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Tens of thousands of subjects may be required to obtain reliable evidence relating disease characteristics to the weak
effects typically reported from common genetic variants. The costs of assembling, phenotyping, and studying these large
populations are substantial, recently estimated at three billion dollars for 500,000 individuals. They are also decade-long
efforts. We hypothesized that automation and analytic tools can repurpose the informational byproducts of routine
clinical care, bringing sample acquisition and phenotyping to the same high-throughput pace and commodity price-point
as is currently true of genome-wide genotyping. Described here is a demonstration of the capability to acquire samples
and data from densely phenotyped and genotyped individuals in the tens of thousands for common diseases (e.g., in a 1-yr
period: N = 15,798 for rheumatoid arthritis; N = 42,238 for asthma; N = 34,535 for major depressive disorder) in one
academic health center at an order of magnitude lower cost. Even for rare diseases caused by rare, highly penetrant
mutations such as Huntington disease (N = 102) and autism (N = 756), these capabilities are also of interest.

A common thread in the recent flurry of studies relating charac-

teristics of complex diseases to the generally weak effects of in-

dividual genetic variants is that very large numbers of subjects are

needed to obtain reproducible results—closer to 200,000 individ-

uals (Manolio et al. 2006) than the few thousand typical of recent

publications. The costs of assembling, phenotyping, and studying

these huge populations are estimated at three billion dollars for

500,000 individuals (Spivey 2006). Reciprocally, studying rare

diseases often requires searching through very large populations,

and sufficient sample sizes are hard to achieve. Coincidentally, the

United States spends over two trillion dollars in healthcare per year

(Catlin et al. 2008), and of those costs, the total investment in

information technology (IT) is at least seven billion dollars per year

(Girosi et al. 2005). The stimulus package recently enacted by the

U.S. Congress includes a very significant increase in spending on

electronic health records, prompting interest in the secondary use

of the data gathered in such records. Yet there is widespread, often

justified skepticism about our ability to use routinely collected

electronic health records (EHRs) for research-quality phenotype

data, given the well-known biases and coarse-grained nature of

billing/claims diagnoses and procedures (Safran 1991; Jollis et al.

1993). By the same measure, the consistency of phenotypic defi-

nitions in large genome-wide association studies (GWAS), espe-

cially when they consist of the aggregation of several existing

studies, and the consequent effect upon these study results, has

been questioned (Ioannidis 2007; Wojczynski and Tiwari 2008;

Buyske et al. 2009).

To meet these challenges, we have undertaken a series of in-

stitutional experiments that collectively demonstrate that auto-

mated systems for mining of EHRs are essential for the feasibility

and affordability of large-scale population studies such as GWAS.

We do so by using a free and open-source system, i2b2 (Informatics

for Integrating Biology and the Bedside; http://www.i2b2.org) to

conduct a proof-of-principle exercise to show that this system (1)

accurately identifies potential cases and controls by mining the

EHR using natural language processing (NLP), and it does this (2)

much faster and (3) much more cheaply than traditional methods.

Methods
A central goal of i2b2 is to test our methodologies with ‘‘Driving

Biology Projects’’ (DBP) led by investigators interested in specific

disease areas (e.g., pharmacogenomics of asthma, risk alleles for

rheumatoid arthritis [RA], and variants associated with resistance

to the antidepressant effects of selective serotonin reuptake

inhibitors). We outline here the general approach to a DBP and

then illustrate it with specifics from two DBPs.

First, the investigators select a set of terms that are used rou-

tinely in clinical practice to diagnose or stage a condition (e.g.,

asthma), preferably including findings that are part of the ‘‘stan-

dard’’ classification criteria for that disease. These terms are aug-

mented with those medications that are specific to the diseases of

interest. Also considered are those diseases or conditions that are

frequent mimickers of the disease of interest to define terms that

should be excluded.
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Once the term list has been developed, it is submitted to the

NLP utility of i2b2. This utility, called HITEx (Zeng et al. 2006), is

built upon the popular and open-source GATE (Cunningham et al.

2002) framework from the University of Sheffield. HITEx then

operates over the millions of clinical narratives (e.g., discharge

summaries, clinic notes, preoperative notes, pathology and radi-

ology reports) in the EHR and generates a set of codified concepts

drawn from the Unified Medical Language System (Lindberg and

Humphreys 1992). Each of these concepts is entered into the same

database that contains all the pre-existing institutional EHR clin-

ical data (e.g., laboratory studies, billing codes) and labeled as de-

rived data. Regardless of their origin (i.e., primary data or derived

data), the entire database can then be searched to find sets of

patients that meet specified criteria such as comorbidities (e.g.,

bronchitis), exposures (e.g., smoking), medications taken, or lab-

oratory results (e.g., positive anticyclic citrullinated peptide anti-

body assays).

DBP clinical experts are then recruited to review the results of

queries using the concepts individually (whether NLP-defined or

codified originally in the EHR) and combined for accuracy. This is

done by reading the full clinical narrative text corresponding to

a random subsample of patients selected by these queries to es-

tablish the ‘‘gold-standard’’ phenotype for those patients. Then,

regression methods are applied to train prediction models that

relate the variables to the phenotype of interest. When the number

of available variables is not small, regularized regression proce-

dures with an adaptive lasso (Tibshirani 1996) penalty are em-

ployed to identify important features and train the final model for

prediction with the selected variables. Based on a separate valida-

tion data set, the prediction performance using measures including

the receiver operating characteristic (ROC) curve, the positive and

negative predictive values are assessed.

The sample size of the training data is determined adap-

tively. We first randomly select an initial set of records for review

to train the model. With the same set of data, we obtain initial

confidence interval estimates of the predictive accuracy using the

cross-validation and bootstrap method. Subsequently, we deter-

mine the required sample size for both the training and the vali-

dation data sets based on the desired width of the confidence

intervals. Typically, the training and validation data sets require

review of the records of <500 patients by the clinician experts.

Once the selection methods are fine-tuned, the selected group

of patients is retrieved and, per our institutional review board (IRB)

protocol, that database is ‘‘frozen’’ as a "datamart" for that DBP.

From that datamart, a set of unique, anonymous identifiers is

generated. As illustrated in Figure 1, we then ran a trial using

Crimson, a new resource developed by the Department of Pa-

thology at Brigham and Women’s Hospital, which offers IRB-

compliant access to discarded blood samples for genotyping.

Patient identifiers extracted using i2b2 in silico phenotyping are

forwarded to the Crimson application. The Crimson application

queries recently accessioned materials from clinical patient visits

against the i2b2-forwarded identifiers. Instead of being discarded,

matching samples are accessioned into Crimson, with the sample

assigned to the requesting study’s IRB protocol, and the patient

identifier converted to a unique anonymized i2b2 code. Crimson

generates an anonymous sample identifier so that no original

identifiers (laboratory accession number, medical record number,

etc.) remain associated with the sample, which can be released for

DNA extraction and further analysis, with a rich set of previously

extracted and deidentified phenotypes from the medical record

system.

The anonymity described here is highly circumscribed and

critically dependent on institutional review. All Health Insurance

Portability and Accountability Act (HIPAA)-described identifiers

are removed, and all codes linking the record to the patient iden-

tity are deleted. Also, any systematic attempt of re-identification is

strictly prohibited and is a violation of IRB protocol resulting in

severe penalties to the investigators who also are employees of the

healthcare system.

The first DBP to successfully employ the process described

above was the asthma DBP. The project focused on acute asthma

exacerbations requiring hospitalization, because these are a major

cause of health care costs for asthma and these events are readily

identified through the pre-existing research patient data re-

pository. The asthma DBP had previously defined clinical and ge-

netic predictors of asthma hospitalizations based on a GWAS

conducted in an independent cohort. The study goal was to select

the cases (high utilizers) and controls (low utilizers) and confirm

the previously identified genetic predictors of hospitalizations.

Figure 1. Matching anonymously identified populations to anonymous
samples. An i2b2 datamart is generated from codified data (e.g., billing
codes, laboratory test values) and concepts codified by running the nar-
rative text in electronic medical records through a NLP tool, the HITEx
package described in the Methods section. Patients included within the
i2b2 datamart meeting study criteria are selected and their corresponding
set of identifiers are generated. Those identifiers are forwarded to the
Crimson application, which scans recent transactions forwarded from one
or more local clinical laboratory or pathology information systems to
identify newly accessioned materials matching the cohort identifiers and
desired sample types. Upon completion of diagnostic testing (1–3 d after
collection in most cases), Crimson manages reaccession of the sample to
a study’s IRB protocol and assigns the i2b2-forwarded subject ID to
a uniquely generated sample ID. These actions remove all identifiers
(accession no., medical record no., etc.) from the original sample. The
sample may then be released to the investigator where it can be measured
(for genome-wide genotyping in this instance), and these measurement
data are merged with the phenotypic data set in the i2b2 datamart. Be-
cause of the electronic and regulatory firewalls, only research personnel
approved by the IRB can view the limited data set (in the HIPAA sense),
and they cannot view the identified clinical data visible to those who
access the laboratory information system.
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The second DBP to complete the use of i2b2 phenotyping was the

RA DBP that has as its goal a GWAS study of RA cases versus con-

trols to confirm prior findings and find new risk alleles.

Phenotyping

Phenotypic characterization of the 97,639 patients in the asthma

cohort used the NLP package (HITEx) as described above to stratify

patients by smoking history, healthcare utilization, severity, and

medications. Other phenotypes captured included detailed pul-

monary function test results (extracted from textual reports),

comorbidities, and family history. The gold-standard annotation

was established by expert review of a random sample of clinical

reports to answer the questions in Table 1 for each report. HITEx

then was run to evaluate the same five questions for each report.

In the asthma DBP, subjects with a doctor’s diagnosis of

asthma, aged >15 yr and <45 yr, who were non- or ex-smokers, and

who had no hospitalizations (low utilizer group) or greater than

two hospitalizations (high utilizer group) within a 36-mo interval

were selected from the 97,639 asthmatics identified through the

initial ‘‘high-throughput’’ phenotyping.

The RA i2b2 datamart includes patients seen between October

1993 and June 2008 with any ICD-9 diagnostic code for RA or

a related condition. Using an independent prospective annotation

of 1025 RA patients recruited for a previous study at Partners

Healthcare Systems, we found that these criteria were highly sen-

sitive for the diagnosis of RA (99% of RA patients were included in

their RA datamart). Two clinical rheumatologists reviewed 500

randomly selected charts and identified a gold-standard set of RA

patients and non-RA patients (102 defi-

nite RA cases and 398 non-RA patients).

Costs for large-scale i2b2 association
studies

We initially opted to collaborate with the

physicians in the largest outpatient clin-

ics to recruit and consent their patients

as they appeared for routine care. Un-

fortunately, this yielded fewer than 10

patients per week, with costs of about

$650 per patient sample. This is a cost

comparable to the typical reported range

of $500–$1200, without phlebotomy

costs, for noncommercial population

studies (Gismondi et al. 2005; Ota et al.

2006; Karlawish et al. 2008) but was too

expensive and slow for our purposes.

These high costs and slow recruitment rate led to our aforemen-

tioned development of the link between i2b2 and the Crimson

system.

If we presume a very significant prior and ongoing in-

vestment in an IT infrastructure (for quality clinical care) and

discount the analytic steps that are shared in all studies, regardless

of how the study materials are accumulated, the incremental costs

of each new study can be categorized within three categories: the

costs of phenotyping, the costs of sample acquisition, and the costs

of genome-scale measurements (summarized in Table 2).

Current sample acquisition as practiced in most studies costs

upwards of $650 per patient. i2b2 sample acquisition currently is

under $20 per sample including DNA extraction costs. For larger

populations, additional infrastructure for storage and retrieval

might push this cost as high as $50 per sample. Current pheno-

typing costs through manual chart review are a function of how

many records will have to be reviewed to obtain a single pheno-

typed patient. Current phenotyping costs conservatively average

$20 (Allison et al. 2000; Flynn et al. 2002), whereas the costs at the

higher estimate for current phenotyping are conservatively esti-

mated at $100 per patient identified, that is, five charts reviewed

for every patient included in the study. Both the lower and higher

estimates of current phenotyping costs are assumed to scale line-

arly with the numbers of patients sought.

i2b2 phenotyping requires a substantial initial investment in

defining the phenotypes of interest, ‘‘tuning’’ the NLP methods

iteratively. This multidisciplinary team effort currently entails an

additional investment, mostly in analytic personnel costs, of

$20,000 to $50,000, but this range is largely independent of the

sample size sought and can be run multiple times across the years

at nominal incremental costs. We use the higher cost estimate of

i2b2 phenotyping in the calculations below.

If we take the current practice of measurement of common

variants as the standard for genome-wide studies, then the cost of

genomic measurements, including labor and materials, is no more

than $500 per patient (2008). Based on past performance and

current predictions, genome-wide genotyping costs are likely to

drop to less than $100 within the next three years.

Results
The results described here pertain to the 2.6 million patients seen

at the two major hospitals within the Partners Healthcare System

Table 1. Gold-standard task for expert reviewer in the asthma
DBP

1. Principal diagnosis includes asthma: yes/no/insufficient data
2. Principal diagnosis includes COPD: yes/no/insufficient data
3. Comorbidities include asthma: yes/no/insufficient data
4. Comorbidities include COPD: yes/no/insufficient data
5. Smoking status: current smoker, past smoker, nonsmoker,

patient denies smoking, insufficient data

These are the annotations that each reviewer had to provide for each
record reviewed. The annotation types were selected by the pulmonol-
ogists by virtue of their relevance to sample selection for the GWAS and
subsequent analyses.

Table 2. Dollar and time costs

Cost ($) Time cost

One chart review per patient (CP1) 20 15 min/subject
Five chart reviews for one subject (CP2) 100 45 min/subject
High-throughput phenotyping (iP) 50,000 1 mo total (conservative

high estimate)
Sample acquisition through primary care provider (CP) 650 3–5 subjects/wka

High-throughput sample acquisition, lower cost (LP) 20 50–200 subjects/wkb

High-throughput sample acquisition, higher cost (HP) 50 50–200 subjects/wkb

Current genome-wide SNP scan 500 20 samples/d
Future genome-wide SNP scan 100 100 samples/d

The cost of sample acquisition, phenotyping and genotyping in dollars used for the models illustrated in
Fig. 5. The three costs for sample acquisition costs are the low and high costs using i2b2 per sample
versus the current cost (denoted LS, HS, CS). The current cost for reviewing one record to phenotype
a patient (CP1) or, more typically, five records reviewed per study patient identified are denoted CP1
and CP2 and i2b2 phenotyping as iP. Current cost genome-scale genotyping versus lower cost geno-
typing within three years are denoted CG and LG.
aData from Asthma Driving Biology Project (DBP).
bSee Figure 2.
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(the Brigham and Womens’ Hospital and the Massachusetts Gen-

eral Hospital), of which 821,925 are seen per year, generating over

3,300,000 tubes of blood per year.

Accrual rates (forecast and actual)

The i2b2 toolkit provides a mechanism for both patient accrual

and forecasting the rate of accrual for any cohort of interest. For

example, in the instance of an asthma study, we predicted an ac-

crual of 3174 patients fitting our case and control definitions of

utilization in the one hospital (based on how many with the same

phenotypic definition had returned for care the prior year). Figure 2

shows the actual accrual sample from asthma subjects stratified by

high healthcare services utilizers and low healthcare services uti-

lizers (as defined above) and by race (African American and Cau-

casian American). Figure 3 shows the projected accrual rate in

other example diseases or syndromes, including all individual with

asthma, not just those meeting our particular study criteria. Even

in a midsized academic healthcare center, thousands of pheno-

typed samples can be acquired for common diseases at a rate of

over 300 per week. Even when the goal is identification of rare

diseases, where a few hundred patients would enable an important

study, this system allows hundreds of thousands of patients to be

efficiently phenotyped so that these rare cases can be identified and

their samples obtained (as in Huntington disease in Fig. 3). It can

also be used to identify rare events such as Steven Johnson syn-

drome (5284 cases returned to the health system this year of those

identified in prior years) to allow genomic study of such events.

Phenotyping

In the asthma DBP, HITEx was used to extract principal diagnosis,

comorbidity, and smoking status from discharge summaries and

outpatient visit notes as described above. Unlike some NLP pack-

ages, HITEx will report for each possible disease not only whether it

is present or absent but also if there are ‘‘insufficient data’’ to reach

a sound conclusion. To compare HITEx results to the human rat-

ings, we treated the ‘‘insufficient data’’ label in three ways: ex-

cluding cases with that label, treating them as ‘‘present,’’ and

treating them as ‘‘absent.’’

Accuracy was evaluated for the asthma DBP in random sam-

ples by experienced pulmonologists reviewing the full medical

record. Compared with the experts, the accuracy of the i2b2 NLP

program HITEx (Zeng et al. 2006) for principal diagnosis extraction

was 73%–82% and for comorbidity was 78%–87%, depending on

how the expert label ‘‘insufficient data’’ was treated. HITEx accu-

racy was 1%–4% higher than the expert analysis using the ICD-9

diagnosis code in every category. This relative measure obviously

only makes sense where there is an ICD-9 code that actually cor-

responds to a concept obtained by NLP. The accuracy of HITEx

smoking status extraction was 90%. However, this performance

was a result of an iterative process between domain experts (e.g.,

pulmonologists) and the NLP experts, without which, using cur-

rent technology, the outcome would be much less satisfactory. In

subsequent DBPs we have been able to consistently attain accu-

racies of over 92% (for RA and major depressive disorder resistant

to selective serotonin reuptake inhibitors).

Figure 4 illustrates the challenge by providing a glimpse of

just how heterogeneous the human-driven characterizations are

for merely one attribute: smoking history. Nonetheless, once the

HITEx package is tuned, running it against millions of patient

reports is just a matter of days with the accuracies reported here. In

contrast, medical chart review by even a non-expert (e.g., medical

student) takes 15 min (and easily several times that with more

complex charts) at a cost of $20 per record reviewed.

The RA investigators systematically identified the features of

interest (HITEx-derived and also previously codified) using a lo-

gistic regression approach with the adaptive lasso penalty. They

identified seven predictors of RA using their gold-standard set of

RA patients and non-RA patients: disease codes for RA and three

diseases that mimic RA, NLP-derived medication annotations, and

NLP-derived seropositivity. This RA selection algorithm was used

to select patients from the entire datamart. A total of 4618 subjects

were selected as having a high probability of RA (at 97% specific-

ity). Of those, a random sample of 400 charts from these subjects

were selected, and 92% of patients had definite RA and 98% had

either probable or definite RA. Of note, over 40% of the ostensible

cases of RA in the datamart were due to quirks in the codification/

billing process (e.g., radiologists codifying a ‘‘rule-out’’ RA with

the RA ICD-9 billing code). When the NLP-derived medication

Figure 2. Cumulative accrual of phenotyped DNA samples for the
asthma DBP. Unlike the membership of the overall asthma datamart (N =
131,230), the pool from which patients were drawn was first restricted to
those seen at the Brigham and Women’s Hospital where the Crimson
system was first deployed, as the second Crimson site (Massachusetts
General Hospital) came online only in late 2008. Additional restrictions
included age (<45 yr, >15 yr) and smoking status (nonsmoker or ex-
smoker). Projected (A) and actual (B) accrual rates for four groups: LCA
(Low-utilizer Caucasian American); LAA (Low-utilizer African American);
HCA (High-utilizer Caucasian American); HAA (High-utilizer African
American). Utilization here is defined by the absence of hospital admis-
sions (low utilizer) in contrast to at least two admissions (high utilizer). As
shown above, the recruitment of low utilitzers (LCA and LAA) started later
than the recruitment of the high utilizers. Nonetheless, the projected re-
cruitment rates and the actual recruitment rates are very similar.
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records were compared with those in the codified entries, ;98% of

patients who had an electronic prescription also had a HITEx an-

notation for the medication of interest. Conversely, HITEx iden-

tified twice as many RA medications as reported by the electronic

prescription data.

Costs

Figure 5 illustrates a projection of the costs of a GWAS for study

populations ranging in size from one thousand to one million. The

projections cover a wide range of cost assumptions (see Methods).

This result concurs with the published estimates for one million

patients, which are well into the nine-figure range (Spivey 2006). It

also illustrates how judicious use of state-of-the-art technologies

for phenotyping and sample acquisition can reduce the cost of

these studies by half an order of magnitude (from $1.2 billion to

$520 million). The implementation of $100/sample genome-wide

variant assays brings that same cohort cost down another half

order of magnitude to $150 million. These projections might be

further modified if there were economies of scale through auto-

mation to reduce the per sample costs, an assumption not included

in these conservative models.

These estimates assume a very significant pre-existing in-

frastructure for the purposes of providing high-quality care. This

includes an electronic health record

(Committee on Quality of Health Care

in America, Institute of Medicine 2001)

and data warehouse, a high-volume clin-

ical laboratory information system, and

competent, engaged information systems

staff. All these investments are typically

made for reasons other than supporting

discovery research so they are not in-

cluded in i2b2 cost estimates. The generic

‘‘star schema’’ (Kimball and Ross 2002) of

the i2b2 datamart supports a wide variety

of clinical and genomic data types. This

in turn has allowed IT staff from across

the more than 36 implementation sites

(of which five are outside the United

States; see https://www.i2b2.org/work/aug.

html) to import data from their EHRs,

including locally developed systems as

well as commercial offerings from Cerner

Corporation, Meditech Information Tech-

nology, NextGen Health Information Sys-

tems, and Epic Systems Corporation.

Conclusion
The approach described is not without

limitations. Despite a multiplicity of blue-

ribbon panels and reports (Committee on

Quality of Health Care in America, In-

stitute of Medicine 2001) on the im-

provement in the quality of care that

results, less than 20% of healthcare

enterprises currently have suitable infor-

mation infrastructure (Poon et al. 2006),

although this may grow significantly

with the recent passage of the Health In-

formation Technology for Economic and

Clinical Health (HITECH) Act (Senate and House of Representa-

tives of the United States of America in Congress 2009). Even if

Figure 3. Projected accrual rates. Estimates are based on the number of patients previously seen at
least once during the 36 mo before June 30, 2006 for whom at least one patient visit during which
chemistry or hematology samples were obtained was then recorded in the following 12 mo. Each
patient was only counted once, even if they had more than one visit in the 12-mo period. Also, unlike
Figure 2, accrual rates per week rather than cumulative accrual are shown. There are some common
features in the accrual trajectories for most of the diseases because of the shared exposure to the effects
of holidays and seasonality on hospital visits. (A) Accrual for common diseases: (MDD) major depressive
disorder; (RA) rheumatoid arthritis (all individuals and not just those who met driving biological projects
criteria); asthma (also all individuals). (B) Accrual for less prevalent diagnoses: Huntington disease and
autism spectrum disorder (ASD) (including Asperger syndrome).

Figure 4. Example smoking annotations in electronic medical records.
The boxes around selected words highlight those the HITEx system picked
up as informative regarding smoking status. The second column provides
the system’s classification of the smoking status. This illustrates the chal-
lenges for which additional tuning was required. For example, the
‘‘tobac’’ in Lactobacillus is no less obvious to HITEx, initially, than the ‘‘tob’’
in ‘‘tob/alcohol.’’
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phenotype information continues to accrue, many important

measures of health and environment will likely remain absent

from the institutional/provider-driven health record, although

mechanisms such as personally controlled health records (Kohane

et al. 2007) may eventually help fill this gap. Patients who have

the opportunity to correct or enhance existing medical records

(Porter et al. 2000) often have the most to gain from such correc-

tions. With regard to demographic representation, accrual results

(Fig. 2) show that minorities are over-represented compared with

local demographics, confirming that patients of an academic

medical center may differ from the general population in impor-

tant ways.

Concerns about the risks to patient privacy or the appearance

of risk are barriers to widespread use of electronic health care data

for research. Regulatory protection of patient privacy should, in

principle, not obstruct or unduly retard the conduct of clinical

research, although in practice the principle is often obscured

(O’Herrin et al. 2004). Clearly, cavalier handling of such data sets

can lead to real risks (Russell and Theodore 2005; United States

Congress Senate Committee on Veterans’ Affairs and United States

Congress Senate Committee on Homeland Security and Govern-

mental Affairs 2007) even while the practice of medicine itself

remains highly disclosing of patient information (Clayton et al.

1997; Sweeney 1998). Moreover, most genome-wide data is highly

disclosing (Homer et al. 2008) and the public release of such data is

fraught with risks to privacy. This is a challenge that any study

involving GWAS, whether or not it uses i2b2, must address. With

regard to the use of discarded anonymous specimens for the

sample acquisition, we note that the machinery described here can

be used to prospectively cast a broad net for consented samples

among patient groups and then use NLP to identify suitable sam-

ples. This corresponds to the operation of Vanderbilt University’s

BioVU system (Roden et al. 2008), where all patients are offered an

‘‘opt-out’’ check box on each of the standard forms they sign to

obtain healthcare. In its current operation, unlike BioVU, i2b2’s

datamarts and biorepositories are created ‘‘on demand’’ for inves-

tigators. To date, this has scaled well when mining healthcare

systems with several million patients for populations of interest

numbering in the thousands or tens of thousands.

Finally, i2b2 is best understood as one of the consequences of

a logical progression of over four decades of clinical research

(Warner 1966; Safran et al. 1989) using electronic health records as

a means to render such research more timely and cost-effective.

With the increased impetus toward the implementation of elec-

tronic health records and the intense interest in evaluating ge-

nome-scale signatures in large populations, the time is ripe for

wider adoption of such methods.
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