Abstract
Selecting relevant travel attractions for a given user is a real and important problem from both a traveller’s and a travel supplier’s perspectives. Knowledge graphs have been used to conduct recommendations of music artists, movies and books. In this paper, we identify how knowledge graphs might be efficiently leveraged to recommend travel attractions. We improve two main drawbacks in existing systems where semantic information is exploited: semantic poorness and city-agnostic user profiling strategy. Accordingly, we constructed a rich world scale travel knowledge graph from existing large knowledge graphs namely Geonames, DBpedia and Wikidata. The underlying ontology contains more than 1200 classes to describe attractions. We applied a city-dependent user profiling strategy that makes use of the fine semantics encoded in the constructed graph. Our evaluation on YFCC100M dataset showed that our approach achieves a 5.3 % improvement in terms of F1-score, a 4.3 % improvement in terms of nDCG compared with the state-of-the-art approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
Yahoo Webscope: http://webscope.sandbox.yahoo.com
.
References
Google: Travel trends: 4 mobile moments changing the consumer journey (2015). https://www.thinkwithgoogle.com/articles/travel-trends-4-mobile-moments-changing-consumer-journey.html
Expedia: Custom Research: Exploring the Traveler’s Path to Purchase (2014). https://info.advertising.expedia.com/travelerspathtopurchase
Passant, A.: dbrec — music recommendations using DBpedia. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, Jeff, Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17749-1_14
Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data to support content-based recommender systems. In: Proceedings of the 8th International Conference on Semantic Systems, pp. 1–8. ACM, September 2012
Ristoski, P., Loza Mencía, E., Paulheim, H.: A hybrid multi-strategy recommender system using linked open data. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 150–156. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12024-9_19
Bao, J., Zheng, Y., Wilkie, D., Mokbel, M.: Recommendations in location-based social networks a survey. GeoInformatica 19(3), 525–565 (2015)
Cheng, C., Yang, H., King, I., Lyu, M.R.: Fused matrix factorization with geographical and social influence in location-based social networks. In: Twenty-Sixth AAAI Conference on Artificial Intelligence, July 2012
Ye, M., Yin, P., Lee, W. C., Lee, D.L.: Exploiting geographical influence for collaborative point-of-interest recommendation. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 325–334. ACM, July 2011
Yuan, Q., Cong, G., Ma, Z., Sun, A., Thalmann, N.M.: Time-aware point-of-interest recommendation. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 363–372. ACM, July 2013
Braunhofer, M., Elahi, M., Ricci, F., Schievenin, T.: Context-aware points of interest suggestion with dynamic weather data management. In: Xiang, Z., Tussyadiah, I. (eds.) Information and communication technologies in tourism 2014, pp. 87–100. Springer International Publishing, Cham (2013)
Noguera, J.M., Barranco, M.J., Segura, R.J., Martínez, L.: A mobile 3D-GIS hybrid recommender system for tourism. Inf. Sci. 215, 37–52 (2012)
Liu, B., Xiong, H.: Point-of-interest recommendation in location based social networks with topic and location awareness. In: SDM, vol. 13, pp. 396–404, May 2013
Brilhante, I.R., Macedo, J.A., Nardini, F.M., Perego, R., Renso, C.: On planning sightseeing tours with TripBuilder. Inf. Process. Manag. 51(2), 1–15 (2015)
Bao, J., Zheng, Y., Mokbel, M.F.: Location-based and preference-aware recommendation using sparse geo-social networking data. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 199–208, November 2012. ACM
Chen, C., Zhang, D., Guo, B., Ma, X., Pan, G., Wu, Z.: TripPlanner: personalized trip planning leveraging heterogeneous crowdsourced digital footprints. IEEE Trans. Intell. Transp. Syst. 16(3), 1259–1273 (2015)
Lim, K.H., Chan, J., Leckie, C., Karunasekera, S.: Personalized tour recommendation based on user interests and points of interest visit durations. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015) (2015)
Lu, C., Stankovic, M., Laublet, P.: Desperately searching for travel offers? Formulate better queries with some help from linked data. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 621–636. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18818-8_38
Thomee, B., Shamma, D.A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Li, L.J.: YFCC100M: the new data in multimedia research. Commun. ACM 59(2), 64–73 (2016)
Di Noia, T., Cantador, I., Ostuni, V.C.: Linked open data-enabled recommender systems: ESWC 2014 challenge on book recommendation. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 129–143. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12024-9_17
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Lu, C., Laublet, P., Stankovic, M. (2016). Travel Attractions Recommendation with Knowledge Graphs. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds) Knowledge Engineering and Knowledge Management. EKAW 2016. Lecture Notes in Computer Science(), vol 10024. Springer, Cham. https://doi.org/10.1007/978-3-319-49004-5_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-49004-5_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49003-8
Online ISBN: 978-3-319-49004-5
eBook Packages: Computer ScienceComputer Science (R0)