Skip to main content

Travel Attractions Recommendation with Knowledge Graphs

  • Conference paper
  • First Online:
Knowledge Engineering and Knowledge Management (EKAW 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10024))

Included in the following conference series:

Abstract

Selecting relevant travel attractions for a given user is a real and important problem from both a traveller’s and a travel supplier’s perspectives. Knowledge graphs have been used to conduct recommendations of music artists, movies and books. In this paper, we identify how knowledge graphs might be efficiently leveraged to recommend travel attractions. We improve two main drawbacks in existing systems where semantic information is exploited: semantic poorness and city-agnostic user profiling strategy. Accordingly, we constructed a rich world scale travel knowledge graph from existing large knowledge graphs namely Geonames, DBpedia and Wikidata. The underlying ontology contains more than 1200 classes to describe attractions. We applied a city-dependent user profiling strategy that makes use of the fine semantics encoded in the constructed graph. Our evaluation on YFCC100M dataset showed that our approach achieves a 5.3 % improvement in terms of F1-score, a 4.3 % improvement in terms of nDCG compared with the state-of-the-art approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 94.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 118.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.expedia.com/.

  2. 2.

    https://www.tripadvisor.com/.

  3. 3.

    https://www.peek.com/.

  4. 4.

    https://www.musement.com/.

  5. 5.

    https://www.tnooz.com/article/real-time-destination-action-tickets-on-a-mobile-as-you-approach-an-attraction/.

  6. 6.

    https://www.tnooz.com/article/expedia-bets-big-on-tours-and-activities-will-the-industry-win/.

  7. 7.

    http://www.geonames.org/.

  8. 8.

    http://wiki.dbpedia.org/.

  9. 9.

    https://www.wikidata.org/.

  10. 10.

    http://dbpedia.org/resource/Louvre.

  11. 11.

    http://dbpedia.org/ontology/Museum.

  12. 12.

    http://dbpedia.org/page/Category:Museums.

  13. 13.

    https://developer-tripadvisor.com/content-api/business-content/categories-subcategories-and-types/.

  14. 14.

    https://developer-tripadvisor.com/content-api/request-api-access/.

  15. 15.

    https://developer.foursquare.com/categorytree.

  16. 16.

    https://foursquare.com/v/volvo-museum/4b9f9e2df964a520432f37e3.

  17. 17.

    https://www.wikidata.org/wiki/Q3329393.

  18. 18.

    http://lod-cloud.net/.

  19. 19.

    http://wiki.dbpedia.org/Downloads2015-10#dbpedia-ontology.

  20. 20.

    http://neo4j.com/.

  21. 21.

    http://download.geonames.org/export/dump/.

  22. 22.

    https://en.wikipedia.org/wiki/Tf-idf.

  23. 23.

    https://www.wikidata.org/wiki/Q19675.

  24. 24.

    Yahoo Webscope: http://webscope.sandbox.yahoo.com

    .

References

  1. Google: Travel trends: 4 mobile moments changing the consumer journey (2015). https://www.thinkwithgoogle.com/articles/travel-trends-4-mobile-moments-changing-consumer-journey.html

  2. Expedia: Custom Research: Exploring the Traveler’s Path to Purchase (2014). https://info.advertising.expedia.com/travelerspathtopurchase

  3. Passant, A.: dbrec — music recommendations using DBpedia. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, Jeff, Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17749-1_14

    Chapter  Google Scholar 

  4. Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data to support content-based recommender systems. In: Proceedings of the 8th International Conference on Semantic Systems, pp. 1–8. ACM, September 2012

    Google Scholar 

  5. Ristoski, P., Loza Mencía, E., Paulheim, H.: A hybrid multi-strategy recommender system using linked open data. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 150–156. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12024-9_19

    Google Scholar 

  6. Bao, J., Zheng, Y., Wilkie, D., Mokbel, M.: Recommendations in location-based social networks a survey. GeoInformatica 19(3), 525–565 (2015)

    Article  Google Scholar 

  7. Cheng, C., Yang, H., King, I., Lyu, M.R.: Fused matrix factorization with geographical and social influence in location-based social networks. In: Twenty-Sixth AAAI Conference on Artificial Intelligence, July 2012

    Google Scholar 

  8. Ye, M., Yin, P., Lee, W. C., Lee, D.L.: Exploiting geographical influence for collaborative point-of-interest recommendation. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 325–334. ACM, July 2011

    Google Scholar 

  9. Yuan, Q., Cong, G., Ma, Z., Sun, A., Thalmann, N.M.: Time-aware point-of-interest recommendation. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 363–372. ACM, July 2013

    Google Scholar 

  10. Braunhofer, M., Elahi, M., Ricci, F., Schievenin, T.: Context-aware points of interest suggestion with dynamic weather data management. In: Xiang, Z., Tussyadiah, I. (eds.) Information and communication technologies in tourism 2014, pp. 87–100. Springer International Publishing, Cham (2013)

    Chapter  Google Scholar 

  11. Noguera, J.M., Barranco, M.J., Segura, R.J., Martínez, L.: A mobile 3D-GIS hybrid recommender system for tourism. Inf. Sci. 215, 37–52 (2012)

    Article  Google Scholar 

  12. Liu, B., Xiong, H.: Point-of-interest recommendation in location based social networks with topic and location awareness. In: SDM, vol. 13, pp. 396–404, May 2013

    Google Scholar 

  13. Brilhante, I.R., Macedo, J.A., Nardini, F.M., Perego, R., Renso, C.: On planning sightseeing tours with TripBuilder. Inf. Process. Manag. 51(2), 1–15 (2015)

    Article  Google Scholar 

  14. Bao, J., Zheng, Y., Mokbel, M.F.: Location-based and preference-aware recommendation using sparse geo-social networking data. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 199–208, November 2012. ACM

    Google Scholar 

  15. Chen, C., Zhang, D., Guo, B., Ma, X., Pan, G., Wu, Z.: TripPlanner: personalized trip planning leveraging heterogeneous crowdsourced digital footprints. IEEE Trans. Intell. Transp. Syst. 16(3), 1259–1273 (2015)

    Article  Google Scholar 

  16. Lim, K.H., Chan, J., Leckie, C., Karunasekera, S.: Personalized tour recommendation based on user interests and points of interest visit durations. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015) (2015)

    Google Scholar 

  17. Lu, C., Stankovic, M., Laublet, P.: Desperately searching for travel offers? Formulate better queries with some help from linked data. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 621–636. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18818-8_38

    Chapter  Google Scholar 

  18. Thomee, B., Shamma, D.A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Li, L.J.: YFCC100M: the new data in multimedia research. Commun. ACM 59(2), 64–73 (2016)

    Article  Google Scholar 

  19. Di Noia, T., Cantador, I., Ostuni, V.C.: Linked open data-enabled recommender systems: ESWC 2014 challenge on book recommendation. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 129–143. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12024-9_17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Lu, C., Laublet, P., Stankovic, M. (2016). Travel Attractions Recommendation with Knowledge Graphs. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds) Knowledge Engineering and Knowledge Management. EKAW 2016. Lecture Notes in Computer Science(), vol 10024. Springer, Cham. https://doi.org/10.1007/978-3-319-49004-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49004-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49003-8

  • Online ISBN: 978-3-319-49004-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
INTERN 7
Note 3