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VAAST (the Variant Annotation, Analysis & Search Tool) is a probabilistic search tool for identifying damaged genes
and their disease-causing variants in personal genome sequences. VAAST builds on existing amino acid substitution
(AAS) and aggregative approaches to variant prioritization, combining elements of both into a single unified likelihood
framework that allows users to identify damaged genes and deleterious variants with greater accuracy, and in an easy-to-
use fashion. VAAST can score both coding and noncoding variants, evaluating the cumulative impact of both types of
variants simultaneously. VAAST can identify rare variants causing rare genetic diseases, and it can also use both rare and
common variants to identify genes responsible for common diseases. VAAST thus has a much greater scope of use than
any existing methodology. Here we demonstrate its ability to identify damaged genes using small cohorts (n = 3) of
unrelated individuals, wherein no two share the same deleterious variants, and for common, multigenic diseases using as
few as 150 cases.

[Supplemental material is available for this article.]

The past three decades have witnessed major advances in tech-

nologies for identifying disease-causing genes. As genome-wide

panels of polymorphic marker loci were developed, linkage anal-

ysis of human pedigrees identified the locations of many Mende-

lian disease-causing genes (Altshuler et al. 2008; Lausch et al.

2008). With the advent of SNP microarrays, the principle of linkage

disequilibrium was used to identify hundreds of SNPs associated

with susceptibility to common diseases (Wellcome Trust Case Con-

trol Consortium 2007; Manolio 2009). However, the causes of many

genetic disorders remain unidentified because of a lack of multi-

plex families, and most of the heritability that underlies common,

complex diseases remains unexplained (Manolio et al. 2009).

Recent developments in whole-genome sequencing technol-

ogy should overcome these problems. Whole-genome (or exome)

sequence data have indeed yielded some successes (Choi et al. 2009;

Lupski et al. 2010; Ng et al. 2010; Roach et al. 2010), but these data

present significant new analytic challenges as well. As the volume of

genomic data grows, the goals of genome analysis itself are chang-

ing. Broadly speaking, discovery of sequence dissimilarity (in the

form of sequence variants) rather than similarity has become the

goal of most human genome analyses. In addition, the human ge-

nome is no longer a frontier; sequence variants must be evaluated in

the context of preexisting gene annotations. This is not merely

a matter of annotating nonsynonymous variants, nor is it a matter

of predicting the severity of individual variants in isolation. Rather,

the challenge is to determine their aggregative impact on a gene’s

function, a challenge unmet by existing tools for genome-wide as-

sociation studies (GWAS) and linkage analysis.

Much work is currently being done in this area. Recently,

several heuristic search tools have been published for personal

genome data (Pelak et al. 2010; Wang et al. 2010). Useful as these

tools are, the need for users to specify search criteria places hard-to-

quantify limitations on their performance. More broadly, appli-

cable probabilistic approaches are thus desirable. Indeed, the de-

velopment of such methods is currently an active area of research.

Several aggregative approaches such as CAST (Morgenthaler and

Thilly 2007), CMC (Li and Leal 2008), WSS (Madsen and Browning

2009), and KBAC (Liu and Leal 2010) have recently been pub-

lished, and all demonstrate greater statistical power than existing

GWAS approaches. But as promising as these approaches are, to

date they have remained largely theoretical. And understandably

so: creating a tool that can use these methods on the very large and

complex data sets associated with personal genome data is a sepa-

rate software engineering challenge. Nevertheless, it is a significant

one. To be truly practical, a disease-gene finder must be able to

rapidly and simultaneously search hundreds of genomes and their

annotations.

Also missing from published aggregative approaches is a

general implementation that can make use of Amino Acid Sub-

stitution (AAS) data. The utility of AAS approaches for variant

prioritization is well established (Ng and Henikoff 2006); com-

bining AAS approaches with aggregative scoring methods thus

seems a logical next step. This is the approach we have taken with

the Variant Annotation, Analysis & Search Tool (VAAST), com-

bining elements of AAS and aggregative approaches into a single,

unified likelihood framework. The result is greater statistical power

and accuracy compared to either method alone. It also significantly

widens the scope of potential applications. As our results demon-

strate, VAAST can assay the impact of rare variants to identify rare

diseases, and it can use both common and rare variants to identify

genes involved in common diseases. No other published tool or

statistical methodology has all of these capabilities.

To be truly effective, a disease-gene finder also needs many

other practical features. Since many disease-associated variants are

located in noncoding regions (Hindorff et al. 2009), a disease-gene

finder must be able to assess the cumulative impact of variants in
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both coding and noncoding regions of the genome. A disease-gene

finder must also be capable of dealing with low-complexity and

repetitive genome sequences. These regions complicate searches of

personal genomes for damaged genes, as they can result in false-

positive predictions. The tool should also be capable of using

pedigree and phased genome data, as these provide powerful addi-

tional sources of information. Finally, a disease-gene finder should

have the same general utility that has made genomic search tools

such as BLAST (Altschul et al. 1990; Korf et al. 2003), GENSCAN

(Burge and Karlin 1997), and GENIE (Reese et al. 2000) so successful:

It must be portable, easily trained, and easy to use; and, ideally, it

should be an ab initio tool, requiring only very limited user-speci-

fied search criteria. Here we show that VAAST is such a tool.

We demonstrate VAAST’s ability to identify both common

and rare disease-causing variants using several recently published

personal genome data sets, benchmarking its performance on more

than 100 Mendelian conditions including congenital chloride di-

arrhea (Choi et al. 2009) and Miller syndrome (Ng et al. 2010; Roach

et al. 2010). We also show that VAASTcan identify genes responsible

for two common, complex diseases, Crohn disease (Lesage et al.

2002) and hypertriglyceridemia ( Johansen et al. 2010).

Collectively, our results demonstrate that VAAST provides

a highly accurate, statistically robust means to rapidly search per-

sonal genome data for damaged genes and disease-causing variants

in an easy-to-use fashion.

Results

VAAST scores

VAAST combines variant frequency data with AAS effect infor-

mation on a feature-by-feature basis (Fig. 1) using the likelihood

ratio (l) shown in Equations 1 and 2 in Methods. Importantly,

VAAST can make use of both coding and noncoding variants when

doing so (see Methods). The numerator and denominator in

Equation 1 give the composite likelihoods of the observed geno-

types for each feature under a healthy and disease model, re-

spectively. For the healthy model, variant frequencies are drawn

from the combined control (background) and case (target) genomes

( pi in Eq. 1); for the disease model, variant frequencies are taken

separately from the control genomes (pi
U in Eq. 2) and the case

genomes file ( pi
A in Eq. 1), respectively. Similarly, genome-wide

Amino Acid Substitution (AAS) frequencies are derived using the

control (background) genome sets for the healthy model; for the

disease model, these are based either on the frequencies of different

AAS observed for OMIM (Yandell et al. 2008) alleles or from the

BLOSUM (Henikoff and Henikoff 1992) matrix, depending on user

preference. Figure 2 shows the degree to which AAS frequencies

among known disease-causing alleles in OMIM and AAS frequen-

cies in healthy personal genomes differ from the BLOSUM model

of amino acid substitution frequencies. As can be seen, the AAS

frequency spectra of these data sets differ markedly from one an-

other. The differences are most notable for stop codons, in part

because stop gains and losses are never observed in the multiple

protein alignments used by AAS methods and LOD-based scoring

schemes such as BLOSUM (Henikoff and Henikoff 1992).

VAASTaggregately scores variants within genomic features. In

principle, a feature is simply one or more user-defined regions of

the genome. The analyses reported here use protein-coding human

gene models as features. Each feature’s significance level is the

one-tailed probability of observing l, which is estimated from a

randomization test that permutes the case/control status of each

individual. For the analyses reported below, the genome-wide

statistical significance level (assuming 21,000 protein-coding hu-

man genes) is 0.05/21,000 = 2.4 3 10�6.

Comparison to AAS approaches

Our approach to determining a variant’s impact on gene function

allows VAAST to score a wider spectrum of variants than existing

AAS methods (Lausch et al. 2008) (for more details, see Eq. 2. in

Methods). SIFT (Kumar et al. 2009), for example, examines non-

synonymous changes in human proteins in the context of multi-

ple alignments of homologous proteins from other organisms.

Because not every human gene is conserved and because conserved

genes often contain unconserved coding regions, an appreciable

fraction of nonsynonymous variants cannot be scored by this ap-

proach. For example, for the genomes shown in Table 2, ;10%

of nonsynonymous variants are not scored by SIFT due to a lack

of conservation. VAAST, on the other hand, can score all non-

synonymous variants. VAAST can also score synonymous variants

and variants in noncoding regions of genes, which typically ac-

count for the great majority of SNVs (single nucleotide variants)

genome-wide. Because AAS approaches such as SIFT cannot score

these variants, researchers typically either exclude them from the

search entirely or else impose a threshold on the variants’ frequencies

as observed in dbSNP or in the 1000 Genomes Project data set (The

1000 Genomes Project Consortium 2010). VAAST takes a more rig-

orous, computationally tractable approach: The VAASTscore assigned

to a noncoding variant is not merely the reciprocal of the variant’s

frequency; rather, the noncoding variant’s score is a log-likelihood

ratio that incorporates an estimate of the severity of the substitution

as well as the allele frequencies in the control and case genomes (for

details, see Scoring Noncoding Variants section in Methods).

To illustrate the consequences of VAAST’s novel approach to

nonsynonymous variant scoring, we compared it to two widely

used tools for variant prioritization, SIFT (Kumar et al. 2009) and

ANNOVAR (Wang et al. 2010). Using a previously published data

set of 1454 high-confidence known disease-causing and predis-

posing coding variants from OMIM (Yandell et al. 2008), we asked

what fraction were identified as deleterious by each tool. SIFT

correctly identified 69% of the disease-causing variants (P < 0.05),

Figure 1. VAAST uses a feature-based approach to prioritization. Vari-
ants along with frequency information, e.g., 0.5:A 0.5:T, are grouped into
user-defined features (red boxes). These features can be genes, sliding
windows, conserved sequence regions, etc. Variants within the bounds of
a given feature (shown in red) are then scored to give a composite like-
lihood for the observed genotypes at that feature under a healthy and
disease model by comparing variant frequencies in the cases (target)
compared to control (background) genomes. Variants producing non-
synonymous amino acid changes are simultaneously scored under
a healthy and disease model.
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ANNOVAR (Wang et al. 2010) identified 71%, and VAAST identified

98.0% (Table 1). We then carried out the same analysis using 1454

nonsynonymous variants, randomly drawn from five different Eu-

ropean-American (CEU) genome sequences by the 1000 Genomes

Project (The 1000 Genomes Project Consortium 2010). These vari-

ants are unlikely to be disease-causing given that the individuals are

healthy adults. SIFT incorrectly identified 18% of the ‘‘healthy’’

variants as deleterious (P < 0.05), ANNOVAR (Wang et al. 2010)

identified 1%, and VAAST identified 8%. Under the assumption that

there are 1454 true positives and an equal number of true negatives,

these two analyses indicate that overall the accuracy [(Sensitivity +

Specificity/2)] of SIFT was 75%, ANNOVAR 85%, and VAAST 95%

(Table 1). Figure 5C below provides a comparison of the same three

tools in the context of genome-wide disease-gene hunts.

We also used these data to investigate the relative contribu-

tion of AAS and variant frequency information to VAAST’s allele

prioritization accuracy. Running VAAST without using any AAS

information, its accuracy decreased from 95% to 80%, demon-

strating that the AAS information contributes significantly to

VAAST’s accuracy in identifying deleterious alleles.

Population stratification

The impact of population stratification on VAAST’s false-positive

rate is shown in Figure 3A (red line). In this test we used 30 Euro-

pean-American genomes as a background file and various mixtures

of 30 European-American and Yoruban (African) genomes as tar-

gets. We then ran VAASTon these mixed data sets and observed the

number of genes with VAAST scores that reached genome-wide

significance, repeating the process after replacing one of the target

or background genomes with a Yoruban genome from the 1000

Genomes data set (The 1000 Genomes Project Consortium 2010),

until the target contained 30 Yoruban genomes and the back-

ground set contained 30 European-American genomes. The re-

sulting curve shown in red in Figure 3A thus reports the impact of

differences in population stratification in cases and controls on

VAAST’s false-positive prediction rate. With complete stratification

(e.g., all genomes in the target are Yoruban and all background

genomes are CEU), 1087 genes have LD-corrected genome-wide

statistically significant scores (alpha = 2.4 3 10�6).

Platform errors

We also investigated the impact of bias in sequencing platform and

variant-calling procedures on false-positive rates, using a similar

approach to the one we used to investigate population stratifica-

tion effects. Here we varied the number of case genomes drawn

from different sequencing platforms and alignment/variant-call-

ing pipelines. We began with 30 background genomes drawn from

the CEU subset of the 1000 Genomes Project (The 1000 Genomes

Project Consortium 2010) initial release. All of the selected ge-

nomes were sequenced to ;63 and called using the 1000 Ge-

nomes Project variant-calling pipeline. The target file in this case

consisted of 30 similar 1000 Genomes Project CEU genomes that

were not included in the background file. This was the starting

point for these analyses. We then ran VAAST and recorded the

number of genes with LD-corrected genome-wide statistically sig-

nificant scores (alpha = 2.4 3 10�6), repeating the process after

substituting one of the target genomes with a non–1000 Genomes

Project European-American (CEU) genome (Reese et al. 2000; Li et al.

2010). We repeated this process 30 times. These results are shown in

Figure 3B (red line). Taken together, these results (Fig. 3) quantify the

impact of population stratification and the cumulative effects of

platform differences, coverage, and variant-calling procedures

on false-positive rates and allow comparisons of the relative

magnitude of platform-related biases to population stratification

effects. With all background genomes from the subset of the 1000

Genomes Project data (The 1000 Genomes Project Consortium

Table 1. Variant prioritization accuracy comparisons

Percent judged deleterious

SIFT ANNOVAR VAAST

Diseased 69% 71% 98%
Healthy 18% 1% 8%
Accuracy 75% 85% 95%

SIFT, ANNOVAR, and VAAST were run on a collection of 1454 known
disease-causing variants (Diseased) and 1454 presumably healthy variants
randomly chosen from five different CEU genomes (Healthy). The top
portion of the table reports the percentage of variants in both sets judged
deleterious by the three tools. The bottom row reports the accuracy of
each tool. The filtering criteria used in ANNOVAR excluded all variants
present in the 1000 Genomes Project data and dbSNP130 as well as any
variant residing in a segmentally duplicated region of the genome. For the
‘‘Diseased’’ category, the VAAST control data set contained 196 personal
genomes drawn from the 1000 Genomes Project and 10Gen data sets
and dbSNP130. For the ‘‘Healthy’’ category, the VAAST control data set
contained 55 other European-American genomes drawn from the 1000
Genomes Project data set (to match the ethnicity of the 1454 CEU alleles).

Figure 2. Observed amino acid substitution frequencies compared to
BLOSUM62. Amino acid substitution frequencies observed in healthy and
reported for OMIM disease alleles were converted to LOD-based scores
for purposes of comparison to BLOSUM62. The BLOSUM62 scores are
plotted on the y-axis throughout. (Red circles) stops; (blue circles) all other
amino acid changes. The diameter of the circles is proportional to the
number of changes with that score in BLOSUM62. (A) BLOSUM62 scoring
compared to itself. Perfect correspondence would produce the diagonally
arranged circles shown. (B) Frequencies of amino acid substitutions in 10
healthy genomes compared to BLOSUM62. (C ) OMIM nonsynonymous
variant frequencies compared to BLOSUM62.
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2010) described above and all target genomes from data sets other

than the 1000 Genomes data set (Reese et al. 2000; Li et al. 2010),

107 genes have genome-wide LD-corrected statistically significant

scores (alpha = 2.4 3 10�6), compared to the 1087 observed in our

population stratification experiments (alpha = 2.4 3 10�6).

Variant masking

The limited number of personal genomes available today necessi-

tates comparisons of genomes sequenced on different platforms, to

different depths of coverage, and subjected to different variant-

calling procedures. As shown in Figure 3B, these factors can be

a major source of false positives in disease-gene searches. Based on

an analysis of these data, we found variant-calling errors to be over-

represented in low-complexity and repetitive regions of the ge-

nome, which is not unexpected. We therefore developed a VAAST

runtime option for masking variants within these regions of the

genome. VAAST users specify a read length and paired or unpaired

reads. VAAST then identifies all variants in non-unique regions of

the genome meeting these criteria and excludes them from its cal-

culations. The blue lines in Figure 3 plot the number of genes

attaining LD-corrected genome-wide significance after masking. As

can be seen, whereas masking has negligible impact on false posi-

tives due to population stratification, it has a much larger impact on

sequencing platform and variant-calling bias. This is a desirable

behavior. Population stratification introduces real, but confound-

ing, signals into disease-gene searches, and these real signals are

unaffected by masking (Fig. 3A). In contrast, masking eliminates

many false positives due to noise introduced by systematic errors in

sequencing platform and variant-calling procedures (Fig. 3B).

Identification of genes and variants that cause rare diseases

Miller syndrome

Our targets in these analyses were the exome sequences of two

siblings affected with Miller syndrome (Ng et al. 2010; Roach et al.

2010). Previous work (Ng et al. 2010; Roach

et al. 2010) has shown that the phenotypes

of these individuals result from variants in

two different genes. The affected siblings’

craniofacial and limb malformations arise

from compromised copies of DHODH, a

gene involved in pyrimidine metabolism.

Both affected siblings also suffer from pri-

mary ciliary dyskinesia as a result of mu-

tations in another gene, DNAH5, that en-

codes a ciliary dynein motor protein. Both

affected individuals are compound het-

erozygotes at both of these loci. Thus, this

data set allows us to test VAAST’s ability to

identify disease-causing loci when more

than one locus is involved and the muta-

tions at each locus are not identical by

position or descent.

Accuracy on the Miller syndrome data

We carried out a genome-wide search of

21,000 protein-coding genes using the

two affected Miller syndrome exomes as

targets and using two different healthy-

genome background files. The first back-

ground file consists of 65 European-American (CEU) genomes se-

lected from the 1000 Genomes Project data (The 1000 Genomes

Project Consortium 2010) and the 10Gen data set (Reese et al.

2010). The second, larger background file consists of 189 genomes

selected from the same data sources, but, in distinction to the first,

is ethnically heterogeneous and contains a mixture of sequenc-

ing platforms, allowing us to assay the impact of these factors

on VAAST’s performance in disease-gene searches. In these exper-

iments, we ran VAAST using its recessive disease model option (for

a description of VAAST disease models, see Methods), and with and

without its variant-masking option. Depending on whether or not

its variant-masking option was used, VAAST identified a maximum

of 32, and a minimum of nine, candidate genes. Variant masking, on

average, halved the number of candidates (Table 2). The best accuracy

was obtained using the larger background file together with the

masking option. DHODH ranked fourth and DNAH5 fifth among the

21,000 human genes searched. This result demonstrates that VAAST

can identity both disease genes with great specificity using a cohort of

only two related individuals, both compound heterozygotes for a rare

recessive disease. Overall, accuracy was better using the second, larger

background file, demonstrating that, for rare diseases, larger back-

ground data sets constructed from a diverse set of populations and

sequencing platforms improve VAAST’s accuracy, despite the

stratification issues these data sets introduce.

We also took advantage of family quartet information (Ng

et al. 2010; Roach et al. 2010) to demonstrate the utility of pedi-

gree information for VAAST searches. When run with its pedigree

and variant-masking options, only two genes are identified as

candidates: DNAH5 is ranked first, and DHODH is ranked second,

demonstrating that VAASTcan achieve perfect accuracy using only

a single family quartet of exomes (Fig. 4). Our previously published

analysis (Roach et al. 2010) identified four candidate genes, and

further, expert post hoc analyses were required to identify the two

actual disease-causing genes. The results shown in Figure 4 thus

demonstrate that VAAST can use pedigree data to improve its ac-

curacy, even in the face of confounding signals due to relatedness

Figure 3. Impact of population stratification and platform bias. Numbers of false positives with and
without masking. (A) Effect of population stratification. (B) Effect of heterogeneous platform and variant
calling procedures. (Red line) Number of false positives without masking; (blue line) after masking. Note
that although masking has little effect on population stratification, it has a much larger impact on
platform bias. This is an important behavior: Population stratification introduces real, but confounding
signals into disease gene searches; these signals are unaffected by masking (A); in contrast, VAAST’s
masking option removes false positives due to noise introduced by systematic errors in platform and
variant calling procedures (B).
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of target exomes, significant population stratification, and plat-

form-specific noise.

Impact of noncoding SNVs

We used these same data sets to investigate the impact of using

both coding and noncoding variants in our searches. To do so, we

extended our search to include all SNVs at synonymous codon

positions and in conserved DNase hypersensitive sites and tran-

scription factor-binding sites (for details, see Methods). Doing so

added an additional 36,883 synonymous and regulatory variants

to the 19,249 nonsynonymous changes we screened in the anal-

yses reported above. Using only the two Utah siblings, 189 can-

didate genes are identified. DHODH is ranked 15th and DNAH5 is

sixth among them. Repeating the analysis using family quartet

information, 23 candidate genes are identified; DHODH is ranked

fourth and DNAH5 is ranked first. Thus, increasing the search space

to include almost 37,000 additional noncoding variants had little

negative impact on accuracy.

Impact of cohort size

We also used the Miller syndrome data to assess the ability of

VAAST to identify disease-causing genes in very small case cohorts

wherein no two individuals in the target data set are related or

share the same disease-causing variants. We also wished to de-

termine the extent to which the relatedness of the two siblings

introduced spurious signals into the analyses reported in Table 2.

We used information from additional Miller syndrome kindreds

(Ng et al. 2010; Roach et al. 2010) to test this scenario. To do so, we

used a publicly available set of Danish exome sequences (Li et al.

2010). We added two different disease-causing variants in DHODH

reported in individuals with Miller syndrome (Ng et al. 2010;

Roach et al. 2010) to six different Danish exomes to produce six

unrelated Danish exomes, each carrying two different Miller

syndrome causative alleles. The background file consisted of the

same 189 genome equivalents of mixed ethnicities and sequencing

platforms used in Table 2. We then used VAAST to carry out a ge-

nome-wide screen using these six exomes as targets. We first used

one exome as a target, then the union of two exomes as a target,

and so on, in order to investigate VAAST’s performance in a series of

case cohorts containing pools of one to six exomes. The results are

shown in Table 3.

DHODH is the highest ranked of two

candidates for a cohort of three unrelated

individuals and the only candidate to

achieve LD-corrected genome-wide statis-

tical significance (Table 3). In this data set

no two individuals share the same vari-

ants, nor are any homozygous for a vari-

ant. This data set thus demonstrates

VAAST’s ability to identify a disease-caus-

ing gene in situations in which the gene is

enriched for rare variants, but no two in-

dividuals in the case data set share the

same variant, and the cohort size is as small

as three unrelated individuals. VAAST’s

probabilistic framework also makes it pos-

sible to assess the relative contribution of

each variant to the overall VAAST score for

that gene, allowing users to identify and

prioritize for follow-up studies those vari-

ants predicted to have the greatest func-

tional impact on a gene. Table 4 shows these scored variants for the

Miller syndrome alleles of all six affected individuals.

Congenital Chloride Diarrhea (CCD) data set

We tested VAAST’s ability to identify the genetic variant re-

sponsible for a rare recessive disease using the whole-exome se-

quence of a patient diagnosed with congenital chloride diarrhea

(CCD) due to a homozygous D652N mutation in the SLC26A3

gene (Choi et al. 2009). In this analysis the background data set

consisted of 189 European-American genomes (Table 5). Using the

single affected exome as a target, SLC26A3 is ranked 21st genome-

wide. We also evaluated the impact of bias in platform and variant-

calling procedures on this result. To do so, we added the CCD caus-

ative allele as a homozygote to an ethnically matched genome drawn

from the 1000 Genomes data set (Table 5; The 1000 Genomes Pro-

ject Consortium 2010), in the same manner that was used to gen-

erate the data in Table 3. Under the assumption that this rare re-

cessive disease is due to variants at the same location in each affected

genome (intersection by position), only a single pair of unrelated

exomes is required to identify CCD with perfect specificity. Adding

a third affected exome is sufficient to obtain LD-corrected genome-

wide statistical significance, even when the selection criteria are

relaxed to include the possibility of different disease-causing alleles

at different positions in different individuals (union of variants by

position).

Impact of recessive modeling on accuracy

We also investigated the impact of VAAST’s recessive inheritance

model on our rare disease analyses (Supplemental Tables 2, 3). In

general, running VAAST with this option yielded improved speci-

ficity but had little impact on gene ranks. For a cohort of three

unrelated Miller syndrome individuals, the recessive inheritance

model had no impact on rank or specificity (Supplemental Table 2).

For CCD, using a cohort of three unrelated individuals, SLC26A3

was ranked first in both cases, but the recessive model decreased the

number of candidate genes from seven to two (Supplemental Table

3). These results demonstrate VAAST’s ab initio capabilities: It is

capable of identifying disease-causing alleles with great accuracy,

even without making assumptions regarding mode of inheritance.

Our large-scale performance analyses, described below, support and

clarify these conclusions.

Table 2. Effect of background file size and stratification on accuracy

Genome-wide
significant genes

DHODH DNAH5

Rank P-value Rank P-value

Caucasian only (65 genomes)
UMSK 32 25 7.92 3 10�7 32 1.98 3 10�6

MSK 17 14 9.93 3 10�7 19 5.79 3 10�5

Mixed ethnicities (189 genomes)
UMSK 16 9 6.78 3 10�9 5 2.00 3 10�9

MSK 9 4 7.60 3 10�9 5 1.18 3 10�8

Results of searching the intersection of two Utah Miller Syndrome affected genomes against two different
background files, with and without masking. (Caucasians only) 65 Caucasian genomes drawn from six
different sequencing/alignment/variant calling platforms; (mixed ethnicities) 189 genomes (62 YRI, 65
CAUC, 62 ASIAN), from the 1000 Genomes Project and 10Gen data set; (UMSK) unmasked; (MSK):
masked; (genome-wide significant genes) number of genes genome-wide attaining a significant non-LD
corrected P-value; (rank) gene rank of DHODH and DNAH5 among all scored genes; (P-value) non-LD
corrected P-value; genome-wide significant alpha is 2.4310�6. Data were generated using a fully pene-
trant, monogenic recessive model. The causative allele incidence was set to 0.00035.
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Benchmark on 100 different known disease genes

To gain a better understanding of VAAST’s performance charac-

teristics, we also evaluated its ability to identify 100 different

known disease-causing genes in genome-wide searches. For these

analyses, we first randomly selected (without replacement) a

known disease-causing gene from OMIM for which there existed at

least six different published nonsynonymous disease-causing al-

leles. See Supplemental File 2 for a complete listing of diseases,

genes, and alleles. Next we randomly selected known disease-

causing alleles at the selected locus (without replacement) and

inserted them at their reported positions within the gene into

different whole-genome sequences drawn for the Complete

Genomics Diversity Panel (http://www.completegenomics.com/

sequence-data/download-data/). We then

ran VAAST under a variety of scenarios

(e.g., dominant, recessive, and various

case cohort sizes) and recorded the rank

of the disease gene, repeating the analyses

for 100 different known disease genes. We

also compared the performance of VAAST

to SIFT and ANNOVAR using these same

data sets. (Details of the experimental de-

sign can be found in the Methods section.)

The results of these analyses are shown in

Figure 5. In this figure the height of each

box is proportional to the mean rank of the

disease-causing gene for the 100 trials, and

the number shown above each box is the

mean rank from among 17,293 RefSeq

genes. The error bars delimit the spread of

the ranks, with 95% of the runs encom-

passed within the bars.

Figure 5A summarizes VAAST’s per-

formance on this data set under both

dominant and recessive disease scenarios.

For these experiments, we assayed the av-

erage rank for three different cohort sizes:

two, four, and six individuals for the

dominant scenario, and one, two, and

three individuals for the recessive analyses.

For both scenarios, the mean and variance

rapidly decrease as the cohort size in-

creases. For the dominant scenario, using

a case cohort of six unrelated individuals,

each carrying a different disease-causing

allele, VAAST ranked the disease-causing

gene on average ninth out of 17,293 can-

didates with 95% of the runs having ranks

between 5 and 40 in 100 different genome-

wide searches. For the recessive scenario,

using a case cohort of three unrelated in-

dividuals each carrying two different dis-

ease-causing variants at different positions

(all compound heterozygotes), VAAST

ranked the disease-causing gene on aver-

age third out of 17,293 candidates, with

95% of the runs having ranks between 2

and 10. None of the individuals had any

disease-causing alleles in common.

Figure 5B summarizes VAAST’s per-

formance when only a subset of the case

cohort contains a disease-causing allele, which could result from

(1) no calls at the disease-causing allele during variant calling; (2)

the presence of phenocopies in the case cohort; and (3) locus

heterogeneity. As can be seen in Figure 5B, averages and variances

decrease monotonically as increasing numbers of individuals in

the case cohort bear disease-causing alleles in the gene of interest.

Moreover, for dominant diseases, even when one-third of the cases

lack disease-causing alleles in the selected OMIM disease gene,

VAAST achieves an average rank of 61 with 95% of the runs having

ranks between 5 and 446. For recessive diseases the average was 21,

with 95% of the disease genes ranking between 7 and 136 out of

17,293 genes, genome-wide.

Figure 5C compares VAAST’s accuracy to that of ANNOVAR

and SIFT. For these analyses, we used the same data used to produce

Figure 4. Genome-wide VAAST analysis of Utah Miller Syndrome Quartet. VAAST was run in its
quartet mode, using the genomes of the two parents to improve specificity when scoring the two
affected siblings. Gray bars along the center of each chromosome show the proportion of unique
sequence along the chromosome arms, with white denoting completely unique sequence; black re-
gions thus outline centromeric regions. Colored bars above and below the chromosomes (mostly
green) represent each annotated gene; plus strand genes are shown above and minus strand genes
below; their width is proportional to their length; height of bar is proportional to their VAAST score.
Genes colored red are candidates identified by VAAST. Only two genes are identified in this case:
DNAH5 and DHODH. Causative allele incidence was set to 0.00035, and amino acid substitution fre-
quency was used along with variant-masking. This view was generated using the VAAST report viewer.
This software tool allows the visualization of a genome-wide search in easily interpretable form,
graphically displaying chromosomes, genes, and their VAAST scores. For comparison, the corre-
sponding figure, without pedigree information, is provided as Supplemental Figure 1.
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Figure 5A, running all three tools on a case cohort of six and three

individuals for the dominant and recessive comparisons, respec-

tively (for details, see Methods). In these analyses, all members

of the case cohort contain disease-causing alleles. For ANNOVAR,

we set the expected combined disease-allele frequency at <5% (see

Methods) as this improved ANNOVAR’s performance (data not

shown), but for VAAST no prior assumptions were made regarding

the disease-causing alleles’ frequencies in the population. VAAST

outperforms both SIFT and ANNOVAR—both as regards to mean

ranks and variances. VAAST, for example, achieves a mean rank of 3

for recessive diseases using three com-

pound heterozygous individuals as a case

cohort. SIFT achieves an average rank of

2317, and ANNOVAR an average rank of

529. There is also much less variance in

the VAAST ranks than in those of the

other tools. For example, in the recessive

scenario, using three compound hetero-

zygous individuals as a case cohort, in

95% of the VAAST runs the rank of the

disease-causing gene was between ranks 2

and 10. By comparison, ANNOVAR’s

ranks varied between 67 and 8762 on the

same data sets, and SIFT’s varied between

66 and 9107. See Supplemental Figures 2

and 3 for the complete distributions. We

also investigated the possibility that tak-

ing the intersection of ANNOVAR and

SIFT calls might improve accuracy com-

pared to either of these tools alone. It did

not; see Supplemental Figure 4. Closer

inspection of these data revealed the

reasons for the high variances character-

istic of SIFTand ANNOVAR. In SIFT’s case,

the variance is due to failure to identify

one or more of the disease-causing alleles

as deleterious, a finding consistent with

our accuracy analysis presented in Table

1. This, coupled with its inability to make

use of variant frequencies, means that SIFT

also identifies many very frequent alleles

genome-wide as deleterious, increasing the

rank of the actual disease-causing gene.

ANNOVAR’s performance, because it can

filter candidate variants based on their al-

lele frequencies, is thus better than SIFT’s

(average rank of 529 vs. 2317). However,

its variance from search to search remains

high compared to VAAST, as the OMIM

alleles in the analysis are distributed across

a range of frequencies, and unlike VAAST,

ANNOVAR is unable to leverage this in-

formation for greater accuracy.

Identification of genes and variants
causing common multigenic diseases

Power analyses

Our goal in these analyses was twofold:

first, to benchmark the statistical power

of VAASTcompared to the standard single

nucleotide variation (SNV) GWAS approach; and second, to de-

termine the relative contributions of variant frequencies and amino

acid substitution frequencies to VAAST’s statistical power. We

also compared the statistical power of VAAST’s default scoring al-

gorithm to that of WSS (Madsen and Browning 2009), one of the

most accurate aggregative methods to date for identifying common

disease genes using rare variants. Figure 6A shows the results for the

NOD2 gene, implicated in Crohn’s disease (CD) (Lesage et al. 2002).

This data set contains both rare (minor allele frequency [MAF] <5%)

and common variants. Figure 6B shows the same power analysis

Table 3. Impact of cohort size on VAAST’s ability to identify a rare disease caused by
compound heterozygous alleles

Target genome(s)

Genome-wide DHODH rank

Genes
scored

Significant genes

Rank

P-value

Non-LD-
corrected

LD-
corrected

Non-LD-
corrected

LD-
corrected

1 Compound heterozygote 92 67 0 86 2.36 3 10�4 5.26 3 10�3

2 Compound heterozygotes 4 3 0 2 2.81 3 10�8 5.51 3 10�5

3 Compound heterozygotes 2 2 1 1 2.61 3 10�11 8.61 3 10�7

4 Compound heterozygotes 1 1 1 1 1.99 3 10�15 1.78 3 10�8

5 Compound heterozygotes 1 1 1 1 6.95 3 10�15 4.60 3 10�10

6 Compound heterozygotes 1 1 1 1 5.79 3 10�17 1.42 3 10�11

The background file consisted of 189 genomes of mixed ethnicity from the 1000 Genomes Project com-
bined with nine additional genomes of mixed ethnicity and sequencing platforms drawn from the 10Gen
genome set (Reese et al. 2010). Causative alleles reported in the six individuals described in Ng et al. (2010)
were added to unrelated exomes from re-sequenced individuals from Denmark reported in Li et al. (2010).
Data were generated using a fully penetrant monogenic recessive model (see Supplemental Table 2).
Causative allele incidence was set to 0.00035 (for details, see Supplemental Table 2), and amino acid sub-
stitution frequency was used along with masking of repeats. (Genes scored) Number of genes in the genome
with variant distributions consistent with VAAST’s fully penetrant monogenic recessive model and causative
allele incidence threshold. Scoring was evaluated by permutation by gene and permutation by genome.

Table 4. Relative impacts of observed variants in DHODH

The ‘‘score contribution’’ column shows the magnitude of impact of each observed variant in DHODH
to its final score. (Red) Most severe; (green) least severe. For comparison, SIFT values are also shown.
Note that SIFT judges two of the known disease-causing alleles as tolerated and is unable to score the
noncoding SNV. The target file contains six unrelated individuals with the compound heterozygous
variants described in Table 3. The background file consisted of 189 genomes of mixed ethnicity from the
1000 Genomes Project combined with nine additional genomes of mixed ethnicity and sequencing
platforms drawn from the 10Gen set (Reese et al. 2010). Data were generated using VAAST’s fully
penetrant monogenic recessive model and masking. Causative allele incidence was set to 0.00035.
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using LPL, a gene implicated in hypertriglyceridemia (HTG) ( Johansen

et al. 2010). This analysis uses a data set of 438 re-sequenced subjects

( Johansen et al. 2010). For the LPL gene, only rare variants (MAF <

5%) were available; therefore, this analysis tests VAAST’s ability to

detect disease genes for common diseases in which only rare variants

contribute to disease risk. To control for Type I error in this analysis,

we applied a Bonferroni correction, with the number of tests ap-

proximately equal to the number of genes that would be included in

a genome-wide analysis (alpha = 0.05/21,000 = 2.4 3 10�6).

VAAST rapidly obtains good statistical power even with mod-

est sample sizes; its estimated power is 89% for NOD2 using as few

as 150 individuals (alpha = 2.4 3 10�6). By comparison, the power

of GWAS is <4% at the same sample size. Notably, for NOD2, nearly

100% power is obtained with VAAST when a GWAS would still

have <10% power. Also shown is VAAST’s power as a function of

sample size without the use of amino acid substitution data. The

red and blue lines in Figure 6A show the power curves for VAAST

using OMIM and BLOSUM, respectively, for its AAS disease models.

As can be seen, power is improved when AAS information is used.

In general, the LPL results mirror those of NOD2. Although

VAAST obtained less power using the LPL data set compared to

NOD2, this was true for every approach. Interestingly, for NOD2,

BLOSUM attains higher power using smaller sample sizes com-

pared to OMIM. The fact that the trend is reversed for LPL, how-

ever, suggests that the two AAS models are roughly equivalent. We

also compared VAAST’s performance to that of WSS (Madsen and

Browning 2009), another aggregative prioritization method.

VAAST achieves greater statistical power than WSS on both data

sets, even when VAAST is run without use of AAS information.

Discussion
VAAST uses a generalized feature-based prioritization approach, ag-

gregating variants to achieve greater statistical search power. VAAST

can score both coding and noncoding variants, evaluating the ag-

gregative impact of both types of SNVs simultaneously. In this first

study, we have focused on genes, but in principle, the tool can be

used to search for disease-causing variants in other classes of features

as well; for example, regulatory elements, sets of genes belonging to

a particular genetic pathway, or genes belonging to a common

functional category, e.g., transcription factors.

In contrast to GWAS approaches,

which evaluate the statistical significance

of frequency differences for individual

variants in cases versus controls, VAAST

evaluates the likelihood of observing the

aggregate genotype of a feature given

a background data set of control ge-

nomes. As our results demonstrate, this

approach greatly improves statistical

power, in part because it bypasses the

need for large statistical corrections for

multiple tests. In this sense, VAAST re-

sembles several other methods that ag-

gregate variants: CAST (Morgenthaler and

Thilly 2007), CMC (Li and Leal 2008),

WSS (Madsen and Browning 2009), and

KBAC (Liu and Leal 2010). However, in

contrast to these methods, VAAST also

uses AAS information. Moreover, it uses

a new approach to do so, one that allows

it to score more SNVs than existing AAS

methods such as SIFT (Kumar et al. 2009) and Polyphen (Sunyaev

et al. 2001).

Much additional statistical power and accuracy are also gained

from other components of the VAAST architecture, such as its ability

to use pedigrees, phased data sets, and disease inheritance models.

No existing AAS (Ng and Henikoff 2006) or aggregating method

(Morgenthaler and Thilly 2007; Li and Leal 2008; Madsen and

Browning 2009; Liu and Leal 2010) has these capabilities. The

power of VAAST’s pedigree approach is made clear in the quartet-

based Miller syndrome analysis shown in Figure 4, where ge-

nome-wide only the two disease-causing genes are identified in

a genome-wide screen of 19,249 nonsynonymous variants.

Another important feature of VAAST is its ability to identify and

mask variants in repetitive regions of the genome. As our results

show, this provides a valuable method for mitigating platform-

specific sequencing errors in situations in which it is cost-prohibitive

to obtain a sufficiently large control set of genomes matched with

regard to sequencing and variant calling pipeline. VAAST also dif-

fers in important ways from published heuristic search tools such

as ANNOVAR (Wang et al. 2010). Unlike these tools, VAAST is not

designed specifically to identify rare variants responsible for rare

diseases. Instead, VAAST can search any collection of variants, re-

gardless of their frequency distributions, to identify genes involved

in both rare and common diseases.

Collectively, our results make clear the synergy that exists

between these various components of the VAAST architecture. For

example, they grant VAAST several unique features that distin-

guish it from commonly used AAS methods such as SIFT. Unlike

AAS approaches, VAAST can score all variants, coding and non-

coding, and in nonconserved regions of the genome. In addition,

VAAST can obtain greater accuracy in judging which variants are

deleterious. Comparison of the two Utah Miller syndrome exomes

serves to highlight these differences. The two Miller syndrome

exomes (Ng et al. 2010; Roach et al. 2010), for example, share 337

SNVs that are judged deleterious by SIFT; these 337 shared SNVs are

distributed among 277 different genes. Thus, although AAS tools

such as SIFT are useful for prioritizing the variants within a single

known disease gene for follow-up studies, they are of limited use

when carrying out genome-wide disease-gene searches, especially

when the affected individuals are compound heterozygotes, as in

the Miller syndrome examples.

Table 5. Impact of cohort size on VAAST’s ability to identify a rare recessive disease

Target genome(s)

Genome-wide SLC26A3

Genes
scored

Significant genes

Rank

P-value

Non-LD-
corrected

LD-
corrected

Non-LD-
corrected

LD-
corrected

1 Homozygote 127 69 0 21 1.22 3 10�5 5.26 3 10�3

Union 2 homozygotes 7 7 0 3 4.74 3 10�10 5.51 3 10�5

Intersection 2 homozygotes 3 3 0 1 7.47 3 10�10 5.51 3 10�5

Union 3 homozygotes 2 2 2 1 2.83 3 10�13 8.61 3 10�7

Intersection 3 homozygotes 1 1 1 1 1.29 3 10�13 8.61 3 10�7

The background file consists of 189 genomes of mixed ethnicity from the 1000 Genomes Project com-
bined with nine additional genomes of mixed ethnicity and sequencing platforms drawn from the 10Gen
set (Reese et al. 2010). (Targets) The first homozygote affected is the single CCD affected exome reported
in Choi et al. (2009); (remaining target genomes) unrelated exomes from re-sequenced individuals from
Denmark reported in Li et al. (2010) with the causative allele added. Data were generated on either the
union or intersection of affecteds using VAAST’s fully penetrant monogenic recessive model. Causative
allele incidence was set to 0.013; masking was also used. Scoring was evaluated by non-LD and LD-
corrected permutation. (Genes scored) The number of genes in the genome receiving a score >0.
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In comparison to SIFT, VAAST scores 10% more nonsyn-

onymous SNVs but identifies only nine candidate genes (Table 2),

with the two disease-causing genes ranked fourth and fifth. When

run in its pedigree mode, only the four disease-causing variants in the

two disease genes are judged deleterious by VAAST genome-wide.

The original analysis (Roach et al. 2010) of the family of four required

3 mo and identified eight potential disease-causing variants in four

genes. An exome analysis required four affected individuals in three

families to identify DHODH as the sole candidate for Miller syndrome

(Ng et al. 2010). In contrast, using only the data from the family of

four, VAAST identified the two disease genes in ;11 min using a 24-

CPU compute server, and with perfect accuracy. Even when an ad-

ditional 36,883 synonymous and noncoding regulatory variants are

included in this genome-wide screen, only 23 candidate genes are

identified, with DHODH still ranked fourth and DNAH5 ranked first.

Our benchmark analyses using 100 different known diseases

and 600 different known disease-causing alleles make it clear that

our Miller syndrome and CCD analyses are representative results,

and that VAAST is both a very accurate and a very reliable tool.

VAAST consistently ranked the disease gene in the top three can-

didates genome-wide for recessive diseases and in the top nine gene

candidates for dominant diseases. Equally important is reliability.

VAAST has a much lower variance than either SIFTor ANNOVAR. In

the recessive scenario, using three compound heterozygous in-

dividuals as a case cohort, for 95% of the VAAST runs, the disease-

causing gene was ranked between second and 10th genome-wide; in

comparison, ANNOVAR’s ranks varied between 67 and 8762 on the

same data sets, and SIFT’s varied between 66 and 9107. Thus, VAAST

is not only more accurate, it is also a more reliable tool. These same

analyses also demonstrate that VAAST remains a reliable tool even

when confronted with missing data due to phenomena such as

missed variants, locus heterogeneity, and phenocopies in the case

cohorts. Even when one-third of the cohort lacked disease-causing

alleles at the locus, the average rank was still 61 for dominant dis-

eases and 21 for recessive diseases (Fig. 5B).

VAAST can also be used to search for genes that cause com-

mon diseases and to estimate the impact of common alleles on

gene function, something tools like ANNOVAR are not able to

do. For example, when run over a published collection of 1454

Figure 5. Benchmark analyses using 100 different known disease
genes. In each panel the y-axis denotes the average rank of the disease
gene among 100 searches for 100 different disease genes. Heights of
boxes are proportional to the mean rank, with the number above each box
denoting the mean rank of the disease gene among all RefSeq annotated
human genes. Error bars encompass the maximum and minimum ob-
served ranks for 95% of the trials. (A) Average ranks for 100 different
VAAST searches. (Left half of panel) The results for genome-wide searches
for 100 different disease genes assuming dominance using a case cohort of
two (blue box), four (red box), and six (green box) unrelated individuals.
(Right half of panel) The results for genome-wide searches for 100 different
recessive disease genes using a case cohort of 1 (blue box), 2 (red box),
and 3 (green box). (B) Impact of missing data on VAAST performance. (Left
and right half of panel) Results for dominant and recessive gene searches as
in panel A, except in this panel the case cohorts contain differing per-
centages of individuals with no disease-causing variants in the disease
gene. (Blue box) Two-thirds of the individuals lack a disease-causing allele;
(red box) one-third lack a disease-causing allele; (green box) all members
of the case cohort contain disease-casing alleles. (C ) Comparison of VAAST
performance to that of ANNOVAR and SIFT. (Left half of panel) The results
for genome-wide searches using VAAST, ANNOVAR, and SIFT to search for
100 different dominant disease genes using a case cohort of six unrelated
individuals. (Right half of panel) The results for genome-wide searches
using VAAST, ANNOVAR, and SIFT to search for 100 different recessive
disease genes using a case cohort of three unrelated individuals.
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high-confidence disease-causing and predisposing SNVs from

OMIM (Yandell et al. 2008), VAAST identifies all but 29 (2%) of

these SNVs as damaging. ANNOVAR (Wang et al. 2010), in com-

parison, excludes 427 (29%) of these SNVs from further analysis

because they are present in the 1000 Genomes Project data (The

1000 Genomes Project Consortium 2010), dbSNP130, or in seg-

mentally duplicated regions. These results underscore the advan-

tages of VAAST’s probabilistic approach. VAAST can assay the im-

pact of rare variants to identify rare diseases and both common and

rare variants to identify the alleles responsible for common dis-

eases, and it operates equally well on data sets (e.g., NOD2) wherein

both rare and common variants are contributing to disease. Our

common-disease analyses serve to illustrate these points. These

results demonstrate that VAAST can achieve close to 100% statis-

tical power on common-disease data sets, where a traditional GWAS

test has almost no power. We also demonstrate that VAAST’s own

feature-based scoring significantly outperforms WSS (Madsen and

Browning 2009), which, like all published aggregative scoring

methods, does not use AAS information. These analyses also

demonstrate another key feature of VAAST: While the controls

in the Crohn’s disease data set were fully sequenced at NOD2,

only a small subset of the cases was sequenced, and the rest were

genotyped at sites that were polymorphic in the sample. VAAST

does well with this mixed data set. It is likely that VAAST would do

even better using a data set of the same size consisting only of se-

quence data, as such a cohort would likely contain additional rare

variants not detectable with chip-based technologies. Consistent

with this hypothesis, VAAST also attains high statistical power

compared to traditional GWAS methods on the LPL data set, which

only contains alleles with a frequency of <5%. This demonstrates

that VAAST can also identify common-disease genes even when

they contain no common variants that contribute to disease risk.

These results suggest that VAAST will prove useful for re-anal-

yses of existing GWAS and linkage studies. Targeted VAAST analyses

combined with region-specific resequencing around GWAS hits will

allow smaller Bonferroni corrections (Nicodemus et al. 2005) than

the genome-wide analyses presented here, resulting in still greater

statistical power, especially in light of VAAST’s feature-based ap-

proach. The same is true for linkage stud-

ies. In addition, because much of the

power of VAAST is derived from rare vari-

ants and amino acid substitutions, the

likelihood of false positives due to linkage

disequilibrium with causal variants is low.

Thus, it is likely that VAAST will allow

identification of disease genes and causa-

tive variants in GWAS data sets in which

the relationships of hits to actual disease

genes and the causative variants are un-

clear, and for linkage studies, where only

broad spans of statistically significant

linkage peaks have been detected to date.

VAAST is compatible with current

genomic data standards. Given the size

and complexity of personal genome data,

this is not a trivial hurdle for software ap-

plications. VAAST uses GFF3 (http://www.

sequenceontology.org/resources/gff3.

html), and GVF (Reese et al. 2010) and

VCF (http://www.1000genomes.org/wiki/

Analysis/vcf4.0), standardized file formats

for genome annotations and personal

genomes data. The size and heterogeneity of the data sets used in

our analyses make clear VAAST’s ability to mine hundreds of ge-

nomes and their annotations at a time. We also point out that

VAAST has a modular software architecture that makes it easy

to add additional scoring methods. Indeed, we have already

done so for WSS (Madsen and Browning 2009). This is an im-

portant point, as aggregative scoring methods are a rapidly de-

veloping area of personal genomics (Morgenthaler and Thilly

2007; Li and Leal 2008; Madsen and Browning 2009; Liu and Leal

2010). VAAST thus provides an easy means to incorporate and

compare new scoring methods, lending them its many other

functionalities.

Although there exist other tools with some of its features, to

our knowledge, VAAST is the first generalized, probabilistic ab

initio tool for identifying both rare and common disease-causing

variants using personal exomes and genomes. VAAST is a practi-

cal, portable, self-contained piece of software that substantially

improves on existing methods with regard to statistical power,

flexibility, and scope of use. It is resistant to no calls, automated,

and fast; works across all variant frequencies; and deals with

platform-specific noise.

Methods

Inputs and outputs
The VAAST search procedure is shown in Figure 7. VAAST operates
using two input files: a background and a target file. The background
and target files contain the variants observed in control and case
genomes, respectively. Importantly, the same background file can be
used again and again, obviating the need—and expense—of pro-
ducing a new set of control data for each analysis. Background files
prepared from whole-genome data can be used for whole-genome
analyses, exome analyses and for individual gene analyses. These
files can be in either VCF (http://www.1000genomes.org/wiki/
Analysis/vcf4.0) or GVF (Reese et al. 2010) format. VAASTalso comes
with a series of premade and annotated background condenser files
for the 1000 genomes data (The 1000 Genomes Project Consortium
2010) and the 10Gen data set (Reese et al. 2010). Also needed is

Figure 6. Statistical power as a function of number of target genomes for two common disease
genes. (A) NOD2, using a data set containing rare and common nonsynonymous variants. (B) LPL,
using a data set containing only rare nonsynonymous variants. For each data point, power is estimated
from 500 bootstrapped resamples of the original data sets, with a = 2.4 3 10�6 except where specified.
y-axis: probability of identifying gene as implicated in disease in a genome-wide search; x-axis: number
of cases. The number of controls is equal to the number of cases up to a maximum of 327 for LPL (original
data set) and 163 for NOD2 (original data set + 60 Europeans from 1000 Genomes). (VAAST + OMIM)
VAAST using AAS data from OMIM as its disease model; (VAAST + BLOSUM) VAAST using BLOSUM62 as
its disease model; (VAAST no AAS) VAAST running on allele frequencies alone; (WSS) weighted sum
score of Madsen and Browning (2009); (GWAS) single variant GWAS analysis. NOD2 and LPL data sets
were taken from Lesage et al. (2002) and Johansen et al. (2010), respectively.
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a third file in GFF3 (http://www.sequenceontology.org/resources/
gff3.html) containing genome features to be searched.

Basic CLR method

The composite likelihood ratio (CLR) test is designed to evaluate
whether a gene or other genomic feature contributes to disease
risk. We first calculate the likelihood of the null and alternative
models assuming independence between nucleotide sites and then
evaluate the significance of the likelihood ratio by permutation to
control for LD. The basic method is a nested CLR test that depends
only on differences in allele frequencies between affected and
unaffected individuals. In a manner similar to the CMC method (Li
and Leal 2008), we collapse sites with rare minor alleles into one or
more categories, but we count the total number of minor allele
copies among all affected and unaffected individuals rather than
just the presence or absence of minor alleles within an individual.
For our analyses, we set the collapsing threshold at fewer than five
copies of the minor allele among all affected individuals, but this
parameter is adjustable. Let k equal the number of uncollapsed
variant sites among ni

U unaffected and ni
A affected individuals,

with ni equal to ni
U + ni

A. Let lk+1 . . . lk+m equal the number of
collapsed variant sites within m collapsing categories labeled k + 1
to m, and let l1 . . . lk equal 1. Let Xi, Xi

U, and Xi
A equal the number

of copies of the minor allele(s) at variant site i or collapsing cat-
egory i among all individuals, unaffected individuals, and af-
fected individuals, respectively. Then the log-likelihood ratio is
equal to:

l = ln
LNull

LAlt

� �

= +
k + m

i = 1

ln
p̂i

� �Xi 1� p̂i

� �2lini�Xi
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� �XU
i

1� p̂
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U
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1� p̂
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where pi, pi
U, and pi

A equal the maximum-likelihood estimates for
the frequency of minor allele(s) at variant site i or collapsing
category i among all individuals, unaffected individuals, and af-
fected individuals, respectively. When no constraints are placed
on the frequency of disease-causing variants, the maximum-
likelihood estimates are equal to the observed frequencies of
the minor allele(s). Assuming that variant sites are unlinked, �2l

approximately follows a x2 distribution with k + m degrees of
freedom. We report the non-LD-corrected x2 P-value as the VAAST
score to provide a statistic for rapid prioritization of disease-gene
candidates. To evaluate the statistical significance of a genomic
feature, we perform a randomization test by permuting the af-
fected/unaffected status of each individual (or each individual
chromosome, when phased data are available). Because the de-
grees of freedom can vary between iterations of the permutation
test, we use the x2 P-value as the test statistic for the randomi-
zation test.

Extensions to the basic CLR method

In the basic CLR method, the null model is fully nested within the
alternative model. Extensions to this method result in models that
are no longer nested. Because the x2 approximation is only ap-
propriate for likelihood ratio tests of nested models, we apply
Vuong’s closeness test in extended CLR tests using the Akaike In-
formation Criterion correction factor. Thus, the test statistic used
in the permutation tests for these methods is �2l � 2(k + m). To
efficiently calculate the non-LD-corrected P-value for non-nested
models, we use an importance sampling technique in a randomi-
zation test that assumes independence between sites by permuting
the affected/unaffected status of each allele at each site. To evaluate
the LD-corrected statistical significance of genomic features for
these models, we permute the affected/unaffected status of each
individual (or each individual chromosome).

For rare diseases, we constrain the allele frequency of putative
disease-causing alleles in the population background such that pi

U

cannot exceed a specified threshold, t, based on available in-
formation about the penetrance, inheritance mode, and prevalence
of the disease. With this constraint, the maximum-likelihood esti-
mate for pi

U is equal to the minimum of t and Xi/lini.
The framework can incorporate various categories of indels,

splice-site variants, synonymous variants, and noncoding vari-
ants. Methods incorporating amino acid severity and constraints
on allele frequency can result in situations in which the alternative
model is less likely than the null model for a given variant. In these
situations, we exclude the variant from the likelihood calculation,
accounting for the bias introduced from this exclusion in the
permutation test. For variants sufficiently rare to meet the col-
lapsing criteria, we exclude the variant from the collapsing cate-
gory if the alternative model is less likely than the null model prior
to variant collapse.

Severity of amino acid changes

To incorporate information about the potential severity of amino
acid changes, we include one additional parameter in the null and
alternative models for each variant site or collapsing category. The

Figure 7. VAAST search procedure. One or more variant files (in VCF or
GVF format) are first annotated using the VAAST annotation tool and
a GFF3 file of genome annotations. Multiple target and background
variant files are then combined by the VAAST annotation tool into a single
condenser file; these two files, one for the background and one for the
target genomes, together with a GFF3 file containing the genomic fea-
tures to be searched are then passed to VAAST. VAAST outputs a simple
text file, which can also be viewed in the VAAST viewer.

VAAST

Genome Research 1539
www.genome.org

 Cold Spring Harbor Laboratory Press on January 9, 2025 - Published by genome.cshlp.orgDownloaded from 

http://www.sequenceontology.org/resources/gff3.html
http://www.sequenceontology.org/resources/gff3.html
http://genome.cshlp.org/
http://www.cshlpress.com


parameter hi in the null model is the likelihood that the amino acid
change does not contribute to disease risk. We estimate hi by set-
ting it equal to the proportion of this type of amino acid change in
the population background. The parameter ai in the alternative
model is the likelihood that the amino acid change contributes to
disease risk. We estimate ai by setting it equal to the proportion of
this type of amino acid change among all disease-causing muta-
tions in OMIM (Yandell et al. 2008). Incorporating information
about amino acid severity, l is equal to:

l = ln
LNull

LAlt
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To include the severity of amino acid changes for collapsed rare var-
iants, we create m collapsing categories that are divided according to
the severity of potential amino acid changes. To create the collapsing
categories, we first rank all possible amino acid changes according to
their severity. We then assign an equal number of potential changes
to each category, with the first category receiving the least severe
changes and each subsequent category receiving progressively more
severe changes. Each rare variant is then included in the category
with its corresponding amino acid change (Tavtigian 2009). For each
collapsing category i, we set the parameters hi and ai equal to their
average values among all variants present in the category. We first
calculate the likelihood of the null and alternative models assuming
independence between nucleotide sites and then evaluate the sig-
nificance of the likelihood ratio by permutation to control for LD.

Scoring noncoding variants

The VAAST CLR framework can also score noncoding variants and
synonymous variants within coding regions. Because ascertain-
ment bias in OMIM can cause a bias against such variants, we took
an evolutionary approach to estimate the relative impacts of
noncoding and synonymous variants using the vertebrate-to-hu-
man genome multiple alignments downloaded from the UCSC
Genome Browser (http://hgdownload.cse.ucsc.edu/goldenPath/
hg18/multiz44way/maf/). For each codon in the human genome,
we calculated the frequency in which it aligns to other codons in
primate genomes (wherever an open reading frame [ORF] in the
corresponding genomes is available). Then for every codon align-
ment pair involving one or fewer nucleotide changes, we calcu-
lated its Normalized Mutational Proportion (NMP), which is de-
fined as the proportion of occurrences of each such codon pair
among all codon pairs with the identical human codon and with
one or fewer nucleotide changes. For example, suppose the human
codon GCC aligned to codons in primate genomes with the fol-
lowing frequencies: GCC ! GCC: 1000 times; GCC ! GCT: 200
times; GCC! GCG: 250 times; GCC! GGG: 50 times. The NMP
value of GCC!GCT would be 0.134 [i.e., 200/(1000 + 200 + 250)].
For every codon pair that involves a nonsynonymous change, we
then calculated its severity parameter from the OMIM database
and 180 healthy genomes from the 1000 Genomes Project (ai/hi in
Eq. 2). Linear regression analysis indicates that log(ai/hi) is signif-
icantly correlated with log(NMP) (R2 = 0.23, p < 0.001). This model
allows us to estimate the severity parameter of synonymous vari-
ants (again by linear regression), which by this approach is 0.01
(100 times less severe than a typical nonsynonymous variant). We
used a similar approach to derive an equivalent value for SNVs in
noncoding regions. To do so, we again used the primate align-
ments from UCSC, but here we restricted our analysis to primate

clustered DNase hypersensitive sites and transcription factor
binding regions as defined by ENCODE regulation tracks, calcu-
lating NMP for every conserved trinucleotide. The resulting se-
verity parameter for these regions of the genome is 0.03.

Inheritance and penetrance patterns

VAAST includes several options to aid in the identification of
disease-causing genes matching specific inheritance and pene-
trance patterns. These models enforce a particular disease model
within a single gene or other genomic feature. Because the disease
models introduce interdependence between sites, VAAST does not
provide a site-based non-LD-corrected P-value for these models.

For recessive diseases, VAAST includes three models: recessive,
recessive with complete penetrance, and recessive with no locus
heterogeneity. In the basic recessive model, the likelihood calcula-
tion is constrained such that no more than two minor alleles in each
feature of each affected individual will be scored. The two alleles that
receive a score are the alleles that maximize the likelihood of the
alternative model. The complete penetrance model assumes that all
of the individuals in the control data set are unaffected. As the ge-
notypes of each affected individual are evaluated within a genomic
feature, if any individual in the control data set has a genotype ex-
actly matching an affected individual, the affected individual will be
excluded from the likelihood calculation for that genomic feature.
This process will frequently remove all affected individuals from the
calculation, resulting in a genomic feature that receives no score. In
the recessive with no locus heterogeneity model, genomic features
are only scored if all affected individuals possess two or more minor
alleles at sites where the alternative (disease) model is more likely
than the null (healthy) model. The two alleles can be present at
different nucleotide sites in each affected individual (i.e., allelic
heterogeneity is permitted), but locus heterogeneity is excluded.
The models can be combined, for example, in the case of a com-
pletely penetrant disease with no locus heterogeneity.

The three dominant disease models parallel the recessive
models: dominant, dominant with complete penetrance, and
dominant with no locus heterogeneity. For the basic dominant
model, only one minor allele in each feature of each affected in-
dividual will be scored (the allele that maximizes the likelihood of
the alternative model). For the complete penetrance dominant
model, alleles will only be scored if they are absent among all in-
dividuals in the control data set. For the dominant with no locus
heterogeneity model, genomic features are only scored if all af-
fected individuals posses at least one minor allele at variant sites
where the alternative model is more likely than the null model.

Protective alleles

For non-nested models, the default behavior is to only score variants
in which the minor allele is at higher frequency in cases than in
controls, under the assumption that the disease-causing alleles are
relatively rare. This assumption is problematic if protective alleles
are also contributing to the difference between cases and controls.
By enabling the ‘‘protective’’ option, VAAST will also score variants
in which the minor allele frequency is higher in controls than in
cases. This option also adds one additional collapsing category for
rare protective alleles. Because we have no available AAS model for
protective alleles, we set hi and ai equal to 1 for these variants.

Variant masking

The variant-masking option allows the user to exclude a list of
nucleotide sites from the likelihood calculations based on in-
formation obtained prior to the genome analysis. The masking
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files used in these analyses exclude sites where short reads would
map to more than one position in the reference genome. This
procedure mitigates the effects introduced by cross-platform biases
by excluding sites that are likely to produce spurious variant calls
due to improper alignment of short reads to the reference se-
quence. The three masking schemes we used were (1) 60-bp single-
end reads, (2) 35-bp single-end reads, and (3) 35-bp paired-end
reads separated by 400 bp. These three masking files are included
with the VAAST distribution, although VAAST can mask any user-
specified list of sites. Because variant masking depends only on
information provided prior to the genome analysis, it is compati-
ble with both nested and non-nested models CLR models.

Trio option

By providing the genomes of the parents of one or more affected
individuals, VAASTcan identify and exclude Mendelian inheritance
errors for variants that are present in the affected individual but
absent in both parents. Although this procedure will exclude both
de novo mutations and sequencing errors, for genomes with an
error rate of ;1 in 100,000, ;99.9% of all Mendelian inheritance
errors are genotyping errors (Roach et al. 2010). This option is
compatible with both nested and non-nested models.

Minor reference alleles

Most publicly available human genome and exome sequences do
not distinguish between no calls and reference alleles at any partic-
ular nucleotide site. For this reason, VAAST excludes reference alleles
with frequencies of <50% from the likelihood calculation by default.
This exclusion can be overridden with a command-line parameter.

VAAST options, including command lines used to generate
each table and figure, are provided in the Supplemental Material.

Benchmark analyses

We assayed the ability of VAAST, SIFT, and ANNOVAR to identify
mutated genes and their disease-causing variants in genome-wide
searches. To do so, we randomly selected a set of 100 genes, each
having at least six SNVs that are annotated as deleterious by
OMIM. For each run, the OMIM variants from one of the 100 genes
were inserted into the genomes of healthy individuals sampled
from the Complete Genomics Diversity Panel (http://www.
completegenomics.com/sequence-data/download-data/). For the
partial representation panel (Fig. 5B), we inserted the OMIM variants
into only a partial set of the case genomes. For example, in the panel
of 66% partial representation and dominant model, we inserted four
OMIM variants into four of the six case genomes for each gene, so
that 66% of the case genomes have deleterious variants; for 66%
representation under the recessive model, we inserted four OMIM
variants into two of the three case genomes.

We ran VAASTusing 443 background genomes (including 180
genomes from the 1000 Genomes Project pilot phase, 63 Complete
Genomics Diversity panel genomes, nine published genomes,
and 191 Danish exomes) and with the inheritance model option
(-iht). We ran SIFT using its web service (http://sift.jcvi.org/www/
SIFT_chr_coords_submit.html, as of 5/3/2011). For ANNOVAR, we
used version: 2011-02-11 00:07:48 with the 1000 Genomes Project
2010 July release as the variant database. We used its automatic
annotation pipeline (auto_annovar.pl) and default parameters for
annotation, setting its -maf option to the upper 99% confidence
interval of the expected minor allele frequency (MAF), such that
the combined MAF for inserted alleles did not exceed 5%. The
dbSNP database was not used in this analysis because ANNOVAR’s
dbSNP130 database does not provide MAF information, and

a portion of the disease-causing OMIM alleles are collected by
dbSNP130. We found that setting -maf and excluding dbSNP130
for this analysis greatly improved the accuracy of ANNOVAR in
comparison to its default parameters (data not shown); thus we
used these more favorable parameters for our comparisons.

To compare the performance of the three algorithms with
a sample size of six under a dominant model, for each of the 100
genes, we inserted the six different OMIM variants located in this
gene into six different healthy genomes, making all of them het-
erozygous for a different disease-causing SNV at that locus. Under
the recessive model, with a sample size of two, for example, we
inserted four different OMIM variants located in each gene into
two healthy genomes, so that each case genome carries two dif-
ferent OMIM variants in this gene, i.e., the individuals are com-
pound heterozygotes.

Scalability

VAASTcomputes scale linearly with the number of features (genes)
being evaluated and the number of variants in the targets. The
maximum number of permutations needed is bounded by O(nk),
where n equals the number of background and target genomes,
and k equals the number of target genomes. VAAST is a multi-
threaded, parallelized application designed to scale to cohorts of
thousands of genomes.

Data access
VAAST is available for download at http://www.yandell-lab.org
with an academic user license.
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