → . . .
DEL: [g g] w a e r t s → . . .
DEL: [g g] Cu → . . .
DEL: [g g] NL → . . .
DEL: # [h] → . . .
DEL: [h] a u → . . .
DEL: [h] a f t → . . .
DEL: [h] e i t → . . .
DEL: [h] a f t i g → . . .
DEL: [h] a n g → . . .
DEL: e r [h] V → . . .
DEL: e l [h] V → . . .
DEL: g e [h] → . . .
DEL: z u [h] → . . .
DEL: a n [h] → . . .
DEL: a b [h] → . . .
DEL: h i n [h] → . . .
DEL: v e r [h] → . . .
DEL: [h] → . . .
INS: [h] C →
INS: [h] # →
INS: [h] → h
DEL: [i e h] → . . .
DEL: [i h] → . . .
INS: [i u w] → OY
INS: [i u] → OY
INS: [i w] → OY
INS: [m p] → m
INS: [m b] → m
DEL: [ö ö h] → . . .
DEL: [ö h] → . . .
DEL: [o e o e h] → . . .
DEL: [o e o e] → . . .
DEL: [o e h] → . . .
DEL: [o o h] → . . .
INS: [o u w] → aU
INS: [o u] → aU

(continued on following page)

A.2 Phonetization Rules 79

Phonetizer modifications (continued from previous page)

OP : α [β] γ → π

INS: [o w] → aU
DEL: [r h] → . . .
DEL: [r r h] → . . .
INS: # [s] l → S
INS: # [s] m → S
INS: # [s] w → S
INS: # [s] n → S
INS: # [s] r → S
DEL: [ü ü h] → . . .
DEL: [ü h] → . . .
DEL: [u e u e h] → . . .
DEL: [u e h] → . . .
DEL: [u u h] → . . .
INS: [u o] → u:
INS: [u a] → u:
DEL: [w] b a r → . . .
DEL: [w] c h e n → . . .
DEL: [w] h a f t → . . .
DEL: [w] h e i t → . . .
DEL: [w] l e i n → . . .
DEL: [w] l i n g → . . .
DEL: [w] l i n g s → . . .
DEL: [w] l o s → . . .
DEL: [w] n i s → . . .
DEL: [w] s a l → . . .
DEL: [w] s a m → . . .
DEL: [w] s c h a f t → . . .
DEL: [w] s e l → . . .
DEL: [w] t u m → . . .
DEL: [w] w ä r t s → . . .
DEL: [w] w a e r t s → . . .

Most of the deleted rules were approximations of morpheme-final allophony
phenomena which used a short list of common suffix surface forms in lieu
of a full morphological decomposition of the input forms. Since the suffix
list is by no means complete, particularly with regard to historical variants,
such specialized rules can be expected to harm rather than help a phonetic
conflator for historical input.

The next largest category of deleted rules are those which define mappings
for (or sensitive to) the letter h. These were replaced by three simple rules

80 A. Finite-State Components

which define h as silent before a consonant or word boundary, and otherwise
map it to a glottal fricative. The most typical case of historical variation
with respect to h in German – namely, the historical pattern (th; t) – was
handled by an original IMS German Festival rule (R133: [t h] → t).

In a few cases, specialized rules were added to the LTS rule-set to account
for observed historical variation phenomena. In particular, the rules inserted
for dar, iuw, iu, mp, mb, ouw, ou, ow, sl, sm, sw, sn, sr, uo and ua do
not properly represent either contemporary or historical phonological rules.
Rather, these rules are specifically designed for canonicalization of historical
German input, mapping historical grapheme substrings unlikely to occur in
contemporary words to plausible contemporary phonetic realizations, similar
to the transliteration mapping (î 7→ ei) discussed above in section A.1.

A.2.4 Post-processing Filters

Several high-level phonetization operations in the IMS German Festival pack-
age are realized by post-processing scheme functions. For the phonetization
transducer used in the current work, I implemented similar functions as a
finite-state transducer which was composed onto the upper (phonetic) tape
of the core LTS transducer compiled from the raw festival LTS rules by
the construction given in section 1.2.1. Unlike the core LTS transducer,
the post-processing FST was compiled using a more traditional SPE-style
two-level rule compiler (Mohri and Sproat, 1996) for obligatory rules with
feeding and bleeding. The rules given below are presented in lextools8

syntax. Sections A.2.4.1 through A.2.4.4 describe the finite-state implemen-
tations of the IMS German Festival post-processing routines, and sections
A.2.4.5 through A.2.4.9 present additional post-processing rules applied to
the modified phonetizer used in the current work.

A.2.4.1 Affricates

The following rules were applied to join plosive-fricative substrings into the
appropriate affricates:

p f → [pf] /
t s → [ts] /
t S → [tS] /
t Z → [tZ] /

8http://www.research.att.com/sw/tools/lextools/

http://www.research.att.com/sw/tools/lextools/

A.2 Phonetization Rules 81

A.2.4.2 Post-Vocalic R

The following rules were applied to alter the pronunciation of post-vocalic ‘r’
from a uvular fricative (‘R’) to central near-open vowel (‘6’):

R → 6 / a
R → 6 / E
R → 6 / I
R → 6 / O
R → 6 / U
R → 6 / Y
R → 6 / 9
R → 6 / [2:]
R → 6 / [E:]
R → 6 / [OY]
R → 6 / [a:]
R → 6 / [aI]
R → 6 / [aU]
R → 6 / [e:]
R → 6 / [eI]
R → 6 / [o:]
R → 6 / [u:]
R → 6 / [y:]

A.2.4.3 Palatal vs. Velar Fricatives

A simple vowel-sensitive rule was applied to implement the allophony of
palatal (‘C’) and velar (‘x’) fricatives depending on the immediately preceding
vowel:

C → x / ([a:]|a|O|[u:]|U|[aU])

A.2.4.4 Glottal Stop

A simple rule inserted a glottal stop (‘?’) for words beginning with a vowel.
Another rule inserted a glottal stop after common prefixes, as an approxima-
tion of a more abstract phonological rule which inserts glottal stops between
morpheme boundaries.9

9The square brackets around the symbol ‘?’ are required here by lextools syntax in
order to distinguish the SAMPA symbol for a glottal stop ‘?’ from the optionality operator
‘?’.

82 A. Finite-State Components

ε → [?] / # V
ε → [?] / #(Ent|Um|[aU]s|dIs|dEs|Un|mIs|fER|In|g@|k[o:]|b@|ap) V

The phonetizer might be additionally simplified and the general goal
of a phonemic representation (as opposed to a synthesis-oriented phonetic
representation such as the IMS German Festival system provides) more closely
approximated by removal of some or all of the preceding post-processing rules,
but preliminary experiments showed that for the phonetic conflator on its own,
removing the above rules did not have any consequences. In an early attempt
(chapter 1) to broaden the phonetic conflator’s coverage, the following post-
processing rules were developed to approach a more abstract representation.

A.2.4.5 Unrecognized Input

Any unrecognized input (represented by the symbol ‘??’) was mapped to a
schwa (‘@’):

[??] → @ /

A.2.4.6 Schwa Removal

Schwa (‘@’) was mapped to a close-mid front unrounded vowel (‘e’) whenever
it occurred:

[@] → e /

A.2.4.7 Vowel Shortening

Vowel length estimates from the LTS rule-set were discarded. Manual in-
spection of later evaluation data (chapters 3 and 4) suggests that these rules
in particular are responsible for many of the phonetic conflator’s precision

A.2 Phonetization Rules 83

errors.
[2:] → 2 /
[a:] → a /
[A:] → A /
[e:] → e /
[E:] → E /
[i:] → i /
[I:] → I /
[o:] → o /
[O:] → O /
[u:] → u /
[U:] → U /
[y:] → y /
[Y:] → y /

A.2.4.8 Redundancy Trimming

Repeated occurrences of the same phone were deleted. For each phone p, a
rule was applied of the form:

pp∗ → p /

A.2.4.9 Word Boundary Removal

Finally, the word boundary symbol ‘#’ was removed from the output string
by application of the single obligatory rule:

[#] → ε /

A.2.5 Phonetization FST
The final phonetization FST Mpho was defined by composition of the pre-
processing filters, the core LTS rule transducer and the post-processing filters.
IfMphocore represents the core LTS rule transducer compiled from the modified
LTS rule-set of section A.2.3 and Fpho represents the transducer compiled
from all post-processing filters described in section A.2.4, then the final
phonetization FST Mpho can be defined as:

Mpho := Mxlit ◦Mlc ◦M# ◦Mphocore ◦ Fpho

84 A. Finite-State Components

A.3 TAGH Filters

In chapters 3 and 4, it was noted that the lexicon Lex used to define the
Levenshtein and heuristic rewrite conflation cascades was extracted from the
input language of the tagh morphology transducer (Geyken and Hanneforth,
2006).10 This section documents the target lexicon extraction process in terms
of weighted finite-state filters applied to the upper (abstract) tape of the
raw morphology transducer Mtagh. The filters were constructed as weighted
acceptors (identity transducers), and followed the general strategy of assigning
a cost penalty to tagh constructs deemed “unsafe” for use in a rewrite cascade
target lexicon. Together with an appropriate cost upper bound parameter
to the cascade search function (see section 2.3.4), these penalties effectively
prevent such constructs from being considered valid rewrite targets.

The filters presented in this section were developed in the course of the work
described above by manual inspection of proposed rewrite canonicalizations.
In most cases, spurious canonicalizations indicated errors in the rewrite
transducer itself. In other cases, errors were due to the presence of a “false
friend” in the target lexicon. Occasionally, modifications were made to
both the rewrite transducer and the target lexicon. The penalization rules
presented below should not be construed as comprising a complete list of
dangerous target constructs for a rewrite cascade; rather, they represent a
sample of the most frequent such constructs encountered in the course of this
work. Nonetheless, these filters demonstrate what I consider one of the major
benefits of the finite-state canonicalization approach when applied to a high
quality lexicon such as tagh provides; namely the ability to concisely and
accurately express linguistically salient constraints in terms of linguistically
meaningful criteria such as morpheme boundaries, word category, lexical stem
category, syntactic features, etc., rather than being restricted to simple string
operations on raw surface forms.

A.3.1 Syntactic Category Filters

The following penalties were assigned based on the stts part of speech tag
(Schiller et al., 1995) assigned by tagh to the input word on its lower tape:

10The coverage data in chapter 1 was acquired using tagh version 1.1.4. All other
mentions of the tagh morphology refer to tagh version 2.0.1.

A.3 TAGH Filters 85

STTS Tag Penalty Description
$. 100 period
$, 100 comma
$(100 other punctuation

CARD 100 cardinal number or other digit string
FM 100 foreign language material
ITJ 100 interjection
NE 100 proper name
XY 100 abbreviation or non-linguistic material

Similar penalties were applied to lexical stems of the corresponding categories
occurring within a complex derivation:

TAGH Code Penalty Description
/NE 100 proper name (backwards-compatible)
/PN 100 given name
/LN 100 surname
/GN 100 geographic name
/ON 100 organization name
/X 100 abbreviation or acronym

In most cases it should be clear that the surface forms associated with
these tags are dangerous if allowed as potential outputs of a rewrite cascade,
particularly if the cascade editor is insensitive to its operands and/or their con-
text, as in the case of a Levenshtein editor. Regarding the exclusion of proper
names from the target lexicon, note that many historical variants of extant
German lexemes – in particular adjectives and common nouns – still survive as
surnames or geographic names, for example (Aehnlich/NE.lastname ∼ ähn-
lich/ADJD), (Schmidt/NE.lastname ∼ Schmied/NN), or (Thür/NE.geoname
∼ Tür/NN). If these analyses were allowed into the rewrite target lexicon
without any penalty, their presence would prevent the rewrite and Levenshtein
canonicalization cascades from discovering the correct extant equivalent (ähn-
lich, Schmied, and Tür in the above examples), since in both cases identity
transductions are always cost-minimal.

A.3.2 Lexical Stem Filters
The following table documents the lexical stems which were penalized when-
ever they occurred in complex derivations. Here, a single dot (.) represents
an arbitrary morpheme- or word-boundary, and the dollar sign ($) represents
a word-boundary. Since the tagh transducer differentiates between various
types of morpheme boundaries, the actual regular expressions used were in

86 A. Finite-State Components

fact somewhat more complex then the schematic patterns presented below.
The simple dot-and-dollar notation is used here for purposes of clarity.

Table A.3: tagh Lexical stem filters

TAGH Stem Penalty Example
.äs/V. 20 *(armîsen 7→ Arm.äs.en)
.Au/N. 10 *(rîchiu 7→ Reich.Au)
.Bus/N. 10 *(absentibus 7→ Absent.Ei.Bus)
.dau/V. 20 *(dauszen 7→ Dau.Szene)
.Ehe/N. 50 *(gangen 7→ Gang.Ehen)
.Eid/N. 50 *(Rächerkleide 7→ räch.ekl.Eid.e)
.Ei/N. 50 *(Hiebei 7→ Hieb.Ei)
.Eis/N. 50 *(abdominalis 7→ abdominal.Eis)
.eng/A. 20 *(rachtung 7→ Rache.tu.eng)
.Enge/N. 10 *(schm e

uegen 7→ Schmu.Enge.n)
.Ente/N. 10 *(Tausent 7→ Tau.s.Ente)
.gay/A. 50 *(papagays 7→ Papa.gay.s)
.geh/V. 20 *(gelung 7→ geh.Lunge)
.gei/V. 20 *(gyt 7→ gei.t)
.gell/V. 20 *(gelung 7→ gell.ung)
.Gel/N. 50 *(blutge 7→ Blut.Gel)
.gel/V. 20 *(gelung 7→ gel.ung)
.Gen/N. 50 *(giengen 7→ gien.Gen)
.Gens/N. 50 *(g e

unstiger 7→ Gens.Tiger)
.Heu/N. 10 *(rîchiu 7→ reiz.Heu)
.iah/V. 20 *(jaren 7→ iah.en)
.Ich/N. 50 *(küniges 7→ kühn.Ich.s)
.Ire/N. 50 *(anticipiren 7→ anti.giep.Ire.n)
.Lehn/N$ 10 *(versamlen 7→ versam.Lehn)
.Leiche/N$ 10 *(etslîche 7→ ätsch.Leiche)
.Lunge/N$ 50 *(gelung 7→ geh.Lunge)
.Mahl/N. 10 *(schmahl 7→ Schi.Mahl)
.Neige/N. 10 *(mähnige 7→ mäh.Neige)
.Öl/N. 10 *(herrligkeit 7→ Herr.Öl.ig.keit)
.öl/V. 20 *(betöbern 7→ bet.öl.er.n)
.penn/V. 20 *(staupenschlag 7→ stau.penn.Schlag)
.Po/N. 10 *(posz 7→ Po.s)
.Reh/N. 10 *(innrer 7→ Inn.Reh)
.Reis/N. 10 *(hausereys 7→ haus.e.Reis)
.Riege/N$ 10 *(rostrig 7→ Rost.Riege)

(continued on following page)

A.3 TAGH Filters 87

Lexical stem filters (continued from previous page)

TAGH Stem Penalty Example
.Schi/N. 50 *(schmahl 7→ Schi.Mahl)
.Szene/N. 10 *(dauszen 7→ Dau.Szene)
.Tee/N. 50 *(Schwerte 7→ schwer.Tee)
.Teig/N. 10 *(abschlächtig 7→ Abschlag.Teig)
.Term/N$ 10 *(sonderm 7→ sonn.Term)
.te/V. 20 *(teüfels 7→ te.Fels)
.tu/V. 20 *(rachtung 7→ Rache.tu.eng)
.Zen/N. 50 *(aufspreizzen 7→ auf.spreiz.Zen)

Finally, the following stems were penalized in both mono- and multi-
morphemic words:

TAGH Stem Penalty Description
.-. 100 hypenated compound
.aal.mehlig/A. 100 unlikely derivation
.alm.mehlig/A. 100 unlikely derivation
.alm.ehig/A. 100 unlikely derivation
$helf.en/VVFIN.subjII 20 unlikely form (hülfe)
$geheimniss.en/VVIMP 20 unlikely form
.Proceß/N. 100 extinct variant
.Vortheil/N. 100 extinct variant
.Teen/N. 100 neologism

A.3.3 Target Lexica
The literal filter patterns listed above were compiled into a weighted acceptor
F . A weighted identity transducer MF was compiled from the finite pattern
inventory in F by setting:

MF := Id
((

(A∗FA∗)F
)∗

(A∗FA∗)
)

The resulting identity transducer was then composed with the raw morphology
transducer Mtagh to produce the basic target lexicon ALex:

ALex := Proj1(Mtagh ◦MF)

Finally, an editor-dependent linear scaling factor z ∈ R was applied to the
weights of ALex to make tagh’s heuristic weighting function compatible with

88 A. Finite-State Components

that of the rewrite editor. Let ALex /z be that acceptor which comes from
ALex by dividing11 each weight in ALex by the constant z. The target lexica
for the Levenshtein and heuristic rewrite editor cascades were then computed
as:

ALexLev := ALex /20

ALexrw := ALex /2

The choice of scaling factors can be understood by relating the edit costs
assigned by the corresponding editor transducers to the rule-based derivational
complexity weighting scheme of the tagh transducer itself, which assigns
e.g. a cost of 10 to strong morpheme boundaries (#) such as between noun
stems in a multimorphemic compound. Such boundaries will be treated by the
Levenshtein cascade as if they had a cost of 1

2 . Since for a Levenshtein editor,
all non-identity transductions have a fixed cost of 1, a compound target word
with two or more stems (e.g. rächekleid : räch/V#ekl/A#Eid/N) may cause
a less expensive non-identity path to become available, if that path leads
to a sufficiently simpler derivation (e.g. rächerkleid : Räch~er/N#Kleid/N,
which is not simple enough to override the identity path, since it still contains
one strong morpheme boundary). For the heuristic rewrite cascade, strong
morpheme boundaries are assigned a cost of 5, putting them on a par with
transductions such as (c→ z), (d→ t), or (iu→ ie), but notably more costly
than common transductions such as (th → t) or (ey → ei) and less costly
than uncommon transductions like (f → s) or (a→ o).12

A.4 Morphological Security

It was noted in chapter 3 that for the Levenshtein-distance conflation relation,
each extant word type is its own “best” equivalent. More generally, any
reflexive conflation relation has the property that an extant form can serve
as its own canonicalization. Even for the general case of a weighted rewrite
transducer, if null-cost identity transductions are included (as they were
in the heuristic rewrite transducer used in the current work; see appendix
A.5.2), then the cost-minimal path for any valid extant input word will be

11I refer here to traditional division of weights regarded as real numbers, rather than to
any operation specific to the semiring over which ALex is defined. Assumedly, the scaling
arithmetic could be carried out on-the-fly by a suitable specialized semiring, but the current
off-line procedure eliminates both unnecessary complexity and run-time overhead.

12See appendix A.5 for a complete specification of the heuristic rewrite transducer.

A.4 Morphological Security 89

the word itself.13 In historical context however, some of these strings are
more likely to represent historical variants of non-identical forms than the
homographic extant forms. Common cases for such “false friends” are proper
names, abbreviations, and acronyms, as described above in section A.3.

For reasons of runtime efficiency, the implemented system did not attempt
to canonicalize valid modern forms which were considered “safe”, implicitly
treating such words as their own canonical forms. An input string was
considered “safe” if it contained only non-alphabetic characters (punctuation
etc.), or if it was a word covered by the tagh morphology with at least
one “safe” analysis. Safety of morphological analyses was defined using the
following heuristic patterns to detect unsafe analyses:14

$FM
$XY
$ITJ
$NE.lastname
$NE.orgname
$NE.productname
.äs/V.
.Bus/N.
.dau/V.

.Ei/N.

.Eis/N.

.gell/V.

.Gel/N.

.gel/V.

.Gen/N.

.Heu/N.

.Loo/NE.

.Öl/N.

.öl/V.

.penn/V.

.Reh/N.

.Szene/N.

.Tee/N.

.Teig/N.

.te/V.

.Thür/NE.

.Zen/N.

If Mtagh is the raw morphology transducer and U represents the un-
weighted acceptor for unsafe morphological analyses, then a morphology
variant Mtaghsafe which produces only “safe” analyses can be defined as:

Mtaghsafe := Mtagh ◦ Id
(
A∗UA∗

)
In practice, the morphological security heuristics were implemented as Perl
regular expressions operating on the string representations of morphological
analysis paths, rather than compiled into the morphology transducer itself.
This choice was made based on the desire to retain the original tagh analyses
whenever available on the one hand and to minimize redundant computational
effort on the other. In a pure finite-state architecture, the functionality of
the morphological safety heuristics could be reduced entirely to target lexicon
filters.

13This claim assumes that no alternative path involving non-identity transductions leads
to an extant form with substantially reduced morphological complexity, as discussed above
in appendix A.3.3.

14The morphological safety patterns are presented in the same notation as that used to
specify the tagh filters in section A.3.

90 A. Finite-State Components

A.5 Heuristic Rewrite Rules

This appendix contains the heuristic rule-set used to implement the editor
WFST for the rewrite cascades described in chapters 3 and 4. The core
rewrite editor Mrwcore was compiled with a weighted non-deterministic variant
of the compiler described above for festival LTS rule-sets using the basic
construction given in section 1.2.1, where the compiler’s output filter MO was
modified to allow multiple weighted outputs. The weights assigned to the
rewrite rules were interpreted as (non-negative) costs by the tropical semiring
(Simon, 1987). Sections A.5.1 through A.5.7 present the core heuristic rules,
sorted by the phonological properties of the operands.15 The final rewrite
editor Mrw was constructed by composing specialized filters onto each side of
the core transducer compiled from the basic rule-set. The filters and their
roles in the construction of Mrw are described in section A.5.8.

A.5.1 Character Classes

The following character classes were defined and used to facilitate definition
of rule contexts:

Arw =
{

a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z,
ä, ö, ü, ß, ’, #, ??

}
L = Arw\{’, #, [??]}
C := {b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, z}

OBST := {c, d, f, g, h, k, p, q, s, t, v, x, z, ß, #}
V := {a, e, i, o, u, ä, ö, ü}

For implementation-specific reasons, the rule-set definition file contained
a total of 49 character class definitions. For the most part, these classes
represented simple disjunctions or complements with respect to the input
alphabet Arw which were defined as character classes only because the LTS
rule compiler does not support arbitrary regular expressions. For ease of
reading, such superfluous classes have been replaced by more traditional
notation using parentheses () and curly brackets {} in the tables below.

15The astute reader will note that the categories below do not coincide completely with
those used in chapter 3 (Jurish, 2010b). The coarse categories used for the rule counts in
chapter 3 were further subdivided for this appendix to facilitate legibility. In the course of
the rule-set re-factorization, 4 redundant rules were discovered which were omitted from
the rule-set presented here.

A.5 Heuristic Rewrite Rules 91

A.5.2 Identity Rules
Each valid input character a ∈ Arw was associated with an implicit null-cost
identity rule:

[a]→ a 〈0〉

A.5.3 Consonant Rules
A.5.3.1 Plosives

In addition to conversion rules between common homophonic allographs such
as (c↔ k) or (th↔ t), the plosive-directed rewrite rules included a number
of voicing alternations such as ({c, k} → g) and ({d, dt, t} ↔ {d, dt, t}),
as realized by the variants (Egk ∼ Eck), (sanc ∼ sang), (Gewandheit ∼
Gewandtheit), and (Mundt ∼ Mund):

Table A.4: Rewrite rules: plosives

α [β] γ → πrw 〈cost〉
[b] → p 〈 8 〉
[b b] → p p 〈 8 〉
[c] → g 〈 6 〉
[c] # → g 〈 1 〉
[c] (Arw\{h, k}) → k 〈 5 〉
[c k] → k 〈 1 〉

(Arw\{d, t}) [d] → d t 〈 7 〉
[d] → t 〈 5 〉
[d t] → d 〈 5 〉
[d t] # → d 〈 1 〉
[d t] → t 〈 1 〉
[g k] → c k 〈 5 〉
[k] → c k 〈 1 〉
[k] # → g 〈 1 〉
[p] → b 〈 5 〉
[t] → d 〈 7 〉
[t] # → d 〈 4 〉
[t] → d t 〈 5 〉
[t] (V ∪ {r}) → t h 〈 5 〉
[t] → t t 〈 8 〉

(Arw\{d, t}) [t] (Arw\{d, t}) → t t 〈 2 〉
[t h] → d 〈 7 〉
[t h] → t 〈 2 〉
[t h] # → t 〈 1 〉

(continued on following page)

92 A. Finite-State Components

Rewrite rules: plosives (continued from previous page)

α [β] γ → πrw 〈cost〉
[t h] (V ∪ {r, l, w}) → t 〈 1 〉
[t t] → t 〈 2 〉
[w] → b 〈10 〉

A.5.3.2 Fricatives

Fricative rules included workarounds mapping between s and f for common
OCR errors involving long ‘s’ (‘ſ’), as well as a deletion rule for w following
a back vowel as in (frauwen ∼ Frauen). Location shift rules were included
for pre-sonorant s (swert ∼ Schwert) and for post-vocalic h (nähsten ∼
nächsten). Fricative-oriented rewrites were otherwise limited to common
cases of homophonic allography such as {ch, g}, {ph, f}, and {s, ss, ß}:

Table A.5: Rewrite rules: fricatives

α [β] γ → πrw 〈cost〉
[c h] → g 〈10 〉
[f] → f f 〈 4 〉
[f] → s 〈10 〉
[f f] → f 〈 4 〉
[f f] → s s 〈10 〉
[f f] → ß 〈10 〉
[g] (V ∪ {#}) → c h 〈10 〉
[g] e {n, r, s, #} → c h 〈10 〉

r [h] {d, t} → 〈 1 〉
V [h] → c h 〈10 〉

[p h] → f 〈 1 〉
[r] → r r 〈 5 〉
[s] # → 〈 6 〉

(Arw\{#}) [s] → f 〈10 〉
[s] {l, r, m, n, w} → s c h 〈 1 〉

(Arw\{#}) [s] → s s 〈 4 〉
(Arw\{#}) [s] # → s s 〈 3 〉
(Arw\{#}) [s] → ß 〈 8 〉
(Arw\{#}) [s] # → ß 〈 5 〉

[s c h] → c h 〈10 〉
(Arw\{#}) [s s] → s 〈10 〉
(Arw\{#}) [s s] # → s 〈 4 〉
(Arw\{#}) [s s] → ß 〈 1 〉

[s z] → s 〈 5 〉
(continued on following page)

A.5 Heuristic Rewrite Rules 93

Rewrite rules: fricatives (continued from previous page)

α [β] γ → πrw 〈cost〉
(Arw\{#}) [s z] → s s 〈 1 〉
(Arw\{#}) [s z] → ß 〈 1 〉

[v] → f 〈 5 〉
{a, o, u} [w] e → 〈 1 〉

[z] → ß 〈10 〉
[z z] → ß 〈10 〉
[ß] ß → 〈 0.1〉
[ß] → s 〈10 〉
[ß] → s s 〈 5 〉

A.5.3.3 Affricates

Affricate-oriented rewrite heuristics were limited to the historical allographs
{c, cz, sc, ts, tz, z} as appearing in the conflations (seciren ∼ sezieren),
(selczamen ∼ seltsamen), (transscendenten ∼ transzendenten), and (reitzen
∼ reizen):

Table A.6: Rewrite rules: affricates

α [β] γ → πrw 〈cost〉
[c] → z 〈 5 〉
[c z] → t s 〈 5 〉
[c z] → t z 〈 5 〉
[c z] → z 〈 1 〉

(Arw\{#}) [s c] → z 〈 5 〉
[t] z → 〈 5 〉
[z] → t z 〈10 〉

(Arw\{r}) [z] (Arw\{e}) → t z 〈 5 〉

A.5.3.4 Sonorants

Sonorant-oriented rewrite heuristics included the assimilations (m{b, p} → m)
as realized by the conflations (umbgehen ∼ umgehen), (kompt ∼ kommt),
and (nimp ∼ nimm). A seldom-invoked deletion rule (en → e) was used
to account for variation in functional morphemes as in (reimenmacher ∼
Reimemacher).

94 A. Finite-State Components

Table A.7: Rewrite rules: sonorant consonants

α [β] γ → πrw 〈cost〉
m [b] OBST → 〈 2 〉
m [b] {d, t, #} → m 〈 1 〉

[l] → l l 〈 8 〉
[l l] → l 〈 8 〉
[m] → m m 〈 5 〉
[m m] → m 〈 5 〉

e [n] → 〈10 〉
[n] → n n 〈 5 〉
[n n] → n 〈 5 〉
[n t] p f → m 〈 5 〉

m [p] → 〈 5 〉
m [p] {d, t, #} → m 〈 1 〉
[y] → j 〈 1 〉

A.5.4 Vowel Rules
A.5.4.1 Front Vowels

Operations targeting front vowels included a deletion rule (e# → #) for
word-final e, often invoked for the historical dative −e suffix as in (korbe ∼
Korb) and (schwerte ∼ Schwert). Despite its clear motivation and obvious
usefulness, this rule and its n-inserting pendant (e#→ en#) were assigned
quite high costs, due to the continued activity of −e and −en as inflectional
suffixes. Vowel shift rules included the unroundings (iu→ ie) and (ü→ i), as
exemplified by the conflations (biut ∼ biete) and (würken ∼ wirken). Height-
and backness shifting rules such as (i→ e), (o→ ö), and (u→ ü) were used
to achieve conflations such as (schricken ∼ schrecken), (ofters ∼ öfters), and
(Thur ∼ Tür); although the latter two of these rules may be primarily of
graphematic rather than phonological origin. Insertion rules for the characters
e and i were used to account for conflations such as (tück ∼ Tücke) and
(kürbs ∼ Kürbis); these rules were also often invoked to account for vowels
in the DWB verse corpus which were elided apparently for reasons of metric
foot. The following table also includes a generic post-vocalic h-insertion
rule16 (ε→ h) to account for vowel lengthening conflations such as (jaren ∼
Jahren) and (füren ∼ führen), as well as a corresponding deletion rule for
vowel shortening conflations such as (roht ∼ rot).

16See section A.5.8 for the general mechanics used to define insertion rules for the rewrite
editor.

A.5 Heuristic Rewrite Rules 95

Table A.8: Rewrite rules: front vowels

α [β] γ → πrw 〈cost〉
(Arw\{e}) [<eps>] # → e 〈 5 〉

C [<eps>] (C ∪ {#}) → e 〈10 〉
V [<eps>] (C\{d, h, j, q, s, w, x}) → h 〈 5 〉
C [<eps>] C → i 〈10 〉

[a e] → ä 〈 1 〉
[e] → 〈15 〉
[e] # → 〈 9 〉
[e] # → e n 〈10 〉
[e] → ä 〈 5 〉
[e e] → e 〈 8 〉
[e e] → e h 〈 8 〉
[e e] → ä h 〈 8 〉
[e h] → e e 〈 5 〉

V [h] (Arw\V) → 〈 5 〉
(Arw\V) [i] (Arw\V) → e 〈 5 〉
(Arw\V) [i] (Arw\V) → i e 〈 5 〉

[i e] → i 〈 5 〉
[i u] → i e 〈 5 〉

[j] → i 〈 1 〉
[o] → ö 〈 9 〉
[o e] → ö 〈 1 〉
[u] → ü 〈 5 〉
[u e] → ü 〈 1 〉
[y] → i 〈 5 〉

(Arw\V) [y] (Arw\V) → i e 〈 5 〉
[ä] → e 〈 5 〉
[ö] → ü 〈10 〉
[ü] → i 〈 5 〉
[ü] → ö 〈10 〉
[ü e] → ü 〈 1 〉

A.5.4.2 Back Vowels

Rewrite rules targeting back vowels included the bidirectional shifts (a↔ o)
and (o ↔ u), as in (aufgehaben ∼ aufgehoben), (Toback ∼ Tabak), (rond
∼ rund), and (sunen ∼ sonnen). The rule (v → u) accounted for variants
such as (vnd ∼ und) common in very old source material. Also possibly
of graphematic origin are the rewrites (ü → u) and (ö → o) used in the
conflations (darümb ∼ darum) and (kömpt ∼ kommt).

96 A. Finite-State Components

Table A.9: Rewrite rules: back vowels

α [β] γ → πrw 〈cost〉
[a] → o 〈10 〉
[a a] (Arw\(V ∪ {y})) → a 〈 5 〉
[o] → a 〈 9 〉
[o] → u 〈15 〉
[o o] → o 〈 9 〉
[o u] → o 〈 5 〉
[o u] → u 〈 5 〉
[u] → a 〈10 〉
[u] → o 〈10 〉
[u e] → u 〈10 〉
[v] → u 〈10 〉
[w] → u 〈10 〉
[ä] → a 〈10 〉
[ö] → o 〈 5 〉
[ü] → u 〈10 〉

A.5.4.3 Diphthongs

Diphthong-oriented rules included the diphthongizations (ee→ ei), ({iu, u} →
au), (y → ei), and ({iu, öi, öü, ü} → eu) as occurring in the conflations
(schleer ∼ Schleier), (riuschent ∼ rauschend), (suber ∼ sauber), (lyb ∼ Leib),
(liute ∼ Leute), ({fröide, vröude} ∼ Freude), and (üch ∼ euch). The monoph-
thongization rules (ei→ ie) and (ua→ u) accounted for conflations such as
(phantasei ∼ Phantasie) and (sluag ∼ schlug), while the diphthong shifts
({ou, uw} → au) accounted for examples such as (troum ∼ Traum), (gruwen
∼ grauen). The rules (i → j) and (i → je) were used to implement the
historical allographs {i, j} as occurring in the conflations (ie ∼ je) and (itzt
∼ jetzt).

Table A.10: Rewrite rules: diphthongs

α [β] γ → πrw 〈cost〉
[a] i → e 〈 5 〉
[a i] → e i 〈 5 〉
[e e] → e i 〈10 〉
[e i] → i e 〈 5 〉
[e w] → e u 〈 5 〉
[e y] → e i 〈 1 〉
[e ü] → e u 〈 1 〉

(Arw\V) [i] (Arw\V) → e i 〈10 〉
(continued on following page)

A.5 Heuristic Rewrite Rules 97

Rewrite rules: diphthongs (continued from previous page)

α [β] γ → πrw 〈cost〉
(Arw\V) [i] (Arw\V) → i e 〈 5 〉
(Arw\V) [i] V → j 〈 5 〉
(Arw\V) [i] (Arw\V) → j e 〈15 〉

[i u] → a u 〈10 〉
[i u] → e u 〈 1 〉
[i w] → e u 〈 5 〉
[o u] → a u 〈 1 〉
[o w] → o u 〈 1 〉
[u] → a u 〈10 〉
[u a] → u 〈10 〉
[u o] → u 〈 1 〉
[u w] → a u 〈 5 〉

a [w] → u 〈 5 〉
[y] → e i 〈 5 〉
[ö i] → e u 〈 1 〉
[ö u] → e u 〈 1 〉
[ü] → e u 〈 5 〉

A.5.5 Explicit Elision Rules
Elisions explicitly marked with an apostrophe were handled by a small
number of substitution heuristics accounting for common cases such as (in’s
∼ ins), (sag’ ∼ sage), (red’st ∼ redest), and (ew’ge ∼ ewige). Preposition-
determiner contractions such as (auf’m ∼ auf dem) triggered a workaround
rule mapping ′m to s, thus generating the (literally spurious but morpho-
syntactically correct modulo grammatical case) conflation (auf’m ∼ aufs).
The most common remaining explicit elisions targeted the e of the third
person neutral pronoun es: ′s suffixes of some common pronouns were deleted,
which – although by no means correct – at least retains one of the two
extant word types in the corresponding multi-word tokens. In general, string-
internal apostrophes indicating elided word boundaries such as (’s ∼ es)
were considered tokenization errors and ignored in the evaluations of chapters
3 and 4.

Table A.11: Rewrite rules: elisions

α [β] γ → πrw 〈cost〉
[’] → 〈0.9 〉
[’] # → 〈0.1 〉
[’] s # → 〈0.15〉

(continued on following page)

98 A. Finite-State Components

Rewrite rules: elisions (continued from previous page)

α [β] γ → πrw 〈cost〉
[’] # → e 〈0.2 〉
[’] s t # → e 〈0.8 〉
[’] t # → e 〈0.5 〉
[’] g → i 〈0.5 〉
[’ m] # → s 〈0.2 〉
[’ n] # → s 〈0.2 〉
[’ s] # → 〈0.2 〉

d u [’ s] # → 〈0.1 〉
e r [’ s] # → 〈0.1 〉

e u c h [’ s] # → 〈0.1 〉
i c h [’ s] # → 〈0.1 〉
s i e [’ s] # → 〈0.1 〉
w i r [’ s] # → 〈0.1 〉

A.5.6 Unrecognized Input Rules

30 additional rules for handling unrecognized input in the DTA corpus17

were added to the rewrite transducer. Unrecognized input was encoded as
the special symbol ‘??’ and assumed to represent a single lower-case letter
active in contemporary German orthography, i.e. an element of the character
class L. A unigram probability distribution p(L) over the character class L
was estimated from the tiger corpus (Brants et al., 2002), and for each of
the 30 target letters l ∈ L, a rule was added mapping the symbol ‘??’ to l
whose cost was computed as the unit-normalized pointwise Shannon entropy
of p(L = l):18

??→ l

〈
log p(L = l)∑

l′∈L log p(L = l′)

〉

More sophisticated character-level language models can be expected to
improve rewrite-based canonicalization of unrecognized input. Since unrecog-
nized input represented less than 0.001% of the corpus data,19 implementation
of such models was deemed unnecessary in the context of the current work.

17In the case of the DTA, unrecognized input was usually due to illegibility of the source
material due to damage, decay, etc.

18i.e. the ratio of the length under an optimal encoding for a message with probability
p(L = l) to the sum of the lengths of all messages recognized by the encoding; cf. Shannon
(1948); Bell et al. (1990); Cover and Thomas (1991).

19Only 174 of 62,649,796 tokens in the Deutsches Textarchiv included unrecognized input.

A.5 Heuristic Rewrite Rules 99

A.5.7 Miscellaneous Rules
The remaining rules are not easily classified with respect to simple phonetic or
surface string properties, for the most part operating on syllables or character
substrings and/or making strict requirements on the string context in which
they may be applied. Typical syllable-level operations include the e-deletion
rules (est# → st#) and (et# → t#) which accounted for conflations such
as (liebest ∼ liebst) and (geliebet ∼ geliebt),20 as well as insertion rules such
as (#g → #ge), (g → ig), and (n→ en) used in conflations such as (gricht
∼ Gericht), (ewge ∼ ewige), and (verzeihn ∼ verzeihen). The transposition
rules (le→ el) and (re→ er) accounted for conflations such as (ufwieglen ∼
aufwiegeln) and (trauren ∼ trauern).

Morpheme-level operations included the rules (aller → all), (dar → da),
(für → vor), (ism → ismus), and (san → sam), as used in the confla-
tions (allerseitig ∼ allseitig), (darmit ∼ damit), (fürnehmen ∼ vornehmen),
(Dogmatism ∼ Dogmatismus), and (gleichsan ∼ gleichsam).

Some common exceptions to the general rule-set were encoded as rules
in their own right, e.g. (#eh → #ehe) for (ehmals ∼ ehemals), (maur →
mauer) for (kirchhofmaur ∼ Kirchhofmauer), (scharm→ charm) for (schar-
mant ∼ charmant), (ümb → um) for (darümb ∼ darum), (niß# → nis#)
for (Erlebniß ∼ Erlebnis), (wol → wohl) for (gleichwol ∼ gleichwohl), and
(foder → forder) for (gefodert ∼ gefordert).

Table A.12: Rewrite rules: miscellaneous

α [β] γ → πrw 〈cost〉
i [a l] → e l l 〈10 〉

[d a c h t] → d e n k 〈10 〉
[d a r] (Arw\V) → d a 〈 1 〉

[d i e n s t] → d i e n 〈10 〉
g [e] {l, n, w} → 〈 5 〉

(Arw\{d, t}) [e] s t # → 〈 1 〉
(Arw\{d, t}) [e] s t e # → 〈 1 〉
(Arw\{d, t}) [e] t # → 〈 1 〉
(Arw\{d, t}) [e] t e # → 〈 1 〉

s [e] l → e e 〈 4 〉
h i [e] (Arw\{r}) → e r 〈 5 〉

z w e [e] → i 〈 5 〉
z [e] (Arw\{r}) → r 〈10 〉

[e n] → e n t 〈10 〉
(continued on following page)

20e-deletions were particularly useful on the DWB verse corpus, where they also served
to reverse numerous insertions apparently performed for reasons of metric foot.

100 A. Finite-State Components

Rewrite rules: miscellaneous (continued from previous page)

α [β] γ → πrw 〈cost〉
[e n] → e r n 〈15 〉

a l l [e r] → 〈10 〉
[e r] {m, n, s, #} → e r e 〈 8 〉
[e r] i g → r 〈10 〉
[e r] → r e 〈20 〉
[f ü r] → v o r 〈 9 〉

m a n [g] → c h 〈 4 〉
[g] {l, n, r} → g e 〈 5 〉
[g] (Arw\{e, i, l, n, r}) → g e 〈 1 〉
C [g] → i g 〈 5 〉

[g] e {n, r, s, #} → i g 〈 1 〉
[g e] → g e g e 〈15 〉

e [h] (Arw\V) → h e 〈 5 〉
m a n [i g] → c h 〈 4 〉

[i g] e {n, r, s, #} → c h 〈 5 〉
[i g] k e i t → i c h 〈10 〉
[i s m] # → i s m u s 〈 5 〉
[i s m] s # → i s m u s 〈 5 〉

(Arw\{e}) [l] n # → e l 〈 5 〉
[l e] {e, n, s, t, #} → e l 〈 5 〉

i g [l i c h] # → 〈 1 〉
[m a u r] → m a u e r 〈 1 〉

i [n] g # → 〈 1 〉
(Arw\{e}) [n] → e n 〈 5 〉

s a [n] # → m 〈10 〉
w [o] l → o h 〈 0.5〉
f [o] d e r → o r 〈 0.5〉
e [r] → 〈 5 〉
a [r] # → 〈10 〉

a u [r] → e r 〈10 〉
e i [r] → e r 〈10 〉
e u [r] → e r 〈10 〉
ä u [r] → e r 〈10 〉

[r] n # → e r 〈 5 〉
(Arw\{#}) [r e] {e, n, s, t} → e r 〈 5 〉

[s] c h a r m → 〈 2 〉
C [s] t → e s 〈 2 〉

{d, t} [s] t # → e s 〈 1 〉
d [t] # → e t 〈 1 〉
[u] f → a u 〈 2 〉

(continued on following page)

A.5 Heuristic Rewrite Rules 101

Rewrite rules: miscellaneous (continued from previous page)

α [β] γ → πrw 〈cost〉
[u] b e r → ü 〈 1 〉

ü e [z] → ß 〈 1 〉
n i [ß] # → s 〈 5 〉

[ü m b] → u m 〈 5 〉

A.5.8 Rewrite Filters
A.5.8.1 Transliteration Filter

The transliterator Mxlit described in appendix A.1 was used to pre-process
input for the rewrite cascade.

A.5.8.2 Epsilon Insertion Filter

The festival LTS rule compiler does not support ε moves on its upper tape,
thus no generic insertion rules can be defined in the strict festival LTS rule
syntax. While this restriction is justifiable in the case of letter-to-sound rules,
it presents difficulties for a generic rewrite editor. In order to simulate generic
insertion rules, a filter Mε was applied to the lower tape of the core rewrite
editor which optionally inserted a single instance of the special symbol <eps>
at every input string position. Generic insertions were then simulated in the
core rewrite rule-set as substitutions on <eps>.

Mε :=
(
({ε} × {<eps>}) ∪ Arw

)∗
A.5.8.3 Word Boundary Filters

The designated word boundary symbol ‘#’ was inserted by the transducer M#
as described above in section A.2.1.3, and a transducer M

�#
was responsible

for deleting ‘#’ from the editor’s upper tape:

M
�#

:=
(
({#} × {ε}) ∪ (A\{#})

)∗
A.5.8.4 Graphemic Case Filters

The core rewrite rule-set ignored graphemic case distinctions (upper- vs. lower-
case characters). In recent German texts, graphemic case can provide useful
hints regarding the canonical cognate: since common nouns and proper names
are always upper-cased in contemporary German orthography as well as in

102 A. Finite-State Components

recent historical texts such as the DTA subset used in chapter 4, lower-case
input can be considered an indicator that the canonical form is not to be
found among words of these syntactic categories. Older source material may
not adhere to these graphemic case conventions – indeed, the DWB verse
corpus used in chapters 1 and 3 contained exclusively lower-case characters.21

In order to enable both the case-independent formulation of the core rewrite
rule-set and re-use of the tagh target acceptor which implements the strict
graphemic case conventions of contemporary orthography, graphemic case
handling was implemented by external filters.

Let {Auc,Alc,Anc} and Mlc be defined as in section A.2.1.2. Additionally,
define the upper-casing transducer Muc as the dual of Mlc:

Muc := Id(Auc ∪ Anc) ∪ {a 7→ uc(a) : a ∈ Alc}

where uc(a) ∈ Auc represents the upper-case variant of the lower-case character
a ∈ Alc.

For the DWB verse corpus, all input was treated as if it were written in
upper-case. Since sentence-initial words are also upper-cased in contempo-
rary German, this strategy only serves to increase the number of possible
conflations, allowing improved recall but potentially lowering precision. The
forced-case input filter Mul∗ was implemented as the unweighted deterministic
transducer compiled from the regular expression:

Mul∗ := {ε} ∪
(
Muc M

∗
lc

)
For the DTA corpus which contained case distinctions, pre- and post-

processing case filters were applied which used the designated symbols <UC>
and <LC> to mark upper- and lower-case words, respectively. These sym-
bols were passed through the core rewrite transducer unchanged. The case
preprocessing filter was defined as the deterministic transducer:

Mcase,0 := {ε} ∪
(
(M ′

lc ∪M ′
uc)M∗

lc

)
where:

M ′
lc := ({ε} × {<LC>}) Id(Alc ∪ Anc)

M ′
uc := ({ε} × {<UC>})(Auc ◦Mlc)

Changes in graphemic case were allowed by a post-processing filter Mxc
optionally converting between the case-markers <LC> and <UC> with cost=1:

Mxc :=
(
({<LC>} × {<UC>}〈1〉) ∪ ({<UC>} × {<LC>}〈1〉) ∪ Id(A)

)∗
21This property of the DWB verse corpus is symptomatic of the orthographic ambitions

of its original authors, the brothers Jacob and Wilhelm Grimm.

A.5 Heuristic Rewrite Rules 103

The case-marker flags were applied to the immediately following letter and
simultaneously removed from the output string by the output filter Mcase,1:

Mcase,1 :=
(

({<LC>} × {ε}) ∪
(
({<UC>} × {ε})Muc

)
∪ {<LC>, <UC>}

)∗

A.5.8.5 Rewrite Editor Variants

Finally, the rewrite editor Mrwdwb used on the DWB verse corpus as described
in chapter 3 and the editorMrwdta used on DTA corpus as described in chapter
4 were defined as:

Mrwdwb := Mxlit ◦M# ◦Mul∗ ◦Mε ◦Mrwcore ◦M
�#

Mrwdta := Mxlit ◦M# ◦Mcase,0 ◦Mε ◦Mrwcore ◦Mxc ◦Mcase,1 ◦M�#

The canonicalization cascades passed to the online k-best lookup algorithm
from chapter 2 to compute the functions bestLev(·) and bestrw(·) were defined
in terms of the adjusted tagh lexica described in appendix A.3 as:

CLev = MLev ◦ ALexLev

Crw = Mrw ◦ ALexrw

Appendix B

Selected Software

This appendix contains a brief introduction to the various software libraries,
modules, and utilities developed by me in the course of the work described
above.

B.1 unicruft: Transliteration
http://odo.dwds.de/~moocow/software/unicruft/

unicruft is a stand-alone C library which implements the transliteration func-
tion xlit(·) as described in section 4.2.2 and formally defined in appendix A.1,
using a global array for constant-time lookup of character transliteration tar-
get strings. Additional heuristics for handling multi-codepoint characters such
as combining diacritics were implemented by a simple GNU flex scanner.1
Supported encodings include the variable-width Unicode encoding UTF-8, the
Latin-1 subset of UTF-8, the 8-bit fixed-width Latin-1 encoding ISO-8859-1,
the contemporary German subset of Latin-1, and 7-bit fixed-width ASCII.
The unicruft distribution includes a simple command-line conversion utility
as well as external API bindings for the high level programming language
Perl.2

B.2 gfsm & gfsmxl: Finite-State Operations
http://www.ling.uni-potsdam.de/~moocow/projects/gfsm

gfsm is a stand-alone C library for representation and manipulation of
1http://www.gnu.org/software/flex/
2http://www.perl.org

105

http://odo.dwds.de/~moocow/software/unicruft/
http://www.ling.uni-potsdam.de/~moocow/projects/gfsm
http://www.gnu.org/software/flex/
http://www.perl.org

106 B. Selected Software

weighted finite-state transducers, using glib3 for low-level data structures,
and providing both command-line utilities for common high-level operations
as well as Perl language API bindings. The library was used in the work
described above for run-time operations on finite-state machines, including
phonetization and morphology lookup; as well as in the implementation of
the festival LTS rule compiler (see appendix B.3).

gfsmxl is a gfsm extension library for online k-best string lookup opera-
tions in weighted finite-state transducer cascades which implements Algorithm
2.4 from chapter 2. It was used in the current work to compute the elementary
rewrite canonicalization functions bestLev(·) and bestrw(·) in chapters 3 and
4.

B.3 Lingua::LTS: LTS Rule Compiler
http://odo.dwds.de/~moocow/software/Lingua-LTS/

Lingua::LTS is a Perl module providing an object-oriented compiler and
interpreter for deterministic letter-to-sound rules with festival-like syntax
and semantics which implements the FST construction for festival LTS
rule-sets from section 1.2.1 using the gfsm library (see appendix B.2). A
straightforward extension to the construction for precedence-ordered determin-
istic LTS rules as used by festival enables compilation of weighted parallel
rule-sets into non-deterministic weighted finite state transducers. This latter
feature was used to compile the heuristic rewrite transducer used in chapters
3 and 4 and formally defined in appendix A.5.

B.4 Taxi: Structured Text Indices
http://odo.dwds.de/~moocow/software/Taxi-Mysql/

Taxi (“Text and XML Index”) is a command-line and client/server suite
implemented in Perl for flexible indexing and intuitive query of structured
linguistic data extracted from arbitrary XML documents using the MySQL
relational database as a back-end. The Taxi system was developed in the
course of the work described in chapter 1 for storage and retrieval of the
DWB verse quotation evidence corpus. Type-wise manual annotation of
the evaluation portion of the DWB verse corpus used in chapter 3 was also
performed using a specialized Taxi plug-in module.

3http://directory.fsf.org/project/glib/

http://odo.dwds.de/~moocow/software/Lingua-LTS/
http://odo.dwds.de/~moocow/software/Taxi-Mysql/
http://directory.fsf.org/project/glib/

DTA::EvalCorpus 107

B.5 moot: HMM Tagging/Disambiguation
http://www.ling.uni-potsdam.de/~moocow/projects/moot

moot is a C++ library and program suite for Hidden Markov Model decoding
using the Viterbi algorithm. Originally designed for part-of-speech tagging in
the presence of a high-coverage morphological component using ambiguity
classes to improve performance for unknown words (Jurish, 2003), moot was
extended in the course of the work described above to allow dynamic re-
computation of the underlying model parameters at run-time, based on the
sentence to be decoded.4 The dynamic HMM disambiguator described in
chapter 4 made use of this latter feature to implement the Maxwell-Boltzmann
estimation of canonicalization hypotheses’ lexical probabilities.

B.6 dta-tokwrap: XML/TEI Serialization
http://odo.dwds.de/~moocow/software/dta-tokwrap/

dta-tokwrap is a suite of C utilities together with a high-level object-oriented
Perl module for linguistically salient serialization of arbitrary XML documents
encoded according to the Text Encoding Initiative (TEI) P5 Guidelines.5
As their name suggests, the dta-tokwrap utilities were developed and used
to serialize the XML/TEI documents of the Deutsches Textarchiv corpus –
including the evaluation portion used in chapter 4 – before invoking an external
stream-oriented tokenizer for estimation of sentence- and token-boundaries.

B.7 DTA::EvalCorpus: Alignment and Anno-
tation

Construction of the DTA evaluation subset used in chapter 4 involved the
automatic alignment of historical texts with contemporary editions. The
automatic alignment was performed using GNU diff6 on the respective
tokenized texts. The type-wise confirmation phase was implemented by
my colleague M. Drotschmann. The token-wise annotation of unconfirmed
alignments was performed using the specialized graphical user interface module
DTA::EvalCorpus::GUI.

4The dynamic HMM decoder is implemented by the program dmoot.
5http://www.tei-c.org/Guidelines/P5/
6http://www.gnu.org/software/diffutils/

http://www.ling.uni-potsdam.de/~moocow/projects/moot
http://odo.dwds.de/~moocow/software/dta-tokwrap/
http://www.tei-c.org/Guidelines/P5/
http://www.gnu.org/software/diffutils/

108 B. Selected Software

B.8 DTA::CAB: Canonicalization
http://odo.dwds.de/~moocow/software/DTA-CAB/

DTA::CAB (“Cascaded Analysis Broker”) is a top-level set of command-line
programs and client/server suite for robust and reliable canonicalization
of historical input text, written in Perl. This is the highest-level run-time
canonicalization package described here, using unicruft for transliteration,
gfsm for phonetizer and morphology lookup, gfsmxl for rewrite conflation,
dmoot for canonicalization hypothesis disambiguation, and a static moot
model for part-of-speech tagging. The canonicalizer-specific evaluation data
in chapters 3 and 4 was acquired using DTA::CAB, and a dedicated DTA::CAB
server7 is responsible for expanding user queries (i.e. inverse canonicalization)
based on a preceding canonicalization for the Deutsches Textarchiv.

7Publicly accessible demo version: http://www.deutschestextarchiv.de/cab/

http://odo.dwds.de/~moocow/software/DTA-CAB/
http://www.deutschestextarchiv.de/cab/

Appendix C

Corpora

C.1 DWB Verse Corpus

The corpus of historical German verse used in chapters 1 and 3 was comprised
of the quotation evidence in the digital edition of the Deutsches Wörterbuch
(DWB, Bartz et al., 2004), also known as “the Grimm”. Legacy SGML
sources for the 622 volumes of the DWB were provided by the University of
Trier. In the context of an exploratory project at the Berlin-Brandenburgische
Akademie der Wissenschaften (BBAW, “Berlin-Brandenburg Academy of
Sciences”),1 I converted these sources to well-formed XML using the UTF-82

character encoding and indexed them with the Taxi suite (appendix B.4).
The SGML sources contained a total of 1156 entities, of which only 50 were

assigned appropriate expansions by the provided DTDs, and a further 52 were
defined by the ISO 8879:1986 standard. The remaining SGML entities were
automatically parsed into (BaseLetter DiacriticMark+) strings and assigned
appropriate definitions using Unicode combining diacritic marks.3 After
manual addition of 47 letter and diacritic aliases, 361 of the remaining entities
were exhaustively decomposed in this manner, including all of the entities
occurring in the verse quotation evidence used for the corpus. The remaining
693 entities represented low-level typographical control functions and foreign-
language characters (mostly Greek and Hebrew); these were assigned partial
expansions based on their decompositions.

Verse quotation evidence was extracted from the UTF-8 XML sources by

1http://www.bbaw.de
2cf. RFC 3629 (http://tools.ietf.org/html/rfc3629), ISO/IEC 10646:2003 Annex

D (http://www.iso.org/iso/rss.xml?csnumber=39921&rss=detail), Unicode Consor-
tium (2011, Chapter 3).

3http://www.unicode.org/charts/PDF/U1DC0.pdf

109

http://www.bbaw.de
http://tools.ietf.org/html/rfc3629
http://www.iso.org/iso/rss.xml?csnumber=39921&rss=detail
http://www.unicode.org/charts/PDF/U1DC0.pdf

110 C. Corpora

the simple XPath4 expression //add//q//* and heuristically tokenized using
a dedicated Perl script. The full DWB verse quotation evidence corpus as in-
dexed by Taxi contained 6,581,501 tokens of 322,271 distinct graphemic types,
including punctuation and numerals. Of these, 5,492,076 tokens of 320,310 dis-
tinct types contained only alphabetic characters and diacritic marks and were
thus treated as “word-like”. The corpus was divided by XPath expressions into
917,362 lines of verse (//add//q) in 382,766 distinct quotations (//add) each
of which was associated with exactly one of 297,613 distinct dictionary entries
(//add/ancestor::entry[1]). Bibliographic meta-data was associated with
each quotation by means of further XPath expressions: each quotation was as-
signed to one of 77,901 distinct citation identifiers (//add/title/bibl/ref)
and one of 8,303 distinct author identifiers (//add/title/bibl/author), but
the inconsistent use of abbreviations and omissions in the original print-
oriented SGML sources suggest that these values should be treated with
caution.

Cited authors included Otfrid von Weissenburg (ca. 790–875), Hartmann
von Aue (ca. 1170–1210), Walther von der Vogelweide (ca. 1170–1230), Konrad
von Würzburg (ca. 1220–1287), Heinrich Wittenwiler (ca. 1370–1420), Oswald
von Wolkenstein (ca. 1377–1445), Sebastian Brant (1457–1521), Hans Sachs
(1494–1576), Johann Baptist Fischart (1546–1591), Andreas Gryphius (1616–
1664), Daniel Caspar von Lohenstein (1635–1683), Gotthold Ephraim Lessing
(1729–1781), Friedrich Schiller (1759–1805), and Johann Wolfgang von Goethe
(1749–1832), indicating a high degree of heterogeneity in the corpus data,
since the works of these authors are distributed among all of the Old, Middle,
Early-New, and New High German periods and various regional dialects.

C.1.1 DWB Evaluation Subcorpus
The evaluation in chapter 3 was performed on a manually annotated subset
of the DWB verse corpus, which is referred to here as the DWB evaluation
corpus. The evaluation subcorpus contained all the verse quotations from
a single volume (gr01.xml) of the DWB. Specifically, the evaluation corpus
was comprised of 13,327 tokens of 4,170 distinct string types of which 11,242
tokens of 4,157 distinct types were “word-like”, and was organized into 1915
lines of verse in 778 quotations distributed over 652 dictionary entries.

Each evaluation corpus type was manually assigned one or more extant
equivalents by a native German speaker based on inspection of its occurrences
in the full DWB verse corpus in addition to secondary sources, using a
specialized Taxi plug-in module. Extinct roots, proper names, foreign and

4http://www.w3.org/TR/xpath

http://www.w3.org/TR/xpath

C.2 DTA Corpus 111

other non-lexical material were not explicitly assigned any extant equivalent
at all, but rather flagged and treated as if identical with their respective
canonical cognates. In all other cases, equivalence was determined by direct
etymological relation of the root in addition to matching morphosyntactic
features. Problematic types were marked as such and subjected to expert
review, which was performed by the author together with a language historical
expert. 585 evaluation corpus tokens of 296 distinct types were ambiguously
associated with more than one canonical cognate. In a second annotation
pass, these remaining ambiguities were resolved on a per-token basis.

Availability

At the time of this writing (January, 2011), neither the full Taxi DWB
verse corpus nor the evaluation subcorpus is publicly available. A publicly
accessible print-oriented electronic version of the DWB can be found at
http://www.woerterbuchnetz.de/. The Taxi DWB verse corpus and/or
the evaluation subset used in the current work may be available for research
purposes by special agreement with the Berlin-Brandenburg Academy of
Sciences.

C.2 DTA Corpus

The Deutsches Textarchiv (DTA, “German Text Archive”)5 is a project at
the Berlin-Brandenburgische Akademie der Wissenschaften (BBAW, “Berlin-
Brandenburg Academy of Sciences”),6 funded by the Deutsche Forschungsge-
meinschaft (DFG, “German Research Foundation”). The goal of the DTA
is the high-quality digitization of a core set of German-language texts from
various disciplines originally published between ca. 1650 and 1900, and their
release as a freely available linguistically annotated electronic text corpus.
Currently (5th January, 2011), 532 texts are available online from the DTA
website, which implements an inverse-canonicalizing search function similar to
that described in the evaluations from chapters 3 and 4 using the DTA::CAB
web service (appendix B.8). The ongoing DTA project provided much of the
motivation for the development of the methods described in the current work,
since the serialization and canonicalization of “raw” historical texts must
precede any search of those texts using contemporary query terms according

5http://www.deutschestextarchiv.de
6http://www.bbaw.de

http://www.woerterbuchnetz.de/
http://www.deutschestextarchiv.de
http://www.bbaw.de

112 C. Corpora

to the proposed canonicalization architecture.7
The DTA texts subjected to the canonicalization methods described here

comprised 390 titles from 312 authors in 649 volumes published between
1778 and 1903. The electronic text of each volume was encoded according
to the Text Encoding Initiative (TEI) P5 Guidelines,8 serialized using the
dta-tokwrap package (appendix B.6), and tokenized using the ToMaSoTaTh
tokenizer developed by the Digitales Wörterbuch der deutschen Sprache des
20. Jahrhunderts (DWDS, “Digital Dictionary of 20th Century German”)9

project with a modified abbreviation lexicon and without multi-word expres-
sions. The full tokenized corpus contained 62,649,970 tokens of 1,583,347
distinct graphemic types, of which 51,288,749 tokens of 1,334,366 types con-
tained only alphabetic characters, diacritic marks, and/or hyphens and were
thus treated as “word-like”.

C.2.1 DTA Evaluation Subcorpus
The evaluation in chapter 4 was performed on a manually annotated subset
of the DTA corpus, which is referred to here as the DTA evaluation corpus.
The DTA evaluation corpus was extracted from the main body text from 13
volumes published between 1780 and 1880, namely:

1. Brentano, Clemens: Geschichte vom braven Kasperl und dem schönen
Annerl. Berlin: Vereinsbuchhandlung, 1838.

2. Busch, Wilhelm: Max und Moritz. München: Braun & Schneider, 1865.

3. Goethe, Johann Wolfgang von: Iphigenie auf Tauris. Leipzig: Göschen,
1787.

4. Goethe, Johann Wolfgang von: Wilhelm Meisters Lehrjahre. Bd. 1.
Berlin: Unger, 1795.

5. Goethe, Johann Wolfgang von: Wilhelm Meisters Lehrjahre. Bd. 2.
Berlin: Unger, 1795.

6. Goethe, Johann Wolfgang von: Wilhelm Meisters Lehrjahre. Bd. 3.
Berlin: Unger, 1795.

7Pilz et al. (2006, Sec. 4.3) argue in contrast that “documents cannot be indexed before
the search”, which seems to stem chiefly from a desire to maintain the independence of
their (inverse-) canonicalization rule-set from the indexed corpus, e.g. in order to allow
users to alter the rule-set on a per-search basis.

8http://www.tei-c.org/Guidelines/P5/
9http://www.dwds.de

http://www.tei-c.org/Guidelines/P5/
http://www.dwds.de

C.2 DTA Corpus 113

7. Goethe, Johann Wolfgang von: Wilhelm Meisters Lehrjahre. Bd. 4.
Berlin: Unger, 1796.

8. Goethe, Johann Wolfgang von: Torquato Tasso. Leipzig: Göschen,
1790.

9. Kant, Immanuel: Beantwortung der Frage Was ist Aufklärung? In:
Berlinische Monatsschrift, 1784, H. 12, S. 481-494.

10. Lessing, Gotthold Ephraim: Die Erziehung des Menschengeschlechts.
Berlin: Voss, 1780.

11. Schiller, Friedrich: Kabale und Liebe. Mannheim: Schwan, 1784.

12. Spyri, Johanna: Heidi’s Lehr- und Wanderjahre. Gotha: Perthes, 1880.

13. Storm, Theodor: Immensee. Berlin: Duncker, 1852.
The corpus contained a total of 191,265 tokens of 19,221 distinct types,

of which 152,776 tokens of 17,417 types were “word-like”, divided into 9,079
sentences. To assign an extant canonical equivalent to each token of the test
corpus, the text of each volume was automatically aligned token-wise with
a contemporary edition of the same volume (appendix B.7). Automatically
discovered non-identity alignment pair types were presented to a native
speaker of German for confirmation.

In a second annotation pass, all tokens lacking an identical or manually
confirmed alignment target were inspected in context and manually assigned
a canonical form. Whenever they were presented to a human annotator,
proper names and extinct lexemes were treated as their own canonical forms.
Alignments spanning token boundaries such as (bey_Seite ∼ beiseite) or
(destomehr ∼ desto_mehr) were explicitly marked, and the historical tokens
were additionally associated with compositional or concatenated equivalents
which were used for evaluation purposes. In all other cases, equivalence
was determined by direct etymological relation of the root in addition to
matching morphosyntactic features. Problematic tokens were marked as such
and subjected to expert review. Marginalia, front and back matter, speaker
and stage directions, and tokenization errors were excluded from the final
evaluation corpus.

Construction of the DTA evaluation corpus is an ongoing project. At
the time of this writing (January, 2011), an additional 117 text volumes
containing a total of 5,467,703 tokens have been automatically aligned with
contemporary editions, of which 65 volumes containing a total of 2,092,632
tokens have passed through the token-level annotation phase and are awaiting
expert review.

114 C. Corpora

Availability
At the time of this writing (January, 2011), the TEI-P5 XML sources of all
of the 532 online DTA texts are available for non-commercial use under the
terms of the Creative Commons “by-nc” license10 from the DTA web site,
http://www.deutschestextarchiv.de. The contemporary editions used
in the ongoing construction of the DTA evaluation subcorpus were made
available to the DTA project by special agreement with an external provider,
the terms of which preclude public distribution of this corpus at the current
time. Efforts to ensure the availability of the DTA evaluation subcorpus for
research and education purposes are being made; contact the DTA project
(info@deutschestextarchiv.de) for details.

10http://creativecommons.org/licenses/by-nc/3.0/

http://www.deutschestextarchiv.de
mailto:info@deutschestextarchiv.de
http://creativecommons.org/licenses/by-nc/3.0/

Glossary

allograph One of multiple alternative written realizations of some common
linguistic (often phonetic) feature or features; e.g. t and th are allographs
in historical German associated with the common phonetic properties
“voiceless alveolar plosive”. See also: grapheme.

ambiguity In general, any linguistic construct admitting more than one
interpretation; used in chapter 4 to denote a word type conflation set
with more than one extant element, i.e. a multiplicity of candidate
canonical forms. See also: disambiguation.

canonicalization “A process for converting data . . . into a ‘standard’, ‘nor-
mal’, or canonical form.”1 In the context of the current work, the data
to be converted are historical spelling variants, the desired canonical
forms for which are lexically equivalent extant cognates, insofar as these
exist. I informally refer to any method for associating historical forms
with potential extant cognates as a canonicalization method, us-
ing the term canonicalization function for a mathematical function
(i.e. a left-total and right-unique binary relation) associating each input
string with exactly one canonical object. The range of a canonical-
ization function need not be restricted to extant forms; in particular
a phonetization function mapping arbitrary input strings to unique
phonetic forms can be considered a canonicalization function in this
sense. See also conflation.

cascade See weighted finite-state cascade.

cognate “A word either descended from the same base word of the same
ancestor language as the given word, or strongly believed to be a regular
reflex of the same reconstructed root of proto-language as the given
word.”2 In particular, I use the term canonical cognate to denote

1Source: http://en.wikipedia.org/wiki/Canonicalization
2Source: http://en.wiktionary.org/wiki/cognate

115

http://en.wikipedia.org/wiki/Canonicalization
http://en.wiktionary.org/wiki/cognate

116 Glossary

an extant lexical equivalent of a given historical word, e.g. Tür is
(usually) the canonical cognate of the historical form Thür. See also:
canonicalization, sections 3.1, 4.1.

conflation Literally, a ‘blowing’ or ‘fusing together’ of distinct items into
a single (composite) entity. In the context of the current work, the
items to be combined are character strings representing both historical
and modern spelling variants (word surface types), to be merged into a
conflation set which ideally should be co-extensional with a unique
characteristic “deep” word type. I refer to any method for inducing a
conflation set from arbitrary (historical) input strings as a conflator,
formally characterizing these in terms of a binary conflation relation
on strings (cf. sections 1.1, 3.2, and 4.2). In particular, any canoni-
calization function operating on word types defines a conflator as the
composition of that function with its inverse, inducing a conflation rela-
tion which is also a true equivalence relation (i.e. reflexive, symmetric,
and transitive). See also: canonicalization.

coverage See lexical coverage.

Damerau-Levenshtein distance An edit distance function defined as the
minimum number of character insertions, deletions, substitutions, and/or
transpositions required to transform one argument string into the other.
See also: edit distance, Levenshtein distance.

diachronic Of or relating to a span of time; usually used in linguistics to
refer to changes undergone by a given language over the course of time.
Contrast: synchronic.

disambiguation Elimination of all but one of a set of multiple admissible
interpretations; used in chapter 4 to denote the selection of a unique
canonical form for each token of a historical input sentence from a (po-
tentially ambiguous) set of conflation hypotheses. See also: ambiguity.

distance function A mathematical function d(·, ·) from pairs of objects to
non-negative real numbers representing the degree of the arguments’ dis-
similarity. If for all x, y, z it also holds that d(x, y) = d(y, x) [symmetry],
d(x, z) ≤ d(x, y) + d(y, z) [triangle inequality], and d(x, y) = 0⇒ x = y
[identity of indiscernibles], then d is a true metric.

edit distance A distance function over strings, usually refers to the Leven-
shtein distance. The generalized edit distance is an edit distance

Glossary 117

function additionally parameterized by an editor or error model specify-
ing the admissible edit operations together with their costs. See also:
Damerau-Levenshtein distance, Levenshtein distance, editor.

edit transducer An editor implemented as a weighted finite-state trans-
ducer. See also: editor, rewrite transducer, finite-state machine, and
section 2.1.1.

editor An inventory of elementary edit operations (string transformations),
each of which is associated with a characteristic edit cost. See also:
edit distance, error model.

error model An editor whose edit operations represent errors introduced
by transmission over a noisy channel, the costs of which represent the
respective errors’ independent inverse likelihood. Can be treated for
most purposes as synonymous with ‘editor’, the only difference between
the two notions being the noisy-channel assumptions connoted by ‘error
model’. See also: edit distance, editor.

error reduction rate In empirical evaluations, the (relative) error reduc-
tion rate for an evaluated method A with respect to a method B is the
proportion of the absolute difference in negative results (‘errors’) for
B versus A to the total negative results for B, (B − A)/B, informally
understandable as the proportion of errors made by B which are not
incurred by A. Error reduction rates are particularly useful for com-
paring different methods when ‘errors’ are restricted to a fixed interval,
as precision and recall errors are restricted to the interval [0, 1], since
absolute differences necessarily grow smaller as the number of errors
approaches zero. See section 4.4.2 for an explicit definition of relative
precision and recall error reduction rates as used in the current work.

extant “Still existing; not destroyed or lost” (Source: Porter, 1913). Used
here to describe synchronically active lexemes; i.e. elements of the
contemporary lexicon, at least one instance of which belongs to the
extension of a contemporary speaker’s competence. By contrast, extinct
lexemes are not retrievable via the contemporary lexicon, and their
instances thus have no canonical cognate. See also: canonicalization,
cognate, lexeme, lexicon, synchronic..

finite-state machine (FSM) An abstract machine representing a set of
strings (a finite-state acceptor (FSA)) or string pairs (a finite-state
transducer (FST)), optionally associating each element with a unique

118 Glossary

weight or cost drawn from a given semiring (a weighted finite-state
acceptor (WFSA) or weighted finite-state transducer (WFST),
respectively). In the current work, I treat all of the above sorts of finite-
state machine as weighted transducers, which are formally defined in
section 2.2.

gold standard A manually annotated data-set, assumed for purposes of
training or empirical evaluation to represent the truth, the whole truth,
and nothing but the truth. As with all empirical generalizations, the
second of these assumptions (‘the whole truth’) is only valid to the
extent that the data constitute a representative sample of the population
under consideration.

grapheme An elementary unit of written language, e.g. a letter, character,
or glyph. In adjectival form, I use graphemic to describe historical
or contemporary synchronic character- or character-string related phe-
nomena, and graphematic to describe phenomena arising from or
pertaining to the relation between graphemic forms and the diachronic
lexicon. See also: allograph, phone.

hidden Markov model (HMM) A stochastic language model which ap-
proximates sentence probability as a chain of locally state-dependent
transitions between ‘hidden’ model states interleaved with state-depen-
dent lexical insertions. Can be implemented as a weighted finite-state
machine. See also: section 4.3.1 and the references cited there.

language model In general, any formal model of a string language, i.e. a
well-defined finite specification of a (possibly infinite) set of strings. In
practice, usually denotes a stochastic language model, a mathemat-
ical model defining a probability distribution over strings. Sometimes
used in error-correction applications to add some degree of context
dependence to a character- or word-local error model. See also: error
model, section 4.3.

lemma A conventional “unmarked” representation of a lexeme. In the
context of a dictionary corpus such as used in chapter 1, ‘lemma’ also
denotes the keyword associated with a given dictionary entry. Assuming
the dictionary’s structure accurately reflects that of the mental lexicon,
no ambiguity need result. See also: lexeme.

letter-to-sound (LTS) conversion See phonetic digest.

Glossary 119

Levenshtein distance An edit distance function defined as the minimum
number of character insertions, deletions, and/or substitutions required
to transform one argument string into the other. See also: Damerau-
Levenshtein distance, edit distance, section 3.2.2.

lexeme The elementary unit of lexical organization, In generative linguistics,
a single lexeme is characterized by a unique combination of semantic,
syntactic, and morphological properties, and may have multiple surface
word-type realizations; e.g. love, loves, loved, and loving are all potential
realizations of a single lexeme whose lemma is love. In computer
science, ‘lexeme’ is often used synonymously with ‘word type’, most
likely due to the fact that the vast majority of programs requiring any
explicit lexicon at all do in fact use surface types as the basic (and
often only) units of lexical organization. In the current work, ‘lexeme’
denotes whatever elementary unit of organization is appropriate to
a given lexicon; if unspecified, the linguistic usage (i.e. the ‘mental’
lexicon) is assumed. See also: lemma, lexicon.

lexical coverage In general, the ratio of the number of words (types or
tokens) in a given corpus which are accounted for by a given lexical
analysis function to the total size of the corpus. As used in chapter
1 as an evaluator for canonicalization functions, denotes the fraction
of corpus words which can be conflated with at least one extant form
using a given canonicalization function.

lexicon In the generative linguistic tradition, the ‘mental lexicon’ is the
vocabulary of lexemes associated with a given language or speaker’s
competence. In the theory of formal languages, a lexicon is usually
characterized as a finite set of discrete symbols, and the (weak) extension
of a language is defined as a set of strings over these lexical symbols.
An ambiguity arises when attempting to construct a formal model of
the mental lexicon: the simplest formal models require that lexical
symbols be valid surface word-forms, while linguistic tradition posits
more abstract units of lexical organization (lexemes). In the current
work, I use ‘lexicon’ primarily in just this problematic sense of a formal
model of the mental lexicon, where the units of lexical organization
and access depend on the application or model in question. See also:
lexeme.

path A sequence of adjacent transitions in a finite-state machine or hidden
Markov model. See also: finite-state machine, hidden Markov model,
and section 2.2.

120 Glossary

phone An elementary unit of spoken language. Each uttered phone is an
instance of some phoneme, the latter being an abstract ‘mental’ unit
of speech sound possibly instantiated by multiple phones. In adjectival
form, I speak of a phonetic representation (e.g. of a word) whenever
the representation has an immediate interpretation as a string of phones.
See also: grapheme.

phonetic digest Any hash value or digest code acting as a canonical form
for an input word string whose computation relies on assumed phonetic
properties of the input characters. I distinguish phonetic digest algo-
rithms such as soundex or phonix commonly used for information
retrieval which return an abstract code with no immediate interpretation
as phonetic or phonemic strings from true phonetization or letter-to-
sound (LTS) algorithms commonly used in text-to-speech synthesis
systems which directly return a phonetic string. In the case of variable-
length digest codes such as those computed by the Kölner Phonetik
or Metaphone which can be trivially converted to an (underspecified)
phonetic representation and the simplified phonetization function from
sections 1.2, 3.2.1, and 4.2.3, this distinction is connotative only.

pointwise mutual information (PMI) In information theory, the differ-
ence between the sum of the code-lengths for a pair of stochastic events
considered independently and the length of their joint code under an
optimal encoding scheme. Informally, PMI can be understood as quanti-
fying the degree of association between two stochastic events. I use PMI
in section 1.3 to detect and filter out “false friends” during estimation
of the dictionary lemma instantiation relation.

precision In information retrieval, “the proportion of retrieved material that
is actually relevant” [to a given search request] (Source: van Rijsbergen,
1979), i.e. the empirical probability of relevance given retrieval. As
used for the evaluations in chapters 3 and 4, ‘relevance’ is given by
a manually annotated canonical-cognate relation, a ‘search request’
is a contemporary word form, ‘retrieval’ is performed by an inverse
canonicalization function, and the items to be retrieved are either word
types or tokens. See also: recall, precision-recall harmonic average,
sections 3.3.2 and 4.4.2.

precision-recall harmonic average (F) In information retrieval, a com-
posite measure of a retrieval function’s effectiveness defined in terms
of its precision and recall, usually attributed to van Rijsbergen (1979,

Glossary 121

chapter 7, where it appears as E). See also: precision, recall, sections
3.3.2 and 4.4.2.

pseudo-metric In mathematics, a distance function for which the identity of
indiscernibles need not hold. Used here to denote any arbitrary distance
function. See also: distance function.

recall In information retrieval, “the proportion of relevant material actually
retrieved in answer to a search request” (Source: van Rijsbergen, 1979),
i.e. the empirical probability of retrieval given relevance. As used for
the evaluations in chapters 3 and 4, ‘relevance’ is given by a manually
annotated canonical-cognate relation, a ‘search request’ is a contempo-
rary word form, ‘retrieval’ is performed by an inverse canonicalization
function, and the items to be retrieved are either word types or tokens.
See also: precision, precision-recall harmonic average, sections 3.3.2 and
4.4.2.

rewrite transducer An edit transducer used in the current work to heuris-
tically model diachronic spelling variation. See: edit transducer, sections
3.2.3, 4.2.4, and appendix A.5.

semiring An algebraic structure with two binary operations ⊗ and ⊕ used in
the context of the current work to interpret weights of a weighted finite-
state machine along a single path and over multiple paths, respectively.
See definition 2.1 in section 2.2 and the references cited there.

string edit distance See edit distance.

synchronic Of or relating to a particular point in time; usually used in
linguistics to refer to properties of a given language at the current
moment, e.g. the synchronic lexicon is the lexicon of currently active
lexemes. Contrast: diachronic.

token A single actually occurring instance of a type. Here, I am only con-
cerned with those token-specific properties relevant to the successful
canonicalization of historical word types. In section 4.3, I use sentential
context for this purpose, effectively defining a canonicalization function
on sentence types. I nonetheless refer to sentence-type canonicaliza-
tion as a ‘token’-level function, to distinguish it from other methods
operating directly on surface word types. See also: type.

122 Glossary

transliteration “To express or represent in the characters of another alpha-
bet” (Source: Porter, 1913). Used in chapter 4 to denote any canonical-
ization function defined as the reflexive and transitive closure of a map
from (possibly extinct) single characters to strings of extant characters.
See also: canonicalization, conflation, and section 4.2.2.

type A class of phenomena considered as a single abstract whole, as opposed
to a collection of individual instances or tokens. In the current work,
the types with which I am primarily concerned are word forms as given
by a surface character string. See also: token.

weighted finite-state cascade (WFSC) A weighted relation arising from
the iterated composition of two or more finite-state machines, in theory
itself representable as a weighted finite-state transducer. See also:
finite-state machine, section 2.2.

weighted finite-state transducer (WFST) See finite-state machine.

Acronyms and Abbreviations

DL Damerau-Levenshtein (distance).

DTA Deutsches Textarchiv; see appendix C.2.

DWB Deutsches Wörterbuch; see appendix C.1.

FSA finite-state acceptor; see finite-state machine.

FSM finite-state machine.

FST finite-state transducer; see finite-state machine.

HMM hidden Markov model.

LTS letter-to-sound.

PMI pointwise mutual information.

WFSA weighted finite-state acceptor; see finite-state machine.

WFSC weighted finite-state cascade.

WFSM weighted finite-state machine; see finite-state machine.

WFST weighted finite-state transducer; see finite-state machine.

123

124 Acronyms

Symbols and Notation

JMK Weight assigned by a WFST M to an argument string or pair, see
definition 2.4 from section 2.2.

[w] Standard notation for an equivalence class induced by w. Subscripted
with a conflation relation r, [w]r represents the conflation-set of the
word w provided by the conflator r. Square brackets are also used in
chapter 2 to indicate array-indexing operations. See f [i], sections 1.1,
3.2, and 4.2.

∼ Operator infix notation for a conflation relation; subscripted where appro-
priate to indicate the associated conflation method. See also w̃ and Q̃
for other uses of the tilde symbol.

π Variable for a phonetic string (chapter 1, appendix A.2), a rewrite target
string (appendix A.5), or for a (W)FST path (chapter 2).

A A finite alphabet; subscripted where appropriate.

F Precision-recall harmonic average; subscripted to indicate the evaluated
canonicalization method and evaluation unit (types or tokens).

f [i] C-like array indexing notation used in chapter 2 for the image of the
object i under the (usually finite) function f . Not to be confused with
a conflation set [w].

hmm Subscript for the HMM conflation disambiguator from chapter 4.

Id(·) Identity function, used to explicitly convert a string or acceptor to a
(W)FST.

id Subscript indicating the identity conflation relation, a trivial canonicaliza-
tion function used as a baseline for evaluations.

125

126 Symbols and Notation

K Cariable for a semiring (structure).

K Carrier for a semiring; a set of admissible weights.

Lev Subscript indicating the Levenshtein distance or its implementation as
an edit transducer.

Lex Target language lexicon, a set of surface word types (character strings).

M Variable for a WFST, subscripted where appropriate.

N Set of all natural numbers.

P A finite phonetic alphabet.

pho Phonetization function or subscript indicating the associated conflation
relation.

pr Precision; subscripted to indicate the evaluated canonicalization method
and evaluation unit (types or tokens).

Q̃ Used in chapter 2 to denote a characteristic set of pseudo-transitions for a
set Q of states used in the constructive definition of weighted finite-state
transducer composition. Not to be confused with a conflation relation
∼ or a canonical cognate w̃.

R Set of all real numbers.

R∞ Set of all real numbers or ∞.

R+ Set of all non-negative real numbers.

rc Recall; subscripted to indicate the evaluated canonicalization method and
evaluation unit (types or tokens).

rw Subscript for the heuristic rewrite transducer or its associated conflation
relation.

S Variable for a set of LTS rules (chapter 1) or for a historical input sentence
(chapter 4).

W A finite word alphabet, the set of surface types actually occurring in a
given corpus.

Symbols and Notation 127

w Variable for a word, a string of characters.

w̃ The canonical cognate of the word w.

~w Vector notation for a word used in chapter 2 for positional subscripting
convenience.

xlit Transliteration function or subscript indicating the associated conflation
relation.

Bibliography

A. V. Aho and M. J. Corasick. Efficient string matching: an aid to biblio-
graphic search. Commun. ACM, 18(6):333–340, 1975. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/360825.360855.

A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation and
Compiling, Volume I: Parsing. Prentice-Hall, Englewood Cliffs, N.J., 1972.

C. Allauzen and M. Mohri. Linear-space computation of the edit-distance
between a string and a finite automaton. In London Algorithmics 2008:
Theory and Practice. College Publications, 2009.

C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. OpenFst: A
general and efficient weighted finite-state transducer library. In J. Holub
and J. Zdárek, editors, Implementation and Application of Automata, 12th
International Conference, CIAA 2007, Prague, Czech Republic, July 16-18,
2007, Revised Selected Papers, pages 11–23, Berlin, 2007. Springer. doi:
0.1007/978-3-540-76336-9_3.

J. Allen, M. S. Hunnicutt, and D. Klatt. From Text to Speech: the MITalk
system. Cambridge University Press, 1987.

L. R. Bahl, F. Jelinek, and R. L. Mercer. A Maximum Likelihood approach
to continuous speech recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 5(2):179–190, 1983.

A. Baron and P. Rayson. VARD2: A tool for dealing with spelling variation
in historical corpora. In Proceedings of the Postgraduate Conference in
Corpus Linguistics, Aston University, Birmingham, UK, 22nd May 2008.

M. Baroni, J. Matiasek, and H. Trost. Unsupervised discovery of morpho-
logically related words based on orthographic and semantic similarity. In
Proceedings of the Workshop on Morphological and Phonological Learning of
ACL-2002, pages 48–57, 2002.

129

130 BIBLIOGRAPHY

H.-W. Bartz, T. Burch, R. Christmann, K. Gärtner, V. Hildenbrandt,
T. Schares, and K. Wegge, editors. Der Digitale Grimm. Deutsches Wörter-
buch von Jacob und Wilhelm Grimm. Zweitausendeins, Frankfurt am Main,
2004. URL http://www.dwb.uni-trier.de.

T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice Hall,
1990.

G. F. Benecke, W. Müller, and F. Zarncke. Mittelhochdeutsches Wörterbuch.
Leipzig 1854-1866, 3. Nachdruckauflage: Olms, Hildesheim, 1986.

A. W. Black and P. Taylor. Festival speech synthesis system. Technical Re-
port HCRC/TR-83, University of Edinburgh, Centre for Speech Technology
Research, 1997. URL http://www.cstr.ed.ac.uk/projects/festival.

J. Bortz. Statistik für Sozialwissenschaftler. Springer, Berlin, 4th edition,
1993.

S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith. The TIGER
treebank. In Proceedings of the Workshop on Treebanks and Linguistic
Theories, Sozopol, 2002.

T. Brants. TnT – a statistical part-of-speech tagger. In Proceedings of
ANLP-2000, 2000.

E. Brill. A simple rule-based part-of-speech tagger. In Proceedings of ANLP-
92, 3rd Conference on Applied Natural Language Processing, pages 152–155,
1992.

E. Brill and R. C. Moore. An improved error model for noisy channel spelling
correction. In Proceedings of the 38th Annual Meeting of the Association for
Computational Linguistics, 2000.

J. Byun, S.-W. Lee, Y.-I. Song, and H.-C. Rim. Two phase model for sms
text messages refinement. In Proceedings 2008 AAAI Workshop on Enhanced
Messaging, Menlo Park, California, 2008. AAAI Press.

M. Cafarella and D. Cutting. Building Nutch: Open source search. Queue,
2(2):54–61, 2004. ISSN 1542-7730. doi: http://doi.acm.org/10.1145/988392.
988408.

E. Charniak, C. Hendrickson, N. Jacobson, and M. Perkowitz. Equations for
part-of-speech tagging. In Proceedings of the Eleventh National Conference
on Artificial Intelligence, pages 784–789, 1993.

http://www.dwb.uni-trier.de
http://www.cstr.ed.ac.uk/projects/festival

BIBLIOGRAPHY 131

K. W. Church and W. A. Gale. Probability scoring for spelling correction.
Statistics and Computing, 1:93–103, 1991.

K. W. Church and P. Hanks. Word association norms, mutual information,
and lexicography. Computational Linguistics, 16(1):22–29, 1990.

S. Clematide. An OLIF-based open inflection resource and yet another
morphological system for German. In Storrer et al. (2008), pages 183–194.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press and McGraw-Hill, Cambridge, MA, 2nd edition,
2001.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John
Wiley & Sons, New York, 1991.

M. A. Covington. An algorithm to align words for historical comparison.
Computational Linguistics, 22:481–496, 1996.

D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun. A practical part-of-speech
tagger. In Proceedings of ANLP-1992, 1992.

F. J. Damerau. A technique for computer detection and correction of spelling
errors. Commun. ACM, 7:171–176, March 1964. doi: 10.1145/363958.363994.

A. P. Dempster, N. M. Laird., and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society Series B, 39:1–38, 1977.

S. DeRose. Grammatical category disambiguation by statistical optimization.
Computational Linguistics, 14(1):31–39, 1988.

E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

S. Dipper and B. Schrader. Comparing distance and relatedness of medieval
text variants from German. In Storrer et al. (2008), pages 39–51.

T. Dutoit. An Introduction to Text-to-Speech Synthesis. Kluwer, Dordrecht,
1997.

A. Ernst-Gerlach and N. Fuhr. Generating search term variants for text
collections with historic spellings. In M. Lalmas, A. MacFarlane, S. Rüger,
A. Tombros, T. Tsikrika, and A. Yavlinsky, editors, Advances in Information
Retrieval, volume 3936 of Lecture Notes in Computer Science, pages 49–60.
Springer, Berlin, 2006. doi: 10.1007/11735106_6.

132 BIBLIOGRAPHY

A. Ernst-Gerlach and N. Fuhr. Retrieval in text collections with historic
spelling using linguistic and spelling variants. In Proceedings of the 7th
ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’07), pages
333–341, New York, 2007. ACM. doi: 10.1145/1255175.1255242.

A. Ernst-Gerlach and N. Fuhr. Semiautomatische Konstruktion von Train-
ingsdaten für historische Dokumente. In Proceedings of the Workshop “In-
formation Retrieval 2010” at LWA 2010, 2010.

Z. Ésik and W. Kuich. Equational Axioms for a Theory of Automata. In C. M.
Vide, V. Mitrana, and G. Păun, editors, Formal Languages and Applications,
volume 148 of Studies in Fuzziness and Soft Computing, chapter 10, pages
183–196. Springer, Berlin, 2004.

R. Fano. Transmission of information: A statistical theory of communica-
tions. MIT Press, New York, 1961.

M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

T. N. Gadd. ‘Fisching fore werds’: phonetic retrieval of written text in
information systems. Program, 22(3):222–237, 1988. doi: 10.1108/eb046999.

T. N. Gadd. PHONIX: The algorithm. Program, 24(4):363–366, 1990. doi:
10.1108/eb047069.

A. Geyken and T. Hanneforth. TAGH: A complete morphology for German
based on weighted finite state automata. In Finite State Methods and Natural
Language Processing, 5th International Workshop, FSMNLP 2005, Revised
Papers, volume 4002 of Lecture Notes in Computer Science, pages 55–66,
Berlin, 2006. Springer. doi: 10.1007/11780885_7.

D. Gildea and D. Jurafsky. Learning bias and phonological-rule induction.
Computational Linguistics, 22(4):497–530, 1996.

A. Gotscharek, A. Neumann, U. Reffle, C. Ringlstetter, and K. U. Schulz.
Constructing a lexicon from a historical corpus. In Proceedings of the
Conference of the American Association for Corpus Linguistics (AACL09),
Edmonton, 2009a.

A. Gotscharek, A. Neumann, U. Reffle, C. Ringlstetter, and K. U. Schulz.
Enabling information retrieval on historical document collections: the role
of matching procedures and special lexica. In Proceedings of The Third
Workshop on Analytics for Noisy Unstructured Text Data, AND ’09, pages
69–76, New York, 2009b. ACM. doi: 1568296.1568309.

BIBLIOGRAPHY 133

A. Gotscharek, U. Reffle, C. Ringlstetter, and K. U. Schulz. On lexical
resources for digitization of historical documents. In Proceedings of the 9th
ACM symposium on Document Engineering, DocEng ’09, pages 193–200,
New York, 2009c. ACM. doi: 1600193.1600236.

T. Hanneforth and K.-M. Würzner. Statistical language models within the
algebra of weighted rational languages. Acta Cybernetica, 19(2):313–356,
2009.

A. Hauser, M. Heller, E. Leiss, K. U. Schulz, and C. Wanzeck. Information
access to historical documents from the early new high german period. In
Proceedings of IJCAI-07 Workshop on Analytics for Noisy Unstructured Text
Data (AND-07), pages 147–154, 2007.

M. Heller. Fachspezifische Indexierung von historischen Dokumenten. ein
Framework zur approximativen Indexierung semistrukturierter Dokumente.
In Tagungsband “Forschung in der digitalen Welt”, Hamburg, 10-11 April
2006.

M. Heller. Approximative Indexierungstechnik für historische deutsche
Textvarianten. Abhandlungen der Arbeitsgemeinschaft Geschichte und EDV
(in print), 2010.

M. Heller and G. Vogeler. Modern information retrieval technology for
historical documents. In Conference Proceedings of the Association of History
and Computing, pages 143–148, Amsterdam, 14-17 September 2005.

B. Hennig. Kleines Mittelhochdeutsches Wörterbuch, 4. Auflage. Max
Niemeyer Verlag, Tübingen, 2001.

M. Hulden. Fast approximate string matching with finite automata. Proce-
samiento del Lenguaje Natural, 43:57–64, September 2009.

E. T. Jaynes. Brandeis lectures. In E. T. Jaynes: Papers on Probability,
Statistics and Statistical Physics, pages 40–76. D. Reidel, Dordrecht, 1983.

F. Jelinek and R. L. Mercer. Interpolated estimation of Markov source
parameters from sparse data. In E. S. Gelsema and L. N. Kanal, editors,
Pattern Recognition in Practice, pages 381–397. North-Holland Publishing
Company, Amsterdam, 1980.

F. Jelinek and R. L. Mercer. Probability distribution estimation from sparse
data. IBM Technical Disclosure Bulletin, 28:2591–2594, 1985.

134 BIBLIOGRAPHY

D. Jurafsky and J. H. Martin. Speech and Language Processing: An Intro-
duction to Natural Language Processing, Computational Linguistics, and
Speech Recognition. Prentice Hall, 2nd edition, 2009.

B. Jurish. A hybrid approach to part-of-speech tagging. Technical report,
Project “Kollokationen im Wörterbuch”, Berlin-Brandenburg Academy of
Sciences, Berlin, 2003. URL http://www.ling.uni-potsdam.de/~moocow/
pubs/dwdst-report.pdf.

B. Jurish. Finding canonical forms for historical German text. In Storrer
et al. (2008), pages 27–37. (Article 1).

B. Jurish. Efficient online k-best lookup in weighted finite-state cascades. In
T. Hanneforth and G. Fanselow, editors, Language and Logos: Studies in
Theoretical and Computational Linguistics, volume 72 of Studia grammatica,
pages 313–327. Akademie Verlag, Berlin, 2010a. (Article 2).

B. Jurish. Comparing canonicalizations of historical German text. In
Proceedings of the 11th Meeting of the ACL Special Interest Group on
Computational Morphology and Phonology (SIGMORPHON), pages 72–77,
2010b. (Article 3).

B. Jurish. More than words: Using token context to improve canonicalization
of historical German. Journal for Language Technology and Computational
Linguistics, 25(1):23–40, 2010c. (Article 4).

R. M. Kaplan and M. Kay. Regular models of phonological rule systems.
Computational Linguistics, 20(3):331–378, 1994.

L. Karttunen, R. M. Kay, and K. Koskenniemi. A compiler for two-level
phonological rules. In M. Dalrymple, R. Kaplan, L. Karttunen, K. Kosken-
niemi, S. Shaio, and M. Wescoat, editors, Tools for Morphological Analysis,
volume 87-108 of CSLI Reports, pages 1–61. CSLI, Stanford University, Palo
Alto, CA, 1987.

R. E. Keller. The German Language. Faber & Faber, London, 1978.

S. Kempken. Bewertung von historischen und regionalen Schreibvarianten
mit Hilfe von Abstandsmaßen. Diploma thesis, Universität Duisburg-Essen,
2005.

S. Kempken, W. Luther, and T. Pilz. Comparison of distance measures for
historical spelling variants. In M. Bramer, editor, Artificial Intelligence in
Theory and Practice, pages 295–304. Springer, Boston, 2006. doi: 10.1007/
978-0-387-34747-9_31.

http://www.ling.uni-potsdam.de/~moocow/pubs/dwdst-report.pdf
http://www.ling.uni-potsdam.de/~moocow/pubs/dwdst-report.pdf

BIBLIOGRAPHY 135

M. D. Kernighan, K. W. Church, and W. A. Gale. A spelling correction
program based on a noisy channel model. In Proceedings COLING-1990,
volume 2, pages 205–210, 1990.

F. Kluge and E. Seebold. Etymologisches Worterbuch der deutschen Sprache.
de Gruyter, Berlin, 1989.

D. Knuth. The Art of Computer Programming, Volume 3: Sorting And
Searching. Second Edition. Addison-Wesley, Reading, MA, 1998.

G. Kondrak. A new algorithm for the alignment of phonetic sequences. In
Proceedings NAACL, pages 288–295, 2000.

G. Kondrak. Identifying cognates by phonetic and semantic similarity. In
Proceedings NAACL, pages 103–110, Pittsburgh, June 2001.

G. Kondrak. Algorithms for Language Reconstruction. PhD thesis, University
of Toronto, July 2002.

G. Kondrak. Phonetic alignment and similarity. Computers and the Human-
ities, 37(3):273–291, August 2003.

B. Krenn and C. Samuelsson. The Linguist’s Guide to Statistics. Unpublished
manuscript, 1997. URL http://www.ofai.at/~brigitte.krenn/papers/
stat_nlp.ps.gz.

W. Kuich and A. Salomaa. Semirings, Automata, Languages, volume 5 of
EATCS Monographs on Theoretical Computer Science. Springer, Berlin,
1986.

K. Kukich. Techniques for automatically correcting words in texts. ACM
Computing Surveys, 24(4):377–439, 1992.

É. Laporte. Rational transductions for phonetic conversion and phonology.
In Roche and Schabes (1997).

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady, 10(1966):707–710, 1966.

M. Lexer. Mittelhochdeutsches Handwörterbuch. Leipzig 1872-1878, Nach-
druck: S. Hirzel Verlag, Stuttgart, 1992.

M. J. Liberman and K. W. Church. Text analysis and word pronunciation
in text-to-speech synthesis. In S. Furui and M. M. Sondhi, editors, Advances
in Speech Signal Processing. Dekker, New York, 1992.

http://www.ofai.at/~brigitte.krenn/papers/stat_nlp.ps.gz
http://www.ofai.at/~brigitte.krenn/papers/stat_nlp.ps.gz

136 BIBLIOGRAPHY

G. J. Lidstone. Note on the general case of the Bayes-Laplace formula for
inductive or a priori probabilities. Transactions of the Faculty of Actuaries,
8:182–192, 1920.

J. B. Lovins. Development of a stemming algorithm. Mechanical Translation
and Computational Linguistics, 11:22–31, 1968.

C. D. Manning and H. Schütze. Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, MA, 1999.

E. Mays, F. J. Damerau, and R. L. Mercer. Context based spelling correction.
Information Processing & Management, 27(5):517–522, 1991. doi: 10.1016/
0306-4573(91)90066-U.

W. J. McGill. Multivariate information transmission. IEEE Trans. Inf.
Theory, 4(4):93–111, 1955.

G. Möhler, A. Schweitzer, and M. Breitenbücher. IMS German Festival
manual, version 1.2. Institute for Natural Language Processing, University
of Stuttgart, 2001. URL http://www.ims.uni-stuttgart.de/phonetik/
synthesis.

M. Mohri. Semiring frameworks and algorithms for shortest-distance prob-
lems. Journal of Automata, Languages and Combinatorics, 7(3):321–350,
2002.

M. Mohri. Weighted automata algorithms. In Handbook of Weighted
Automata, Monographs in Theoretical Computer Science, pages 213–254.
Springer, Berlin, 2009.

M. Mohri and R. Sproat. An efficient compiler for weighted rewrite rules. In
Proceedings of the 34th Annual Meeting of the Association for Computational
Linguistics, pages 231–238, June 1996. doi: 10.3115/981863.981894.

M. Mohri, F. C. N. Pereira, and M. Riley. Weighted automata in text and
speech processing. In Proceedings of the 12th biennial European Conference
on Artificial Intelligence (ECAI-96), Workshop on Extended Finite State
Models of Language, Chichester, 1996. John Wiley and Sons.

M. Mohri, F. C. N. Pereira, and M. Riley. Weighted finite-state transducers
in speech recognition. Computer Speech and Language, 16(1):69–88, 2002.

S. Mori, D. Takuma, and G. Kurata. Phoneme-to-text transcription system
with an infinite vocabulary. In Proceedings COLING-2006, pages 729–736,

http://www.ims.uni-stuttgart.de/phonetik/synthesis
http://www.ims.uni-stuttgart.de/phonetik/synthesis

BIBLIOGRAPHY 137

Sydney, Australia, July 2006. Association for Computational Linguistics.
doi: 10.3115/1220175.1220267.

G. Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31–88, 2001.

K. Oflazer. Error-tolerant finite-state recognition with applications to mor-
phological analysis and spelling correction. Computational Linguistics, 22
(1):73–89, 1996.

K. Oflazer and C. Güzey. Spelling correction in agglutinative languages. In
Proceedings ANLP-94, pages 194–195, 1994.

F. C. N. Pereira and M. D. Riley. Speech recognition by composition of
weighted finite automata. In Roche and Schabes (1997), pages 431–453.

L. Philips. Hanging on the metaphone. Computer Language, 7(12):39,
December 1990.

L. Philips. The double metaphone search algorithm. C/C++ Users Journal,
June 2000, June 2000.

T. Pilz, W. Luther, N. Fuhr, and U. Ammon. Rule-based search in text
databases with nonstandard orthography. Literary and Linguistic Computing,
21(3):179–186, 2006. doi: 10.1093/llc/fql020.

T. Pilz, A. Ernst-Gerlach, S. Kempken, P. Rayson, and D. Archer. The
identification of spelling variants in English and German historical texts:
manual or automatic? Literary and Linguistic Computing, 23(1), 2008. doi:
10.1093/llc/fqm044.

T. Pirinen and K. Lindén. Finite-state spell-checking with weighted lan-
guage and error models. To appear, 2010. URL http://www.helsinki.fi/
~tapirine/publications/Pirinen-lrec-2010.pdf.

J. J. Pollock and A. Zamora. Automatic spelling correction in scientific and
scholarly text. Communications of the ACM, 27:358–368, 1984.

M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137,
1980.

N. Porter, editor. Webster’s Revised Unabridged Dictionary. G. & C. Merriam
Co., 1913. URL http://machaut.uchicago.edu/websters.

http://www.helsinki.fi/~tapirine/publications/Pirinen-lrec-2010.pdf
http://www.helsinki.fi/~tapirine/publications/Pirinen-lrec-2010.pdf
http://machaut.uchicago.edu/websters

138 BIBLIOGRAPHY

H. J. Postel. Die Kölner Phonetik. Ein Verfahren zur Identifizierung von
Personennamen auf der Grundlage der Gestaltanalyse. IBM-Nachrichten,
19:925–931, 1969.

L. R. Rabiner. A tutorial on Hidden Markov Models and selected applications
in speech recognition. In Proceedings of the IEEE, pages 257–286, 1989.

E. S. Raymond, editor. Jargon File version 4.4.7. http://catb.org/
jargon/html/, 2010.

P. Rayson, D. Archer, and N. Smith. VARD versus Word: A comparsion
of the UCREL variant detector and modern spell checkers on English his-
torical corpora. In Proceedings of the Corpus Linguistics 2005 conference,
Birmingham, UK, July 14-17 2005.

U. Reffle, A. Gotscharek, C. Ringlstetter, and K. U. Schulz. Successfully
detecting and correcting false friends using channel profiles. Int. J. Doc.
Anal. Recognit., 12:165–174, October 2009. doi: 10.1007/s10032-009-0091-y.

E. S. Ristad and P. N. Yianilos. Learning string edit distance. IEEE
Transactions on Pattern Recognition and Machine Intelligence, 20(5):522–
532, May 1998.

B. Roark and R. Sproat. Computational Approaches to Morphology and
Syntax. Oxford University Press, 2007.

A. M. Robertson and P. Willett. A comparison of spelling-correction methods
for the identification of word forms in historical text databases. Literary
and Linguistic Computing, 8(3):143–152, 1993.

E. Roche. Parsing with finite-state transducers. In Roche and Schabes
(1997).

E. Roche and Y. Schabes, editors. Finite-State Language Processing. MIT
Press, Cambridge, MA, 1997.

R. C. Russell. Soundex coding system. United States Patent 1,261,167, 1918.

R. C. Russell. Soundex coding system. United States Patent 1,435,663, 1922.

A. Schiller, S. Teufel, and C. Thielen. Guidelines fur das Tagging deutscher
Textcorpora mit STTS. Technical report, University of Stuttgart, Institut
für maschinelle Sprachverarbeitung and University of Tübingen, Seminar
für Sprachwissenschaft, 1995.

http://catb.org/jargon/html/
http://catb.org/jargon/html/

BIBLIOGRAPHY 139

H. Schmid. Probabilistic part-of-speech tagging using decision trees. In
International Conference on New Methods in Language Processing, pages
44–49, Manchester, UK, 1994.

K. U. Schulz and S. Mihov. Fast string correction with Levenshtein-automata.
International Journal of Document Analysis and Recognition, 5:67–85, 2002.

M. P. Schützenberger. On the definition of a family of automata. Information
and Control, 4:245–270, 1961.

M. P. Schützenberger. On the algebraic theory of automata. In W. A.
Kalenich, editor, Information Processing 65: Proceedings of IFIP Congress
1965, pages 27–29. Spartan Books, 1965.

C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27(3):379–423, 1948.

I. Simon. The nondeterministic complexity of finite automata. Technical
Report RT-MAP-8073, Instituto de Matemática e Estatística da Universidade
de São Paulo, 1987.

A. Sokirko. A technical overview of DWDS/dialing concordance. Talk
delivered at the meeting Computational linguistics and intellectual tech-
nologies, Protvino, Russia, 2003. URL http://www.aot.ru/docs/
OverviewOfConcordance.htm.

H. Speer and A. Deutsch, editors. Deutsches Rechtswörterbuch. Verlag
Hermann Böhlaus Nachfolger, Weimar, 2010.

A. Storrer, A. Geyken, A. Siebert, and K.-M. Würzner, editors. Text
Resources and Lexical Knowledge. Mouton de Gruyter, Berlin, 2008.

P. Taylor, A. W. Black, and R. J. Caley. The architecture of the Festival
speech synthesis system. In Proceedings of the Third International Workshop
on Speech Synthesis, 1998.

E. Ukkonen. Algorithms for approximate string matching. Information and
Control, 64(1-3):100–118, 1985. doi: 10.1016/S0019-9958(85)80046-2.

E. Ukkonen. Approximate string-matching with q-grams and maximal
matches. Theoretical Computer Science, 92(1):191–211, 1992. doi: 10.1016/
0304-3975(92)90143-4.

http://www.aot.ru/docs/OverviewOfConcordance.htm
http://www.aot.ru/docs/OverviewOfConcordance.htm

140 BIBLIOGRAPHY

Unicode Consortium. The Unicode Standard. The Unicode Consortium,
Mountain View, CA, 2011. ISBN 978-1-936213-01-6. URL http://www.
unicode.org/versions/Unicode6.0.0/.

C. J. van Rijsbergen. Information Retrieval. Butterworth-Heinemann,
Newton, MA, 1979.

S. Verberne. Context-sensitive spell checking based on word trigram probabil-
ities. Masters thesis, University of Nijmegen, 2002.

E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco.
Probabilistic finite-state machines – Part II. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27:1026–1039, 2005. doi: 10.1109/TPAMI.
2005.148.

A. J. Viterbi. Error bounds for convolutional codes and an asymptotically
optimal decoding algorithm. IEEE Transactions on Information Theory,
pages 260–269, April 1967.

R. A. Wagner and M. J. Fischer. The string-to-string correction problem.
Journal of the ACM, 21(1):168–173, 1974.

D. Yarowsky and R. Wicentowski. Minimally supervised morphological
analysis by multimodal alignment. In K. Vijay-Shanker and C.-N. Huang,
editors, Proceedings of the 38th Meeting of the Association for Computational
Linguistics, pages 207–216, Hong Kong, October 2000.

E. M. Zamora, J. J. Pollock, and A. Zamora. The use of trigram analysis for
spelling error detection. In Information Processing and Management, pages
305–316, 1981.

A. Zeldes. Data-Based Methods for Historical Grammar and Lexicon Extrac-
tion in a Diachronic Corpus. M.A. thesis, Humboldt Universität zu Berlin,
2007.

A. Zielinski, C. Simon, and T. Wittl. Morphisto: Service-oriented open
source morphology for German. In C. Mahlow and M. Piotrowski, editors,
State of the Art in Computational Morphology, pages 64–75. Springer, Berlin,
2009. doi: 10.1007/978-3-642-04131-0_5.

J. Zobel and P. Dart. Finding approximate matches in large lexicons.
Software – Practice and Experience, 25(3):331–345, 1995.

http://www.unicode.org/versions/Unicode6.0.0/
http://www.unicode.org/versions/Unicode6.0.0/

BIBLIOGRAPHY 141

J. Zobel and P. Dart. Phonetic string matching: lessons from information
retrieval. In Proceedings of the 19th annual international ACM SIGIR
conference on Research and development in information retrieval, pages
166–172, New York, 1996. ACM. doi: 10.1145/243199.243258.

J. Zobel, A. Moffat, and R. Sacks-Davis. Searching large lexicons for partially
specified terms using compressed inverted files. In Proc. International
Conference on Very Large Databases, pages 290–301. Morgan Kaufmann,
1993.

	Title
	Imprint

	Contents
	The Big Picture
	Introduction
	Related Work
	Submitted Publications
	Article 1
	Article 2
	Article 3
	Article 4

	Conclusion
	Document Conventions

	I Submitted Publications
	Finding Canonical Forms
	Introduction
	Conflation by Phonetic Form
	Implementation
	Performance
	Coverage

	Conflation by Lemma Instantiation Heuristics
	Implementation
	Performance
	Coverage

	Summary & Outlook

	Efficient Online k-best Lookup
	Introduction
	Example Application
	Desiderata

	Formal Background
	Algorithms
	Semiring Weights
	Online Cascade Lookup
	k-Best Final States
	Cutoff Threshold
	Label Strings

	Summary

	Comparing Canonicalizations
	Introduction
	Canonicalization Methods
	Phonetic Conflation
	Levenshtein Edit Distance
	Rewrite Transducer

	Evaluation
	Test Corpus
	Evaluation Measures
	Results

	Conclusion & Outlook

	More Than Words
	Introduction
	Type-wise Conflation
	String Identity
	Transliteration
	Phonetization
	Rewrite Transduction

	Token-wise Disambiguation
	Basic Model
	Transition Probabilities
	Lexical Probabilities
	Runtime Disambiguation
	Expressive Power

	Evaluation
	Test Corpus
	Evaluation Measures
	Results

	Conclusion

	II Appendices
	Finite-State Components
	Transliteration Rules
	Phonetization Rules
	Pre-processing Filters
	Character Classes
	Core LTS Rules
	Post-processing Filters
	Phonetization FST

	TAGH Filters
	Syntactic Category Filters
	Lexical Stem Filters
	_target Lexica

	Morphological Security
	Heuristic Rewrite Rules
	Character Classes
	Identity Rules
	Consonant Rules
	Vowel Rules
	Explicit Elision Rules
	Unrecognized Input Rules
	Miscellaneous Rules
	Rewrite Filters

	Selected Software
	unicruft: Transliteration
	gfsm & gfsmxl: Finite-State Operations
	Lingua::LTS: LTS Rule Compiler
	Taxi: Structured Text Indices
	moot: HMM Tagging/Disambiguation
	dta-tokwrap: XML/TEI Serialization
	DTA::EvalCorpus: Alignment and Annotation
	DTA::CAB: Canonicalization

	Corpora
	DWB Verse Corpus
	DWB Evaluation Subcorpus

	DTA Corpus
	DTA Evaluation Subcorpus

	Glossary
	Acronyms
	Symbols and Notation
	Bibliography

