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A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

T
HE recent development of various methods of modulation such as PCM and PPM which exchange
bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A

basis for such a theory is contained in the important papers of Nyquist1 and Hartley2 on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to the
nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or ap-
proximately a message selected at another point. Frequently the messages havemeaning; that is they refer
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual
message is oneselected from a setof possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any monotonic function of this number
can be regarded as a measure of the information produced when one message is chosen from the set, all
choices being equally likely. As was pointed out by Hartley the most natural choice is the logarithmic
function. Although this definition must be generalized considerably when we consider the influence of the
statistics of the message and when we have a continuous range of messages, we will in all cases use an
essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

1. It is practically more useful. Parameters of engineering importance such as time, bandwidth, number
of relays, etc., tend to vary linearly with the logarithm of the number of possibilities. For example,
adding one relay to a group doubles the number of possible states of the relays. It adds 1 to the base 2
logarithm of this number. Doubling the time roughly squares the number of possible messages, or
doubles the logarithm, etc.

2. It is nearer to our intuitive feeling as to the proper measure. This is closely related to (1) since we in-
tuitively measures entities by linear comparison with common standards. One feels, for example, that
two punched cards should have twice the capacity of one for information storage, and two identical
channels twice the capacity of one for transmitting information.

3. It is mathematically more suitable. Many of the limiting operations are simple in terms of the loga-
rithm but would require clumsy restatement in terms of the number of possibilities.

The choice of a logarithmic base corresponds to the choice of a unit for measuring information. If the
base 2 is used the resulting units may be called binary digits, or more brieflybits, a word suggested by
J. W. Tukey. A device with two stable positions, such as a relay or a flip-flop circuit, can store one bit of
information.N such devices can storeN bits, since the total number of possible states is 2N and log22N = N.
If the base 10 is used the units may be called decimal digits. Since

log2M = log10M= log102

= 3:32log10M;

1Nyquist, H., “Certain Factors Affecting Telegraph Speed,”Bell System Technical Journal,April 1924, p. 324; “Certain Topics in
Telegraph Transmission Theory,”A.I.E.E. Trans.,v. 47, April 1928, p. 617.

2Hartley, R. V. L., “Transmission of Information,”Bell System Technical Journal,July 1928, p. 535.
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Fig. 1—Schematic diagram of a general communication system.

a decimal digit is about 313 bits. A digit wheel on a desk computing machine has ten stable positions and
therefore has a storage capacity of one decimal digit. In analytical work where integration and differentiation
are involved the basee is sometimes useful. The resulting units of information will be called natural units.
Change from the basea to baseb merely requires multiplication by logba.

By a communication system we will mean a system of the type indicated schematically in Fig. 1. It
consists of essentially five parts:

1. An information sourcewhich produces a message or sequence of messages to be communicated to the
receiving terminal. The message may be of various types: (a) A sequence of letters as in a telegraph
of teletype system; (b) A single function of timef (t) as in radio or telephony; (c) A function of
time and other variables as in black and white television — here the message may be thought of as a
function f (x;y; t) of two space coordinates and time, the light intensity at point(x;y) and timet on a
pickup tube plate; (d) Two or more functions of time, sayf (t), g(t), h(t) — this is the case in “three-



physical counterparts. We may roughly classify communication systems into three main categories: discrete,
continuous and mixed. By a discrete system we will mean one in which both the message and the signal
are a sequence of discrete symbols. A typical case is telegraphy where the message is a sequence of letters
and the signal a sequence of dots, dashes and spaces. A continuous system is one in which the message and
signal are both treated as continuous functions, e.g., radio or television. A mixed system is one in which
both discrete and continuous variables appear, e.g., PCM transmission of speech.

We first consider the discrete case. This case has applications not only in communication theory, but
also in the theory of computing machines, the design of telephone exchanges and other fields. In addition
the discrete case forms a foundation for the continuous and mixed cases which will be treated in the second
half of the paper.

PART I: DISCRETE NOISELESS SYSTEMS

1. THE DISCRETENOISELESSCHANNEL

Teletype and telegraphy are two simple examples of a discrete channel for transmitting information. Gen-
erally, a discrete channel will mean a system whereby a sequence of choices from a finite set of elementary
symbolsS1; : : : ;Sn can be transmitted from one point to another. Each of the symbolsSi is assumed to have
a certain duration in timeti seconds (not necessarily the same for differentSi , for example the dots and
dashes in telegraphy). It is not required that all possible sequences of theSi be capable of transmission on
the system; certain sequences only may be allowed. These will be possible signals for the channel. Thus
in telegraphy suppose the symbols are: (1) A dot, consisting of line closure for a unit of time and then line
open for a unit of time; (2) A dash, consisting of three time units of closure and one unit open; (3) A letter
space consisting of, say, three units of line open; (4) A word space of six units of line open. We might place
the restriction on allowable sequences that no spaces follow each other (for if two letter spaces are adjacent,
it is identical with a word space). The question we now consider is how one can measure the capacity of
such a channel to transmit information.

In the teletype case where all symbols are of the same duration, and any sequence of the 32 symbols
is allowed the answer is easy. Each symbol represents five bits of information. If the system transmitsn
symbols per second it is natural to say that the channel has a capacity of 5n bits per second. This does not
mean that the teletype channel will always be transmitting information at this rate — this is the maximum
possible rate and whether or not the actual rate reaches this maximum depends on the source of information
which feeds the channel, as will appear later.

In the more general case with different lengths of symbols and constraints on the allowed sequences, we
make the following definition:
Definition: The capacityC of a discrete channel is given by

C = Lim
T!∞

logN(T)

T

whereN(T) is the number of allowed signals of durationT.
It is easily seen that in the teletype case this reduces to the previous result. It can be shown that the limit

in question will exist as a finite number in most cases of interest. Suppose all sequences of the symbols
S1; : : : ;Sn are allowed and these symbols have durationst1; : : : ; tn. What is the channel capacity? IfN(t)
represents the number of sequences of durationt we have

N(t) = N(t� t1)+N(t� t2)+ � � �+N(t� tn):

The total number is equal to the sum of the numbers of sequences ending inS1;S2; : : : ;Sn and these are
N(t� t1);N(t� t2); : : : ;N(t� tn), respectively. According to a well-known result in finite differences,N(t)
is then asymptotic for larget to Xt

0 whereX0 is the largest real solution of the characteristic equation:

X�t1 +X�t2 + � � �+X�tn = 1
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and therefore
C= logX0:

In case there are restrictions on allowed sequences we may still often obtain a difference equation of this
type and findC from the characteristic equation. In the telegraphy case mentioned above

N(t) = N(t�2)+N(t�4)+N(t�5)+N(t�7)+N(t�8)+N(t�10)

as we see by counting sequences of symbols according to the last or next to the last symbol occurring.
HenceC is� log�0 where�0 is the positive root of 1= �2+�4+�5+�7+�8+�10. Solving this we find
C = 0:539.

A very general type of restriction which may be placed on allowed sequences is the following: We
imagine a number of possible statesa1;a2; : : : ;am. For each state only certain symbols from the setS1; : : : ;Sn

can be transmitted (different subsets for the different states). When one of these has been transmitted the
state changes to a new state depending both on the old state and the particular symbol transmitted. The
telegraph case is a simple example of this. There are two states depending on whether or not a space was
the last symbol transmitted. If so, then only a dot or a dash can be sent next and the state always changes.
If not, any symbol can be transmitted and the state changes if a space is sent, otherwise it remains the same.
The conditions can be indicated in a linear graph as shown in Fig. 2. The junction points correspond to the
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DOT

DASH

DOT
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Fig. 2—Graphical representation of the constraints on telegraph symbols.

states and the lines indicate the symbols possible in a state and the resulting state. In Appendix 1 it is shown
that if the conditions on allowed sequences can be described in this formC will exist and can be calculated
in accordance with the following result:

Theorem 1:Let b(s)i j be the duration of thesth symbol which is allowable in statei and leads to statej.
Then the channel capacityC is equal tologW whereW is the largest real root of the determinant equation:���∑

s
W�b

(s)
i j � �i j

���= 0

where�i j = 1 if i = j and is zero otherwise.

For example, in the telegraph case (Fig. 2) the determinant is:���� �1 (W�2+W�4)
(W�3+W�6) (W�2+W�4�1)

����= 0:

On expansion this leads to the equation given above for this case.

2. THE DISCRETESOURCE OFINFORMATION

We have seen that under very general conditions the logarithm of the number of possible signals in a discrete
channel increases linearly with time. The capacity to transmit information can be specified by giving this
rate of increase, the number of bits per second required to specify the particular signal used.

We now consider the information source. How is an information source to be described mathematically,
and how much information in bits per second is produced in a given source? The main point at issue is the
effect of statistical knowledge about the source in reducing the required capacity of the channel, by the use
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pi( j) and the digram probabilitiesp(i; j) are related by the following formulas:

p(i) = ∑
j

p(i; j) = ∑
j

p( j; i) = ∑
j

p( j)pj(i)

p(i; j) = p(i)pi( j)

∑
j

pi( j) = ∑
i

p(i) = ∑
i; j

p(i; j) = 1:

As a specific example suppose there are three letters A, B, C with the probability tables:

pi( j) j

A B C

A 0 4
5

1
5

i B 1
2

1
2 0

C 1
2

2
5

1
10

i p(i)

A 9
27

B 16
27

C 2
27

p(i; j) j

A B C

A 0 4
15

1
15

i B 8
27

8
27 0

C 1
27

4
135

1
135

A typical message from this source is the following:

A B B A B A B A B A B A B A B B B A B B B B B A B A B A B A B A B B B A C A C A B
B A B B B B A B B A B A C B B B A B A.
The next increase in complexity would involve trigram frequencies but no more. The choice of
a letter would depend on the preceding two letters but not on the message before that point. A
set of trigram frequenciesp(i; j;k) or equivalently a set of transition probabilitiespi j (k) would
be required. Continuing in this way one obtains successively more complicated stochastic pro-
cesses. In the generaln-gram case a set ofn-gram probabilitiesp(i1; i2; : : : ; in) or of transition
probabilitiespi1;i2;:::;in�1(in) is required to specify the statistical structure.

(D) Stochastic processes can also be defined which produce a text consisting of a sequence of
“words.” Suppose there are five letters A, B, C, D, E and 16 “words” in the language with
associated probabilities:

.10 A .16 BEBE .11 CABED .04 DEB

.04 ADEB .04 BED .05 CEED .15 DEED

.05 ADEE .02 BEED .08 DAB .01 EAB

.01 BADD .05 CA .04 DAD .05 EE

Suppose successive “words” are chosen independently and are separated by a space. A typical
message might be:
DAB EE A BEBE DEED DEB ADEE ADEE EE DEB BEBE BEBE BEBE ADEE BED DEED
DEED CEED ADEE A DEED DEED BEBE CABED BEBE BED DAB DEED ADEB.

If all the words are of finite length this process is equivalent to one of the preceding type, but
the description may be simpler in terms of the word structure and probabilities. We may also
generalize here and introduce transition probabilities between words, etc.

These artificial languages are useful in constructing simple problems and examples to illustrate vari-
ous possibilities. We can also approximate to a natural language by means of a series of simple artificial
languages. The zero-order approximation is obtained by choosing all letters with the same probability and
independently. The first-order approximation is obtained by choosing successive letters independently but
each letter having the same probability that it has in the natural language.5 Thus, in the first-order ap-
proximation to English, E is chosen with probability .12 (its frequency in normal English) and W with
probability .02, but there is no influence between adjacent letters and no tendency to form the preferred

5Letter, digram and trigram frequencies are given inSecret and Urgentby Fletcher Pratt, Blue Ribbon Books, 1939. Word frequen-
cies are tabulated inRelative Frequency of English Speech Sounds,G. Dewey, Harvard University Press, 1923.
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digrams such as TH, ED, etc. In the second-order approximation, digram structure is introduced. After a
letter is chosen, the next one is chosen in accordance with the frequencies with which the various letters
follow the first one. This requires a table of digram frequenciespi( j). In the third-order approximation,
trigram structure is introduced. Each letter is chosen with probabilities which depend on the preceding two
letters.

3. THE SERIES OFAPPROXIMATIONS TOENGLISH

To give a visual idea of how this series of processes approaches a language, typical sequences in the approx-
imations to English have been constructed and are given below. In all cases we have assumed a 27-symbol
“alphabet,” the 26 letters and a space.

1. Zero-order approximation (symbols independent and equiprobable).

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD QPAAMKBZAACIBZL-
HJQD.

2. First-order approximation (symbols independent but with frequencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA
NAH BRL.

3. Second-order approximation (digram structure as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TU-
COOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

4. Third-order approximation (trigram structure as in English).

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONS-
TURES OF THE REPTAGIN IS REGOACTIONA OF CRE.

5. First-order word approximation. Rather than continue with tetragram,: : : , n-gram structure it is easier
and better to jump at this point to word units. Here words are chosen independently but with their
appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NAT-
URAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHES
THE LINE MESSAGE HAD BE THESE.

6. Second-order word approximation. The word transition probabilities are correct but no further struc-
ture is included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHAR-
ACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT
THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

The resemblance to ordinary English text increases quite noticeably at each of the above steps. Note that
these samples have reasonably good structure out to about twice the range that is taken into account in their
construction. Thus in (3) the statistical process insures reasonable text for two-letter sequences, but four-
letter sequences from the sample can usually be fitted into good sentences. In (6) sequences of four or more
words can easily be placed in sentences without unusual or strained constructions. The particular sequence
of ten words “attack on an English writer that the character of this” is not at all unreasonable. It appears then
that a sufficiently complex stochastic process will give a satisfactory representation of a discrete source.

The first two samples were constructed by the use of a book of random numbers in conjunction with
(for example 2) a table of letter frequencies. This method might have been continued for (3), (4) and (5),
since digram, trigram and word frequency tables are available, but a simpler equivalent method was used.
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To construct (3) for example, one opens a book at random and selects a letter at random on the page. This
letter is recorded. The book is then opened to another page and one reads until this letter is encountered.
The succeeding letter is then recorded. Turning to another page this second letter is searched for and the
succeeding letter recorded, etc. A similar process was used for (4), (5) and (6). It would be interesting if
further approximations could be constructed, but the labor involved becomes enormous at the next stage.

4. GRAPHICAL REPRESENTATION OF AMARKOFF PROCESS

Stochastic processes of the type described above are known mathematically as discrete Markoff processes
and have been extensively studied in the literature.6 The general case can be described as follows: There
exist a finite number of possible “states” of a system;S1;S2; : : : ;Sn. In addition there is a set of transition
probabilities;pi( j) the probability that if the system is in stateSi it will next go to stateSj . To make this
Markoff process into an information source we need only assume that a letter is produced for each transition
from one state to another. The states will correspond to the “residue of influence” from preceding letters.

The situation can be represented graphically as shown in Figs. 3, 4 and 5. The “states” are the junction

A
B

C

D

E

.1

.1

.2

.2

.4

Fig. 3—A graph corresponding to the source in example B.

points in the graph and the probabilities and letters produced for a transition are given beside the correspond-
ing line. Figure 3 is for the example B in Section 2, while Fig. 4 corresponds to the example C. In Fig. 3

A
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BC
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Fig. 4—A graph corresponding to the source in example C.

there is only one state since successive letters are independent. In Fig. 4 there are as many states as letters.
If a trigram example were constructed there would be at mostn2 states corresponding to the possible pairs
of letters preceding the one being chosen. Figure 5 is a graph for the case of word structure in example D.
Here S corresponds to the “space” symbol.

5. ERGODIC AND MIXED SOURCES

As we have indicated above a discrete source for our purposes can be considered to be represented by a
Markoff process. Among the possible discrete Markoff processes there is a group with special properties
of significance in communication theory. This special class consists of the “ergodic” processes and we
shall call the corresponding sources ergodic sources. Although a rigorous definition of an ergodic process is
somewhat involved, the general idea is simple. In an ergodic process every sequence produced by the process

6For a detailed treatment see M. Fr´echet,Méthode des fonctions arbitraires. Th´eorie des ´evénements en chaˆıne dans le cas d’un
nombre fini d’états possibles. Paris, Gauthier-Villars, 1938.
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is the same in statistical properties. Thus the letter frequencies, digram frequencies, etc., obtained from
particular sequences, will, as the lengths of the sequences increase, approach definite limits independent
of the particular sequence. Actually this is not true of every sequence but the set for which it is false has
probability zero. Roughly the ergodic property means statistical homogeneity.

All the examples of artificial languages given above are ergodic. This property is related to the structure
of the corresponding graph. If the graph has the following two properties7 the corresponding process will
be ergodic:

1. The graph does not consist of two isolated parts A and B such that it is impossible to go from junction
points in part A to junction points in part B along lines of the graph in the direction of arrows and also
impossible to go from junctions in part B to junctions in part A.

2. A closed series of lines in the graph with all arrows on the lines pointing in the same orientation will
be called a “circuit.” The “length” of a circuit is the number of lines in it. Thus in Fig. 5 series BEBES
is a circuit of length 5. The second property required is that the greatest common divisor of the lengths
of all circuits in the graph be one.

S
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B
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E

E

E

E

E

Fig. 5—A graph corresponding to the source in example D.

If the first condition is satisfied but the second one violated by having the greatest common divisor equal
to d > 1, the sequences have a certain type of periodic structure. The various sequences fall intod different
classes which are statistically the same apart from a shift of the origin (i.e., which letter in the sequence is
called letter 1). By a shift of from 0 up tod�1 any sequence can be made statistically equivalent to any
other. A simple example withd = 2 is the following: There are three possible lettersa;b;c. Letter a is
followed with eitherb or c with probabilities1

3 and 2
3 respectively. Eitherb or c is always followed by letter

a. Thus a typical sequence is
a b a c a c a c a b a c a b a b a c a c:

This type of situation is not of much importance for our work.
If the first condition is violated the graph may be separated into a set of subgraphs each of which satisfies

the first condition. We will assume that the second condition is also satisfied for each subgraph. We have in
this case what may be called a “mixed” source made up of a number of pure components. The components
correspond to the various subgraphs. IfL1, L2, L3; : : : are the component sources we may write

L = p1L1+ p2L2+ p3L3+ � � �
7These are restatements in terms of the graph of conditions given in Fr´echet.
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wherepi is the probability of the component sourceLi .
Physically the situation represented is this: There are several different sourcesL1, L2, L3; : : : which are

each of homogeneous statistical structure (i.e., they are ergodic). We do not knowa priori which is to be
used, but once the sequence starts in a given pure componentLi , it continues indefinitely according to the
statistical structure of that component.

As an example one may take two of the processes defined above and assumep1 = :2 andp2 = :8. A
sequence from the mixed source

L = :2L1+ :8L2

would be obtained by choosing firstL1 or L2 with probabilities .2 and .8 and after this choice generating a
sequence from whichever was chosen.

Except when the contrary is stated we shall assume a source to be ergodic. This assumption enables one
to identify averages along a sequence with averages over the ensemble of possible sequences (the probability
of a discrepancy being zero). For example the relative frequency of the letter A in a particular infinite
sequence will be, with probability one, equal to its relative frequency in the ensemble of sequences.

If Pi is the probability of statei andpi( j) the transition probability to statej, then for the process to be
stationary it is clear that thePi must satisfy equilibrium conditions:

Pj = ∑
i

Pi pi( j):

In the ergodic case it can be shown that with any starting conditions the probabilitiesPj(N) of being in state
j afterN symbols, approach the equilibrium values asN! ∞.

6. CHOICE, UNCERTAINTY AND ENTROPY

We have represented a discrete information source as a Markoff process. Can we define a quantity which
will measure, in some sense, how much information is “produced” by such a process, or better, at what rate
information is produced?

Suppose we have a set of possible events whose probabilities of occurrence arep1; p2; : : : ; pn. These
probabilities are known but that is all we know concerning which event will occur. Can we find a measure
of how much “choice” is involved in the selection of the event or of how uncertain we are of the outcome?

If there is such a measure, sayH(p1; p2; : : : ; pn), it is reasonable to require of it the following properties:

1. H should be continuous in thepi .

2. If all the pi are equal,pi =
1
n, thenH should be a monotonic increasing function ofn. With equally

likely events there is more choice, or uncertainty, when there are more possible events.

3. If a choice be broken down into two successive choices, the originalH should be the weighted sum
of the individual values ofH. The meaning of this is illustrated in Fig. 6. At the left we have three

1/2

1/3

1/6

1/2

1/2
2/3

1/3

1/2

1/3

1/6

Fig. 6—Decomposition of a choice from three possibilities.

possibilitiesp1 =
1
2, p2 =

1
3, p3 =

1
6. On the right we first choose between two possibilities each with

probability 1
2, and if the second occurs make another choice with probabilities2

3, 1
3. The final results

have the same probabilities as before. We require, in this special case, that

H(1
2;

1
3;

1
6) = H(1

2;
1
2)+

1
2H(2

3;
1
3):

The coefficient12 is because this second choice only occurs half the time.
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In Appendix 2, the following result is established:

Theorem 2:The onlyH satisfying the three above assumptions is of the form:

H =�K
n

∑
i=1

pi logpi

whereK is a positive constant.

This theorem, and the assumptions required for its proof, are in no way necessary for the present theory.
It is given chiefly to lend a certain plausibility to some of our later definitions. The real justification of these
definitions, however, will reside in their implications.

Quantities of the formH=�∑ pi logpi (the constantK merely amounts to a choice of a unit of measure)
play a central role in information theory as measures of information, choice and uncertainty. The form ofH
will be recognized as that of entropy as defined in certain formulations of statistical mechanics8 wherepi is
the probability of a system being in celli of its phase space.H is then, for example, theH in Boltzmann’s
famousH theorem. We shall callH =�∑ pi logpi the entropy of the set of probabilitiesp1; : : : ; pn. If x is a
chance variable we will writeH(x) for its entropy; thusx is not an argument of a function but a label for a



3. Suppose there are two events,x andy, in question withmpossibilities for the first andn for the second.
Let p(i; j) be the probability of the joint occurrence ofi for the first andj for the second. The entropy of the
joint event is

H(x;y) =�∑
i; j

p(i; j) log p(i; j)

while

H(x) =�∑
i; j

p(i; j) log∑
j

p(i; j)

H(y) =�∑
i; j

p(i; j) log∑
i

p(i; j):

It is easily shown that
H(x;y)�H(x)+H(y)

with equality only if the events are independent (i.e.,p(i; j) = p(i)p( j)). The uncertainty of a joint event is
less than or equal to the sum of the individual uncertainties.

4. Any change toward equalization of the probabilitiesp1; p2; : : : ; pn increasesH. Thus if p1 < p2 and
we increasep1, decreasingp2 an equal amount so thatp1 andp2 are more nearly equal, thenH increases.
More generally, if we perform any “averaging” operation on thepi of the form

p0i = ∑
j

ai j pj

where∑i ai j = ∑ j ai j = 1, and allai j � 0, thenH increases (except in the special case where this transfor-
mation amounts to no more than a permutation of thepj with H of course remaining the same).

5. Suppose there are two chance eventsx andy as in 3, not necessarily independent. For any particular
valuei thatx can assume there is a conditional probabilitypi( j) thaty has the valuej. This is given by

pi( j) =
p(i; j)

∑ j p(i; j)
:

We define theconditional entropyof y, Hx(y) as the average of the entropy ofy for each value ofx, weighted
according to the probability of getting that particularx. That is

Hx(y) =�∑
i; j

p(i; j) logpi( j) :

This quantity measures how uncertain we are ofy on the average when we knowx. Substituting the value of
pi( j) we obtain

Hx(y) =�∑
i; j

p(i; j) log p(i; j)+∑
i; j

p(i; j) log∑
j

p(i; j)

= H(x;y)�H(x)

or
H(x;y) = H(x)+Hx(y):

The uncertainty (or entropy) of the joint eventx;y is the uncertainty ofx plus the uncertainty ofy whenx is
known.

6. From 3 and 5 we have
H(x)+H(y)�H(x;y) = H(x)+Hx(y):

Hence
H(y)�Hx(y):

The uncertainty ofy is never increased by knowledge ofx. It will be decreased unlessxandyare independent
events, in which case it is not changed.

12



7. THE ENTROPY OF ANINFORMATION SOURCE

Consider a discrete source of the finite state type considered above. For each possible statei there will be a
set of probabilitiespi( j) of producing the various possible symbolsj. Thus there is an entropyHi for each
state. The entropy of the source will be defined as the average of theseHi weighted in accordance with the
probability of occurrence of the states in question:

H = ∑
i

PiHi

=�∑
i; j

Pi pi( j) log pi( j) :

This is the entropy of the source per symbol of text. If the Markoff process is proceeding at a definite time
rate there is also an entropy per second

H 0 = ∑
i

fiHi

where fi is the average frequency (occurrences per second) of statei. Clearly

H 0 = mH

wherem is the average number of symbols produced per second.H or H 0 measures the amount of informa-
tion generated by the source per symbol or per second. If the logarithmic base is 2, they will represent bits
per symbol or per second.

If successive symbols are independent thenH is simply�∑ pi logpi wherepi is the probability of sym-
bol i. Suppose in this case we consider a long message ofN symbols. It will contain with high probability
aboutp1N occurrences of the first symbol,p2N occurrences of the second, etc. Hence the probability of this
particular message will be roughly

p= pp1N
1 pp2N

2 � � � ppnN
n

or

logp
:
= N∑

i

pi logpi

logp
:
=�NH

H
:
=

log1=p
N

:

H is thus approximately the logarithm of the reciprocal probability of a typical long sequence divided by the
number of symbols in the sequence. The same result holds for any source. Stated more precisely we have
(see Appendix 3):

Theorem 3:Given any� > 0 and� > 0, we can find anN0 such that the sequences of any lengthN�N0

fall into two classes:

1. A set whose total probability is less than�.

2. The remainder, all of whose members have probabilities satisfying the inequality���� logp�1

N
�H

����< �:

In other words we are almost certain to have
logp�1

N
very close toH whenN is large.

A closely related result deals with the number of sequences of various probabilities. Consider again the
sequences of lengthN and let them be arranged in order of decreasing probability. We definen(q) to be
the number we must take from this set starting with the most probable one in order to accumulate a total
probabilityq for those taken.

13



Theorem 4:

Lim
N!∞

logn(q)
N

= H

whenq does not equal0 or 1.

We may interpret logn(q) as the number of bits required to specify the sequence when we consider only

the most probable sequences with a total probabilityq. Then
logn(q)

N
is the number of bits per symbol for

the specification. The theorem says that for largeN this will be independent ofq and equal toH. The rate
of growth of the logarithm of the number of reasonably probable sequences is given byH, regardless of our
interpretation of “reasonably probable.” Due to these results, which are proved in Appendix 3, it is possible
for most purposes to treat the long sequences as though there were just 2HN of them, each with a probability
2�HN.

The next two theorems show thatH and H 0 can be determined by limiting operations directly from
the statistics of the message sequences, without reference to the states and transition probabilities between
states.

Theorem 5:Let p(Bi) be the probability of a sequenceBi of symbols from the source. Let

GN =� 1
N ∑

i
p(Bi) logp(Bi)

where the sum is over all sequencesBi containingN symbols. ThenGN is a monotonic decreasing function
of N and

Lim
N!∞

GN = H:

Theorem 6:Let p(Bi ;Sj) be the probability of sequenceBi followed by symbolSj and pBi (Sj) =
p(Bi ;Sj)=p(Bi) be the conditional probability ofSj afterBi . Let

FN =�∑
i; j

p(Bi ;Sj) logpBi (Sj)

where the sum is over all blocksBi of N� 1 symbols and over all symbolsSj . ThenFN is a monotonic
decreasing function ofN,

FN = NGN� (N�1)GN�1;

GN =
1
N

N

∑
n=1

Fn;

FN �GN;

andLimN!∞ FN = H.

These results are derived in Appendix 3. They show that a series of approximations toH can be obtained
by considering only the statistical structure of the sequences extending over 1;2; : : : ;N symbols.FN is the
better approximation. In factFN is the entropy of theNth order approximation to the source of the type
discussed above. If there are no statistical influences extending over more thanN symbols, that is if the
conditional probability of the next symbol knowing the preceding(N�1) is not changed by a knowledge of
any before that, thenFN = H. FN of course is the conditional entropy of the next symbol when the(N�1)
preceding ones are known, whileGN is the entropy per symbol of blocks ofN symbols.

The ratio of the entropy of a source to the maximum value it could have while still restricted to the same
symbols will be called itsrelative entropy. This is the maximum compression possible when we encode into
the same alphabet. One minus the relative entropy is theredundancy. The redundancy of ordinary English,
not considering statistical structure over greater distances than about eight letters, is roughly 50%. This
means that when we write English half of what we write is determined by the structure of the language and
half is chosen freely. The figure 50% was found by several independent methods which all gave results in

14



this neighborhood. One is by calculation of the entropy of the approximations to English. A second method
is to delete a certain fraction of the letters from a sample of English text and then let someone attempt to
restore them. If they can be restored when 50% are deleted the redundancy must be greater than 50%. A
third method depends on certain known results in cryptography.

Two extremes of redundancy in English prose are represented by Basic English and by James Joyce’s
book “Finnegans Wake”. The Basic English vocabulary is limited to 850 words and the redundancy is very
high. This is reflected in the expansion that occurs when a passage is translated into Basic English. Joyce
on the other hand enlarges the vocabulary and is alleged to achieve a compression of semantic content.

The redundancy of a language is related to the existence of crossword puzzles. If the redundancy is
zero any sequence of letters is a reasonable text in the language and any two-dimensional array of letters
forms a crossword puzzle. If the redundancy is too high the language imposes too many constraints for large
crossword puzzles to be possible. A more detailed analysis shows that if we assume the constraints imposed
by the language are of a rather chaotic and random nature, large crossword puzzles are just possible when
the redundancy is 50%. If the redundancy is 33%, three-dimensional crossword puzzles should be possible,
etc.

8. REPRESENTATION OF THEENCODING AND DECODING OPERATIONS

We have yet to represent mathematically the operations performed by the transmitter and receiver in en-
coding and decoding the information. Either of these will be called a discrete transducer. The input to the
transducer is a sequence of input symbols and its output a sequence of output symbols. The transducer may
have an internal memory so that its output depends not only on the present input symbol but also on the past
history. We assume that the internal memory is finite, i.e., there exist a finite numbermof possible states of
the transducer and that its output is a function of the present state and the present input symbol. The next
state will be a second function of these two quantities. Thus a transducer can be described by two functions:

yn = f (xn;�n)

�n+1 = g(xn;�n)

where

xn is thenth input symbol,

�n is the state of the transducer when thenth input symbol is introduced,

yn is the output symbol (or sequence of output symbols) produced whenxn is introduced if the state is�n.

If the output symbols of one transducer can be identified with the input symbols of a second, they can be
connected in tandem and the result is also a transducer. If there exists a second transducer which operates
on the output of the first and recovers the original input, the first transducer will be called non-singular and
the second will be called its inverse.

Theorem 7:The output of a finite state transducer driven by a finite state statistical source is a finite
state statistical source, with entropy (per unit time) less than or equal to that of the input. If the transducer
is non-singular they are equal.

Let� represent the state of the source, which produces a sequence of symbolsxi ; and let� be the state of
the transducer, which produces, in its output, blocks of symbolsyj . The combined system can be represented
by the “product state space” of pairs(�;�). Two points in the space(�1;�1) and(�2;�2), are connected by
a line if �1 can produce anx which changes�1 to �2, and this line is given the probability of thatx in this
case. The line is labeled with the block ofyj symbols produced by the transducer. The entropy of the output
can be calculated as the weighted sum over the states. If we sum first on� each resulting term is less than or
equal to the corresponding term for�, hence the entropy is not increased. If the transducer is non-singular
let its output be connected to the inverse transducer. IfH 0

1, H 0

2 andH 0

3 are the output entropies of the source,
the first and second transducers respectively, thenH 0

1�H 0

2�H 0

3 = H 0

1 and thereforeH 0

1 = H 0

2.
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Suppose we have a system of constraints on possible sequences of the type which can be represented by

a linear graph as in Fig. 2. If probabilitiesp(s)i j were assigned to the various lines connecting statei to statej
this would become a source. There is one particular assignment which maximizes the resulting entropy (see
Appendix 4).

Theorem 8:Let the system of constraints considered as a channel have a capacityC = logW. If we
assign

p(s)i j =
Bj

Bi
W�`

(s)
i j

where`(s)i j is the duration of thesth symbol leading from statei to statej and theBi satisfy

Bi = ∑
s; j

BjW
�`

(s)
i j

thenH is maximized and equal toC.

By proper assignment of the transition probabilities the entropy of symbols on a channel can be maxi-
mized at the channel capacity.

9. THE FUNDAMENTAL THEOREM FOR ANOISELESSCHANNEL

We will now justify our interpretation ofH as the rate of generating information by proving thatH deter-
mines the channel capacity required with most efficient coding.

Theorem 9:Let a source have entropyH (bits per symbol) and a channel have a capacityC (bits per
second). Then it is possible to encode the output of the source in such a way as to transmit at the average

rate
C
H
� � symbols per second over the channel where� is arbitrarily small. It is not possible to transmit at

an average rate greater than
C
H

.

The converse part of the theorem, that
C
H

cannot be exceeded, may be proved by noting that the entropy

of the channel input per second is equal to that of the source, since the transmitter must be non-singular, and
also this entropy cannot exceed the channel capacity. HenceH 0 �C and the number of symbols per second
= H 0=H �C=H.

The first part of the theorem will be proved in two different ways. The first method is to consider the
set of all sequences ofN symbols produced by the source. ForN large we can divide these into two groups,
one containing less than 2(H+�)N members and the second containing less than 2RN members (whereR is
the logarithm of the number of different symbols) and having a total probability less than�. As N increases
� and� approach zero. The number of signals of durationT in the channel is greater than 2(C��)T with �
small whenT is large. if we choose

T =

�
H
C

+�

�
N

then there will be a sufficient number of sequences of channel symbols for the high probability group when
N andT are sufficiently large (however small�) and also some additional ones. The high probability group
is coded in an arbitrary one-to-one way into this set. The remaining sequences are represented by larger
sequences, starting and ending with one of the sequences not used for the high probability group. This
special sequence acts as a start and stop signal for a different code. In between a sufficient time is allowed
to give enough different sequences for all the low probability messages. This will require

T1 =

�
R
C
+'

�
N

where' is small. The mean rate of transmission in message symbols per second will then be greater than�
(1� �)

T
N

+ �
T1

N

#�1

=

�
(1� �)

�H
C

+�
�
+ �

�R
C
+'

���1

:
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As N increases�, � and' approach zero and the rate approaches
C
H

.

Another method of performing this coding and thereby proving the theorem can be described as follows:
Arrange the messages of lengthN in order of decreasing probability and suppose their probabilities are
p1� p2� p3 � � � � pn. Let Ps = ∑s�1

1 pi ; that isPs is the cumulative probability up to, but not including,ps.
We first encode into a binary system. The binary code for messages is obtained by expandingPs as a binary
number. The expansion is carried out toms places, wherems is the integer satisfying:

log2
1
ps
�ms< 1+ log2

1
ps
:

Thus the messages of high probability are represented by short codes and those of low probability by long
codes. From these inequalities we have

1
2ms

� ps<
1

2ms�1 :

The code forPs will differ from all succeeding ones in one or more of itsms places, since all the remaining
Pi are at least 1

2ms larger and their binary expansions therefore differ in the firstms places. Consequently all
the codes are different and it is possible to recover the message from its code. If the channel sequences are
not already sequences of binary digits, they can be ascribed binary numbers in an arbitrary fashion and the
binary code thus translated into signals suitable for the channel.

The average numberH 0 of binary digits used per symbol of original message is easily estimated. We
have

H 0 =
1
N ∑msps:

But,
1
N ∑

�
log2

1
ps

�
ps� 1

N ∑msps <
1
N ∑

�
1+ log2

1
ps

�
ps

and therefore,

GN �H 0 < GN +
1
N

As N increasesGN approachesH, the entropy of the source andH 0 approachesH.
We see from this that the inefficiency in coding, when only a finite delay ofN symbols is used, need

not be greater than1N plus the difference between the true entropyH and the entropyGN calculated for
sequences of lengthN. The per cent excess time needed over the ideal is therefore less than

GN

H
+

1
HN

�1:

This method of encoding is substantially the same as one found independently by R. M. Fano.9 His
method is to arrange the messages of lengthN in order of decreasing probability. Divide this series into two
groups of as nearly equal probability as possible. If the message is in the first group its first binary digit
will be 0, otherwise 1. The groups are similarly divided into subsets of nearly equal probability and the
particular subset determines the second binary digit. This process is continued until each subset contains
only one message. It is easily seen that apart from minor differences (generally in the last digit) this amounts
to the same thing as the arithmetic process described above.

10. DISCUSSION ANDEXAMPLES

In order to obtain the maximum power transfer from a generator to a load, a transformer must in general be
introduced so that the generator as seen from the load has the load resistance. The situation here is roughly
analogous. The transducer which does the encoding should match the source to the channel in a statistical
sense. The source as seen from the channel through the transducer should have the same statistical structure

9Technical Report No. 65, The Research Laboratory of Electronics, M.I.T., March 17, 1949.
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as the source which maximizes the entropy in the channel. The content of Theorem 9 is that, although an
exact match is not in general possible, we can approximate it as closely as desired. The ratio of the actual
rate of transmission to the capacityC may be called the efficiency of the coding system. This is of course
equal to the ratio of the actual entropy of the channel symbols to the maximum possible entropy.

In general, ideal or nearly ideal encoding requires a long delay in the transmitter and receiver. In the
noiseless case which we have been considering, the main function of this delay is to allow reasonably good
matching of probabilities to corresponding lengths of sequences. With a good code the logarithm of the
reciprocal probability of a long message must be proportional to the duration of the corresponding signal, in
fact ��� logp�1

T
�C

���
must be small for all but a small fraction of the long messages.

If a source can produce only one particular message its entropy is zero, and no channel is required. For
example, a computing machine set up to calculate the successive digits of� produces a definite sequence
with no chance element. No channel is required to “transmit” this to another point. One could construct a
second machine to compute the same sequence at the point. However, this may be impractical. In such a case
we can choose to ignore some or all of the statistical knowledge we have of the source. We might consider
the digits of� to be a random sequence in that we construct a system capable of sending any sequence of
digits. In a similar way we may choose to use some of our statistical knowledge of English in constructing
a code, but not all of it. In such a case we consider the source with the maximum entropy subject to the
statistical conditions we wish to retain. The entropy of this source determines the channel capacity which
is necessary and sufficient. In the� example the only information retained is that all the digits are chosen
from the set 0;1; : : : ;9. In the case of English one might wish to use the statistical saving possible due to
letter frequencies, but nothing else. The maximum entropy source is then the first approximation to English
and its entropy determines the required channel capacity.

As a simple example of some of these results consider a source which produces a sequence of letters
chosen from amongA, B,C, D with probabilities1

2, 1
4, 1

8, 1
8, successive symbols being chosen independently.

We have

H =��1
2 log 1

2 +
1
4 log 1

4 +
2
8 log 1

8

�
= 7

4 bits per symbol:

Thus we can approximate a coding system to encode messages from this source into binary digits with an
average of74 binary digit per symbol. In this case we can actually achieve the limiting value by the following
code (obtained by the method of the second proof of Theorem 9):

A 0
B 10
C 110
D 111

The average number of binary digits used in encoding a sequence ofN symbols will be

N
�

1
2�1+ 1

4�2+
2
8
�3

�
= 7

4N:

It is easily seen that the binary digits 0, 1 have probabilities1
2, 1

2 so theH for the coded sequences is one
bit per symbol. Since, on the average, we have7

4 binary symbols per original letter, the entropies on a time
basis are the same. The maximum possible entropy for the original set is log4= 2, occurring whenA, B, C,
D have probabilities14, 1

4, 1
4, 1

4. Hence the relative entropy is78. We can translate the binary sequences into
the original set of symbols on a two-to-one basis by the following table:

00 A0

01 B0

10 C0

11 D0
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This double process then encodes the original message into the same symbols but with an average compres-
sion ratio7

8.
As a second example consider a source which produces a sequence ofA’s andB’s with probabilityp for

A andq for B. If p� q we have

H =� logpp(1� p)1�p

=�plogp(1� p)(1�p)=p

:
= plog

e
p
:

In such a case one can construct a fairly good coding of the message on a 0, 1 channel by sending a special
sequence, say 0000, for the infrequent symbolA and then a sequence indicating thenumberof B’s following
it. This could be indicated by the binary representation with all numbers containing the special sequence
deleted. All numbers up to 16 are represented as usual; 16 is represented by the next binary number after 16
which does not contain four zeros, namely 17= 10001, etc.

It can be shown that asp! 0 the coding approaches ideal provided the length of the special sequence is
properly adjusted.

PART II: THE DISCRETE CHANNEL WITH NOISE

11. REPRESENTATION OF ANOISY DISCRETECHANNEL

We now consider the case where the signal is perturbed by noise during transmission or at one or the other
of the terminals. This means that the received signal is not necessarily the same as that sent out by the
transmitter. Two cases may be distinguished. If a particular transmitted signal always produces the same
received signal, i.e., the received signal is a definite function of the transmitted signal, then the effect may be
called distortion. If this function has an inverse — no two transmitted signals producing the same received
signal — distortion may be corrected, at least in principle, by merely performing the inverse functional
operation on the received signal.

The case of interest here is that in which the signal does not always undergo the same change in trans-
mission. In this case we may assume the received signalE to be a function of the transmitted signalSand a
second variable, the noiseN.

E = f (S;N)

The noise is considered to be a chance variable just as the message was above. In general it may be repre-
sented by a suitable stochastic process. The most general type of noisy discrete channel we shall consider
is a generalization of the finite state noise-free channel described previously. We assume a finite number of
states and a set of probabilities

p�;i(�; j):

This is the probability, if the channel is in state� and symboli is transmitted, that symbolj will be received
and the channel left in state�. Thus� and� range over the possible states,i over the possible transmitted
signals andj over the possible received signals. In the case where successive symbols are independently per-
turbed by the noise there is only one state, and the channel is described by the set of transition probabilities
pi( j), the probability of transmitted symboli being received asj.

If a noisy channel is fed by a source there are two statistical processes at work: the source and the noise.
Thus there are a number of entropies that can be calculated. First there is the entropyH(x) of the source
or of the input to the channel (these will be equal if the transmitter is non-singular). The entropy of the
output of the channel, i.e., the received signal, will be denoted byH(y). In the noiseless caseH(y) = H(x).
The joint entropy of input and output will beH(xy). Finally there are two conditional entropiesHx(y) and
Hy(x), the entropy of the output when the input is known and conversely. Among these quantities we have
the relations

H(x;y) = H(x)+Hx(y) = H(y)+Hy(x):

All of these entropies can be measured on a per-second or a per-symbol basis.
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12. EQUIVOCATION AND CHANNEL CAPACITY

If the channel is noisy it is not in general possible to reconstruct the original message or the transmitted
signal withcertaintyby any operation on the received signalE. There are, however, ways of transmitting
the information which are optimal in combating noise. This is the problem which we now consider.

Suppose there are two possible symbols 0 and 1, and we are transmitting at a rate of 1000 symbols per
second with probabilitiesp0 = p1 = 1

2. Thus our source is producing information at the rate of 1000 bits
per second. During transmission the noise introduces errors so that, on the average, 1 in 100 is received
incorrectly (a 0 as 1, or 1 as 0). What is the rate of transmission of information? Certainly less than 1000
bits per second since about 1% of the received symbols are incorrect. Our first impulse might be to say
the rate is 990 bits per second, merely subtracting the expected number of errors. This is not satisfactory
since it fails to take into account the recipient’s lack of knowledge of where the errors occur. We may carry
it to an extreme case and suppose the noise so great that the received symbols are entirely independent of
the transmitted symbols. The probability of receiving 1 is1

2 whatever was transmitted and similarly for 0.
Then about half of the received symbols are correct due to chance alone, and we would be giving the system
credit for transmitting 500 bits per second while actually no information is being transmitted at all. Equally
“good” transmission would be obtained by dispensing with the channel entirely and flipping a coin at the
receiving point.

Evidently the proper correction to apply to the amount of information transmitted is the amount of this
information which is missing in the received signal, or alternatively the uncertainty when we have received
a signal of what was actually sent. From our previous discussion of entropy as a measure of uncertainty it
seems reasonable to use the conditional entropy of the message, knowing the received signal, as a measure
of this missing information. This is indeed the proper definition, as we shall see later. Following this idea
the rate of actual transmission,R, would be obtained by subtracting from the rate of production (i.e., the
entropy of the source) the average rate of conditional entropy.

R= H(x)�Hy(x)

The conditional entropyHy(x) will, for convenience, be called the equivocation. It measures the average
ambiguity of the received signal.

In the example considered above, if a 0 is received thea posterioriprobability that a 0 was transmitted
is .99, and that a 1 was transmitted is .01. These figures are reversed if a 1 is received. Hence

Hy(x) =�[:99log:99+0:01log0:01]

= :081 bits/symbol

or 81 bits per second. We may say that the system is transmitting at a rate 1000�81= 919 bits per second.
In the extreme case where a 0 is equally likely to be received as a 0 or 1 and similarly for 1, thea posteriori
probabilities are1

2, 1
2 and

Hy(x) =�
�1

2 log 1
2 +

1
2 log 1

2

�
= 1 bit per symbol

or 1000 bits per second. The rate of transmission is then 0 as it should be.
The following theorem gives a direct intuitive interpretation of the equivocation and also serves to justify

it as the unique appropriate measure. We consider a communication system and an observer (or auxiliary
device) who can see both what is sent and what is recovered (with errors due to noise). This observer notes
the errors in the recovered message and transmits data to the receiving point over a “correction channel” to
enable the receiver to correct the errors. The situation is indicated schematically in Fig. 8.

Theorem 10:If the correction channel has a capacity equal toHy(x) it is possible to so encode the
correction data as to send it over this channel and correct all but an arbitrarily small fraction� of the errors.
This is not possible if the channel capacity is less thanHy(x).
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Fig. 8—Schematic diagram of a correction system.

Roughly then,Hy(x) is the amount of additional information that must be supplied per second at the
receiving point to correct the received message.

To prove the first part, consider long sequences of received messageM0 and corresponding original
messageM. There will be logarithmicallyTHy(x) of theM’s which could reasonably have produced each
M0. Thus we haveTHy(x) binary digits to send eachT seconds. This can be done with� frequency of errors
on a channel of capacityHy(x).

The second part can be proved by noting, first, that for any discrete chance variablesx, y, z

Hy(x;z)�Hy(x):

The left-hand side can be expanded to give

Hy(z)+Hyz(x)�Hy(x)

Hyz(x)�Hy(x)�Hy(z)�Hy(x)�H(z):

If we identifyx as the output of the source,y as the received signal andzas the signal sent over the correction
channel, then the right-hand side is the equivocation less the rate of transmission over the correction channel.
If the capacity of this channel is less than the equivocation the right-hand side will be greater than zero and
Hyz(x)> 0. But this is the uncertainty of what was sent, knowing both the received signal and the correction
signal. If this is greater than zero the frequency of errors cannot be arbitrarily small.

Example:

Suppose the errors occur at random in a sequence of binary digits: probabilityp that a digit is wrong
andq = 1� p that it is right. These errors can be corrected if their position is known. Thus the
correction channel need only send information as to these positions. This amounts to transmitting
from a source which produces binary digits with probabilityp for 1 (incorrect) andq for 0 (correct).
This requires a channel of capacity

�[plogp+qlogq]

which is the equivocation of the original system.

The rate of transmissionR can be written in two other forms due to the identities noted above. We have

R= H(x)�Hy(x)

= H(y)�Hx(y)

= H(x)+H(y)�H(x;y):
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The first defining expression has already been interpreted as the amount of information sent less the uncer-
tainty of what was sent. The second measures the amount received less the part of this which is due to noise.
The third is the sum of the two amounts less the joint entropy and therefore in a sense is the number of bits
per second common to the two. Thus all three expressions have a certain intuitive significance.

The capacityC of a noisy channel should be the maximum possible rate of transmission, i.e., the rate
when the source is properly matched to the channel. We therefore define the channel capacity by

C= Max
�
H(x)�Hy(x)

�
where the maximum is with respect to all possible information sources used as input to the channel. If the
channel is noiseless,Hy(x) = 0. The definition is then equivalent to that already given for a noiseless channel
since the maximum entropy for the channel is its capacity.

13. THE FUNDAMENTAL THEOREM FOR ADISCRETECHANNEL WITH NOISE

It may seem surprising that we should define a definite capacityC for a noisy channel since we can never
send certain information in such a case. It is clear, however, that by sending the information in a redundant
form the probability of errors can be reduced. For example, by repeating the message many times and by a
statistical study of the different received versions of the message the probability of errors could be made very
small. One would expect, however, that to make this probability of errors approach zero, the redundancy
of the encoding must increase indefinitely, and the rate of transmission therefore approach zero. This is by
no means true. If it were, there would not be a very well defined capacity, but only a capacity for a given
frequency of errors, or a given equivocation; the capacity going down as the error requirements are made
more stringent. Actually the capacityC defined above has a very definite significance. It is possible to send
information at the rateC through the channelwith as small a frequency of errors or equivocation as desired
by proper encoding. This statement is not true for any rate greater thanC. If an attempt is made to transmit
at a higher rate thanC, sayC+R1, then there will necessarily be an equivocation equal to or greater than the
excessR1. Nature takes payment by requiring just that much uncertainty, so that we are not actually getting
any more thanC through correctly.

The situation is indicated in Fig. 9. The rate of information into the channel is plotted horizontally and
the equivocation vertically. Any point above the heavy line in the shaded region can be attained and those
below cannot. The points on the line cannot in general be attained, but there will usually be two points on
the line that can.

These results are the main justification for the definition ofC and will now be proved.

Theorem 11:Let a discrete channel have the capacityC and a discrete source the entropy per secondH.
If H �C there exists a coding system such that the output of the source can be transmitted over the channel
with an arbitrarily small frequency of errors (or an arbitrarily small equivocation). IfH >C it is possible
to encode the source so that the equivocation is less thanH�C+ � where� is arbitrarily small. There is no
method of encoding which gives an equivocation less thanH�C.

The method of proving the first part of this theorem is not by exhibiting a coding method having the
desired properties, but by showing that such a code must exist in a certain group of codes. In fact we will

ATTAINABLE
REGION

C H(x)

Hy(x)

SLO
PE=

1.0

Fig. 9—The equivocation possible for a given input entropy to a channel.
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average the frequency of errors over this group and show that this average can be made less than�. If the
average of a set of numbers is less than� there must exist at least one in the set which is less than�. This
will establish the desired result.

The capacityC of a noisy channel has been defined as

C= Max
�
H(x)�Hy(x)

�
wherex is the input andy the output. The maximization is over all sources which might be used as input to
the channel.

Let S0 be a source which achieves the maximum capacityC. If this maximum is not actually achieved
by any source letS0 be a source which approximates to giving the maximum rate. SupposeS0 is used as
input to the channel. We consider the possible transmitted and received sequences of a long durationT. The
following will be true:

1. The transmitted sequences fall into two classes, a high probability group with about 2TH(x) members
and the remaining sequences of small total probability.

2. Similarly the received sequences have a high probability set of about 2TH(y) members and a low
probability set of remaining sequences.

3. Each high probability output could be produced by about 2THy(x) inputs. The probability of all other
cases has a small total probability.

All the �’s and�’s implied by the words “small” and “about” in these statements approach zero as we
allow T to increase andS0 to approach the maximizing source.

The situation is summarized in Fig. 10 where the input sequences are points on the left and output
sequences points on the right. The fan of cross lines represents the range of possible causes for a typical
output.

M

E

2H(x)T

HIGH PROBABILITY
MESSAGES

2H(y)T

HIGH PROBABILITY
RECEIVED SIGNALS

2Hy(x)T

REASONABLE CAUSES
FOR EACHE

2Hx(y)T

REASONABLE EFFECTS
FOR EACHM

Fig. 10—Schematic representation of the relations between inputs and outputs in a channel.

Now suppose we have another source producing information at rateR with R<C. In the periodT this
source will have 2TR high probability messages. We wish to associate these with a selection of the possible
channel inputs in such a way as to get a small frequency of errors. We will set up this association in all
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possible ways (using, however, only the high probability group of inputs as determined by the sourceS0)
and average the frequency of errors for this large class of possible coding systems. This is the same as
calculating the frequency of errors for a random association of the messages and channel inputs of duration
T. Suppose a particular outputy1 is observed. What is the probability of more than one message in the set
of possible causes ofy1? There are 2TR messages distributed at random in 2TH(x) points. The probability of
a particular point being a message is thus

2T(R�H(x)):

The probability that none of the points in the fan is a message (apart from the actual originating message) is

P=
�
1�2T(R�H(x))�2THy(x)

:

Now R< H(x)�Hy(x) soR�H(x) =�Hy(x)�� with � positive. Consequently

P=
�
1�2�THy(x)�T��2THy(x)

approaches (asT ! ∞)
1�2�T� :

Hence the probability of an error approaches zero and the first part of the theorem is proved.
The second part of the theorem is easily shown by noting that we could merely sendC bits per second

from the source, completely neglecting the remainder of the information generated. At the receiver the
neglected part gives an equivocationH(x)�C and the part transmitted need only add�. This limit can also
be attained in many other ways, as will be shown when we consider the continuous case.

The last statement of the theorem is a simple consequence of our definition ofC. Suppose we can encode
a source withH(x) =C+a in such a way as to obtain an equivocationHy(x) = a� � with � positive. Then
R= H(x) =C+a and

H(x)�Hy(x) =C+ �

with � positive. This contradicts the definition ofC as the maximum ofH(x)�Hy(x).
Actually more has been proved than was stated in the theorem. If the average of a set of numbers is

within � of of their maximum, a fraction of at most
p
� can be more than

p
� below the maximum. Since� is

arbitrarily small we can say that almost all the systems are arbitrarily close to the ideal.

14. DISCUSSION

The demonstration of Theorem 11, while not a pure existence proof, has some of the deficiencies of such
proofs. An attempt to obtain a good approximation to ideal coding by following the method of the proof is
generally impractical. In fact, apart from some rather trivial cases and certain limiting situations, no explicit
description of a series of approximation to the ideal has been found. Probably this is no accident but is
related to the difficulty of giving an explicit construction for a good approximation to a random sequence.

An approximation to the ideal would have the property that if the signal is altered in a reasonable way
by the noise, the original can still be recovered. In other words the alteration will not in general bring it
closer to another reasonable signal than the original. This is accomplished at the cost of a certain amount of
redundancy in the coding. The redundancy must be introduced in the proper way to combat the particular
noise structure involved. However, any redundancy in the source will usually help if it is utilized at the
receiving point. In particular, if the source already has a certain redundancy and no attempt is made to
eliminate it in matching to the channel, this redundancy will help combat noise. For example, in a noiseless
telegraph channel one could save about 50% in time by proper encoding of the messages. This is not done
and most of the redundancy of English remains in the channel symbols. This has the advantage, however,
of allowing considerable noise in the channel. A sizable fraction of the letters can be received incorrectly
and still reconstructed by the context. In fact this is probably not a bad approximation to the ideal in many
cases, since the statistical structure of English is rather involved and the reasonable English sequences are
not too far (in the sense required for the theorem) from a random selection.
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As in the noiseless case a delay is generally required to approach the ideal encoding. It now has the
additional function of allowing a large sample of noise to affect the signal before any judgment is made
at the receiving point as to the original message. Increasing the sample size always sharpens the possible
statistical assertions.

The content of Theorem 11 and its proof can be formulated in a somewhat different way which exhibits
the connection with the noiseless case more clearly. Consider the possible signals of durationT and suppose
a subset of them is selected to be used. Let those in the subset all be used with equal probability, and suppose
the receiver is constructed to select, as the original signal, the most probable cause from the subset, when a
perturbed signal is received. We defineN(T;q) to be the maximum number of signals we can choose for the
subset such that the probability of an incorrect interpretation is less than or equal toq.

Theorem 12:Lim
T!∞

logN(T;q)
T

=C, whereC is the channel capacity, provided thatq does not equal 0 or

1.

In other words, no matter how we set out limits of reliability, we can distinguish reliably in timeT
enough messages to correspond to aboutCT bits, whenT is sufficiently large. Theorem 12 can be compared
with the definition of the capacity of a noiseless channel given in Section 1.

15. EXAMPLE OF A DISCRETECHANNEL AND ITS CAPACITY

A simple example of a discrete channel is indicated in Fig. 11. There are three possible symbols. The first is
never affected by noise. The second and third each have probabilityp of coming through undisturbed, and
q of being changed into the other of the pair. We have (letting� =�[plogp+qlogq] andP andQ be the

p

p

q

q

TRANSMITTED
SYMBOLS

RECEIVED
SYMBOLS

Fig. 11—Example of a discrete channel.

probabilities of using the first and second symbols)

H(x) =�PlogP�2QlogQ

Hy(x) = 2Q�:

We wish to chooseP andQ in such a way as to maximizeH(x)�Hy(x), subject to the constraintP+2Q= 1.
Hence we consider

U =�PlogP�2QlogQ�2Q�+�(P+2Q)

∂U
∂P

=�1� logP+�= 0

∂U
∂Q

=�2�2logQ�2�+2�= 0:

Eliminating�

logP= logQ+�

P= Qe� = Q�

25



P=
�

�+2
Q=



a b c

1/2

1/2

1/2

1/2
1/2

1/2
1/2

1/2
1/3

1/3

1/3

1/3

1/6
1/6

1/6

1/6

1/6

1/6

1/6

1/3

1/3

1/3

1/2

1/2

1/2

Fig. 12—Examples of discrete channels with the same transition probabilities for each input and for each output.

In Fig. 12a it would be
C = log4� log2= log2:

This could be achieved by using only the 1st and 3d symbols. In Fig. 12b

C= log4� 2
3 log3� 1

3 log6

= log4� log3� 1
3 log2

= log 1
32

5
3 :

In Fig. 12c we have

C= log3� 1
2 log2� 1

3 log3� 1
6 log6

= log
3

2
1
2 3

1
3 6

1
6

:

Suppose the symbols fall into several groups such that the noise never causes a symbol in one group to
be mistaken for a symbol in another group. Let the capacity for thenth group beCn (in bits per second)
when we use only the symbols in this group. Then it is easily shown that, for best use of the entire set, the
total probabilityPn of all symbols in thenth group should be

Pn =
2Cn

∑2Cn
:

Within a group the probability is distributed just as it would be if these were the only symbols being used.
The channel capacity is

C= log∑2Cn:

17. AN EXAMPLE OF EFFICIENT CODING

The following example, although somewhat unrealistic, is a case in which exact matching to a noisy channel
is possible. There are two channel symbols, 0 and 1, and the noise affects them in blocks of seven symbols.
A block of seven is either transmitted without error, or exactly one symbol of the seven is incorrect. These
eight possibilities are equally likely. We have

C = Max
�
H(y)�Hx(y)

�
= 1

7

�
7+ 8

8 log 1
8

�
= 4

7 bits/symbol:

An efficient code, allowing complete correction of errors and transmitting at the rateC, is the following
(found by a method due to R. Hamming):
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Let a block of seven symbols beX1;X2; : : : ;X7. Of theseX3, X5, X6 andX7 are message symbols and
chosen arbitrarily by the source. The other three are redundant and calculated as follows:

X4 is chosen to make�= X4+X5+X6+X7 even
X2 “ “ “ “ � = X2+X3+X6+X7 “
X1 “ “ “ “  = X1+X3+X5+X7 “

When a block of seven is received�;� and are calculated and if even called zero, if odd called one. The
binary number��  then gives the subscript of theXi that is incorrect (if 0 there was no error).

APPENDIX 1

THE GROWTH OF THENUMBER OF BLOCKS OFSYMBOLS WITH A FINITE STATE CONDITION

Let Ni(L) be the number of blocks of symbols of lengthL ending in statei. Then we have

Nj(L) = ∑
i;s

Ni
�
L�b(s)i j

�

whereb1
i j ;b

2
i j ; : : : ;b

m
i j are the length of the symbols which may be chosen in statei and lead to statej. These

are linear difference equations and the behavior asL! ∞ must be of the type

Nj = AjW
L:

Substituting in the difference equation

AjW
L = ∑

i;s
AiW

L�b
(s)
i j

or

Aj = ∑
i;s

AiW
�b

(s)
i j

∑
i

�
∑
s

W�b
(s)
i j � �i j

�
Ai = 0:

For this to be possible the determinant

D(W) = jai j j=
���∑

s
W�b

(s)
i j � �i j

���
must vanish and this determinesW, which is, of course, the largest real root ofD = 0.

The quantityC is then given by

C = Lim
L!∞

log∑AjWL

L
= logW

and we also note that the same growth properties result if we require that all blocks start in the same (arbi-
trarily chosen) state.

APPENDIX 2

DERIVATION OF H =�∑ pi logpi

Let H
�1

n
;
1
n
; : : : ;

1
n

�
= A(n). From condition (3) we can decompose a choice fromsm equally likely possi-

bilities into a series ofm choices fromsequally likely possibilities and obtain

A(sm) = mA(s):
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Similarly
A(tn) = nA(t):

We can choosen arbitrarily large and find anm to satisfy

sm� tn < s(m+1):

Thus, taking logarithms and dividing bynlogs,

m
n
� log t

log s
� m

n
+

1
n

or
���m

n
� log t

log s

���< �

where� is arbitrarily small. Now from the monotonic property ofA(n),

A(sm)� A(tn)� A(sm+1)

mA(s)� nA(t)� (m+1)A(s):

Hence, dividing bynA(s),
m
n
� A(t)

A(s)
� m

n
+

1
n

or
���m

n
� A(t)

A(s)

���< �

���A(t)
A(s)

� logt
logs

���< 2� A(t) = K logt

whereK must be positive to satisfy (2).

Now suppose we have a choice fromn possibilities with commeasurable probabilitiespi =
ni

∑ni
where

the ni are integers. We can break down a choice from∑ni possibilities into a choice fromn possibilities
with probabilitiesp1; : : : ; pn and then, if theith was chosen, a choice fromni with equal probabilities. Using
condition (3) again, we equate the total choice from∑ni as computed by two methods

K log∑ni = H(p1; : : : ; pn)+K∑ pi logni :

Hence

H = K
h
∑ pi log∑ni�∑ pi logni

i
=�K∑ pi log

ni

∑ni
=�K∑ pi logpi :

If the pi are incommeasurable, they may be approximated by rationals and the same expression must hold
by our continuity assumption. Thus the expression holds in general. The choice of coefficientK is a matter
of convenience and amounts to the choice of a unit of measure.

APPENDIX 3

THEOREMS ONERGODIC SOURCES

If it is possible to go from any state withP> 0 to any other along a path of probabilityp> 0, the system is
ergodic and the strong law of large numbers can be applied. Thus the number of times a given pathpi j in
the network is traversed in a long sequence of lengthN is about proportional to the probability of being at
i, sayPi , and then choosing this path,Pi pi j N. If N is large enough the probability of percentage error�� in
this is less than� so that for all but a set of small probability the actual numbers lie within the limits

(Pi pi j � �)N:

Hence nearly all sequences have a probabilityp given by

p= ∏ p
(Pi pi j��)N
i j
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and
logp

N
is limited by

logp
N

= ∑(Pi pi j � �) logpi j

or ��� logp
N

�∑Pi pi j logpi j

���< �:

This proves Theorem 3.
Theorem 4 follows immediately from this on calculating upper and lower bounds forn(q) based on the

possible range of values ofp in Theorem 3.
In the mixed (not ergodic) case if

L = ∑ piLi

and the entropies of the components areH1�H2 � �� � �Hn we have the

Theorem: Lim
N!∞

logn(q)
N = '(q) is a decreasing step function,

'(q) = Hs in the interval
s�1

∑
1
�i < q<

s

∑
1
�i :

To prove Theorems 5 and 6 first note thatFN is monotonic decreasing because increasingN adds a
subscript to a conditional entropy. A simple substitution forpBi (Sj) in the definition ofFN shows that

FN = NGN� (N�1)GN�1

and summing this for allN givesGN =
1
N ∑Fn. HenceGN � FN andGN monotonic decreasing. Also they

must approach the same limit. By using Theorem 3 we see that Lim
N!∞

GN = H.

APPENDIX 4

MAXIMIZING THE RATE FOR A SYSTEM OF CONSTRAINTS

Suppose we have a set of constraints on sequences of symbols that is of the finite state type and can be

represented therefore by a linear graph. Let`
(s)
i j be the lengths of the various symbols that can occur in

passing from statei to state j. What distribution of probabilitiesPi for the different states andp(s)i j for
choosing symbols in statei and going to statej maximizes the rate of generating information under these
constraints? The constraints define a discrete channel and the maximum rate must be less than or equal to
the capacityC of this channel, since if all blocks of large length were equally likely, this rate would result,
and if possible this would be best. We will show that this rate can be achieved by proper choice of thePi and

p(s)i j .
The rate in question is

�∑Pi p
(s)
i j logp(s)i j

∑Pi p
(s)
i j `

(s)
i j

=
N
M
:

Let `i j = ∑s`
(s)
i j . Evidently for a maximump(s)i j = kexp`(s)i j . The constraints on maximization are∑Pi =

1, ∑ j pi j = 1, ∑Pi(pi j � �i j ) = 0. Hence we maximize

U =
�∑Pi pi j logpi j

∑Pi pi j `i j
+�∑

i
Pi +∑�i pi j +∑� jPi(pi j � �i j )

∂U
∂pi j

=�MPi(1+ logpi j )+NPi`i j

M2 +�+�i +�iPi = 0:
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Solving for pi j

pi j = AiBjD
�`i j :

Since

∑
j

pi j = 1; A�1
i = ∑

j
BjD

�`i j

pi j =
BjD�`i j

∑sBsD�`is
:

The correct value ofD is the capacityC and theBj are solutions of

Bi =∑BjC
�`i j

for then

pi j =
Bj

Bi
C�`i j

∑Pi
Bj

Bi
C�`i j = Pj

or

∑ Pi

Bi
C�`i j =

Pj

Bj
:

So that if�i satisfy

∑iC
�`i j =  j

Pi = Bii :

Both the sets of equations forBi andi can be satisfied sinceC is such that

jC�`i j � �i j j= 0:

In this case the rate is

�∑Pi pi j log
Bj
Bi

C�`i j

∑Pi pi j `i j
=C� ∑Pi pi j log

Bj
Bi

∑Pi pi j `i j

but

∑Pi pi j (logBj � logBi) = ∑
j

Pj logBj �∑Pi logBi = 0

Hence the rate isC and as this could never be exceeded this is the maximum, justifying the assumed solution.
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PART III: MATHEMATICAL PRELIMINARIES

In this final installment of the paper we consider the case where the signals or the messages or both are
continuously variable, in contrast with the discrete nature assumed heretofore. To a considerable extent the
continuous case can be obtained through a limiting process from the discrete case by dividing the continuum
of messages and signals into a large but finite number of small regions and calculating the various parameters
involved on a discrete basis. As the size of the regions is decreased these parameters in general approach as
limits the proper values for the continuous case. There are, however, a few new effects that appear and also
a general change of emphasis in the direction of specialization of the general results to particular cases.

We will not attempt, in the continuous case, to obtain our results with the greatest generality, or with
the extreme rigor of pure mathematics, since this would involve a great deal of abstract measure theory
and would obscure the main thread of the analysis. A preliminary study, however, indicates that the theory
can be formulated in a completely axiomatic and rigorous manner which includes both the continuous and
discrete cases and many others. The occasional liberties taken with limiting processes in the present analysis
can be justified in all cases of practical interest.

18. SETS AND ENSEMBLES OFFUNCTIONS

We shall have to deal in the continuous case with sets of functions and ensembles of functions. A set of
functions, as the name implies, is merely a class or collection of functions, generally of one variable, time.
It can be specified by giving an explicit representation of the various functions in the set, or implicitly by
giving a property which functions in the set possess and others do not. Some examples are:

1. The set of functions:
f�(t) = sin(t + �):

Each particular value of� determines a particular function in the set.

2. The set of all functions of time containing no frequencies overW cycles per second.

3. The set of all functions limited in band toW and in amplitude toA.

4. The set of all English speech signals as functions of time.

An ensembleof functions is a set of functions together with a probability measure whereby we may
determine the probability of a function in the set having certain properties.1 For example with the set,

f�(t) = sin(t + �);

we may give a probability distribution for�, P(�). The set then becomes an ensemble.
Some further examples of ensembles of functions are:

1. A finite set of functionsfk(t) (k= 1;2; : : : ;n) with the probability offk beingpk.

2. A finite dimensional family of functions

f (�1;�2; : : : ;�n;t)

with a probability distribution on the parameters�i :

p(�1; : : : ;�n):

For example we could consider the ensemble defined by

f (a1; : : : ;an;�1; : : : ;�n;t) =
n

∑
i=1

ai sini(!t + �i)

with the amplitudesai distributed normally and independently, and the phases�i distributed uniformly
(from 0 to 2�) and independently.

1In mathematical terminology the functions belong to a measure space whose total measure is unity.
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3. The ensemble

f (ai ; t) =
+∞

∑
n=�∞

an
sin�(2Wt�n)
�(2Wt�n)

with theai normal and independent all with the same standard deviation
p

N. This is a representation
of “white” noise, band limited to the band from 0 toW cycles per second and with average powerN.2

4. Let points be distributed on thet axis according to a Poisson distribution. At each selected point the
function f (t) is placed and the different functions added, giving the ensemble

∞

∑
k=�∞

f (t + tk)

where thetk are the points of the Poisson distribution. This ensemble can be considered as a type of
impulse or shot noise where all the impulses are identical.

5. The set of English speech functions with the probability measure given by the frequency of occurrence
in ordinary use.

An ensemble of functionsf�(t) is stationaryif the same ensemble results when all functions are shifted
any fixed amount in time. The ensemble

f�(t) = sin(t + �)

is stationary if� is distributed uniformly from 0 to 2�. If we shift each function byt1 we obtain

f�(t + t1) = sin(t + t1+ �)

= sin(t +')

with ' distributed uniformly from 0 to 2�. Each function has changed but the ensemble as a whole is
invariant under the translation. The other examples given above are also stationary.

An ensemble isergodic if it is stationary, and there is no subset of the functions in the set with a
probability different from 0 and 1 which is stationary. The ensemble

sin(t + �)

is ergodic. No subset of these functions of probability6= 0;1 is transformed into itself under all time trans-
lations. On the other hand the ensemble

asin(t + �)

with a distributed normally and� uniform is stationary but not ergodic. The subset of these functions with
a between 0 and 1 for example is stationary.

Of the examples given, 3 and 4 are ergodic, and 5 may perhaps be considered so. If an ensemble is
ergodic we may say roughly that each function in the set is typical of the ensemble. More precisely it is
known that with an ergodic ensemble an average of any statistic over the ensemble is equal (with probability
1) to an average over the time translations of a particular function of the set.3 Roughly speaking, each
function can be expected, as time progresses, to go through, with the proper frequency, all the convolutions
of any of the functions in the set.

2This representation can be used as a definition of band limited white noise. It has certain advantages in that it involves fewer
limiting operations than do definitions that have been used in the past. The name “white noise,” already firmly entrenched in the
literature, is perhaps somewhat unfortunate. In optics white light means either any continuous spectrum as contrasted with a point
spectrum, or a spectrum which is flat withwavelength(which is not the same as a spectrum flat with frequency).

3This is the famous ergodic theorem or rather one aspect of this theorem which was proved in somewhat different formulations
by Birkoff, von Neumann, and Koopman, and subsequently generalized by Wiener, Hopf, Hurewicz and others. The literature on
ergodic theory is quite extensive and the reader is referred to the papers of these writers for precise and general formulations; e.g.,
E. Hopf, “Ergodentheorie,”Ergebnisse der Mathematik und ihrer Grenzgebiete,v. 5; “On Causality Statistics and Probability,”Journal
of Mathematics and Physics,v. XIII, No. 1, 1934; N. Wiener, “The Ergodic Theorem,”Duke Mathematical Journal,v. 5, 1939.
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Just as we may perform various operations on numbers or functions to obtain new numbers or functions,
we can perform operations on ensembles to obtain new ensembles. Suppose, for example, we have an
ensemble of functionsf�(t) and an operatorT which gives for each functionf�(t) a resulting function
g�(t):

g�(t) = T f�(t):

Probability measure is defined for the setg�(t) by means of that for the setf�(t). The probability of a certain
subset of theg�(t) functions is equal to that of the subset of thef�(t) functions which produce members of
the given subset ofg functions under the operationT. Physically this corresponds to passing the ensemble
through some device, for example, a filter, a rectifier or a modulator. The output functions of the device
form the ensembleg�(t).

A device or operatorT will be called invariant if shifting the input merely shifts the output, i.e., if

g�(t) = T f�(t)

implies
g�(t + t1) = T f�(t + t1)

for all f�(t) and allt1. It is easily shown (see Appendix 5 that ifT is invariant and the input ensemble is
stationary then the output ensemble is stationary. Likewise if the input is ergodic the output will also be
ergodic.

A filter or a rectifier is invariant under all time translations. The operation of modulation is not since the
carrier phase gives a certain time structure. However, modulation is invariant under all translations which
are multiples of the period of the carrier.

Wiener has pointed out the intimate relation between the invariance of physical devices under time
translations and Fourier theory.4 He has shown, in fact, that if a device is linear as well as invariant Fourier
analysis is then the appropriate mathematical tool for dealing with the problem.

An ensemble of functions is the appropriate mathematical representation of the messages produced by
a continuous source (for example, speech), of the signals produced by a transmitter, and of the perturbing
noise. Communication theory is properly concerned, as has been emphasized by Wiener, not with operations
on particular functions, but with operations on ensembles of functions. A communication system is designed
not for a particular speech function and still less for a sine wave, but for the ensemble of speech functions.

19. BAND LIMITED ENSEMBLES OFFUNCTIONS

If a function of time f (t) is limited to the band from 0 toW cycles per second it is completely determined
by giving its ordinates at a series of discrete points spaced1

2W seconds apart in the manner indicated by the
following result.5

Theorem 13:Let f (t) contain no frequencies overW. Then

f (t) =
∞

∑
�∞

Xn
sin�(2Wt�n)
�(2Wt�n)

where
Xn = f

� n
2W

�
:

4Communication theory is heavily indebted to Wiener for much of its basic philosophy and theory. His classic NDRC report,
The Interpolation, Extrapolation and Smoothing of Stationary Time Series(Wiley, 1949), contains the first clear-cut formulation of
communication theory as a statistical problem, the study of operations on time series. This work, although chiefly concerned with the
linear prediction and filtering problem, is an important collateral reference in connection with the present paper. We may also refer
here to Wiener’sCybernetics(Wiley, 1948), dealing with the general problems of communication and control.

5For a proof of this theorem and further discussion see the author’s paper “Communication in the Presence of Noise” published in
theProceedings of the Institute of Radio Engineers,v. 37, No. 1, Jan., 1949, pp. 10–21.
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In this expansionf (t) is represented as a sum of orthogonal functions. The coefficientsXn of the various
terms can be considered as coordinates in an infinite dimensional “function space.” In this space each
function corresponds to precisely one point and each point to one function.

A function can be considered to be substantially limited to a timeT if all the ordinatesXn outside this
interval of time are zero. In this case all but 2TW of the coordinates will be zero. Thus functions limited to
a bandW and durationT correspond to points in a space of 2TW dimensions.

A subset of the functions of bandW and durationT corresponds to a region in this space. For example,
the functions whose total energy is less than or equal toE correspond to points in a 2TW dimensional sphere
with radiusr =

p
2WE.

An ensembleof functions of limited duration and band will be represented by a probability distribution
p(x1; : : : ;xn) in the correspondingn dimensional space. If the ensemble is not limited in time we can consider
the 2TW coordinates in a given intervalT to represent substantially the part of the function in the intervalT
and the probability distributionp(x1; : : : ;xn) to give the statistical structure of the ensemble for intervals of
that duration.

20. ENTROPY OF ACONTINUOUS DISTRIBUTION

The entropy of a discrete set of probabilitiesp1; : : : ; pn has been defined as:

H =�∑ pi logpi :

In an analogous manner we define the entropy of a continuous distribution with the density distribution
functionp(x) by:

H =�
Z ∞

�∞
p(x) logp(x)dx:

With ann dimensional distributionp(x1; : : : ;xn) we have

H =�
Z
� � �

Z
p(x1; : : : ;xn) logp(x1; : : : ;xn)dx1 � � �dxn:

If we have two argumentsx andy (which may themselves be multidimensional) the joint and conditional
entropies ofp(x;y) are given by

H(x;y) =�
ZZ

p(x;y) logp(x;y)dxdy

and

Hx(y) =�
ZZ

p(x;y) log
p(x;y)
p(x)

dxdy

Hy(x) =�
ZZ

p(x;y) log
p(x;y)
p(y)

dxdy

where

p(x) =
Z

p(x;y)dy

p(y) =
Z

p(x;y)dx:

The entropies of continuous distributions have most (but not all) of the properties of the discrete case.
In particular we have the following:

1. If x is limited to a certain volumev in its space, thenH(x) is a maximum and equal to logv whenp(x)
is constant (1=v) in the volume.

35



2. With any two variablesx, y we have

H(x;y)�H(x)+H(y)

with equality if (and only if)x andy are independent, i.e.,p(x;y) = p(x)p(y) (apart possibly from a
set of points of probability zero).

3. Consider a generalized averaging operation of the following type:

p0(y) =
Z

a(x;y)p(x)dx

with Z
a(x;y)dx=

Z
a(x;y)dy= 1; a(x;y)� 0:

Then the entropy of the averaged distributionp0(y) is equal to or greater than that of the original
distributionp(x).

4. We have

H(x;y) = H(x)+Hx(y) = H(y)+Hy(x)

and

Hx(y)�H(y):

5. Letp(x) be a one-dimensional distribution. The form ofp(x) giving a maximum entropy subject to the
condition that the standard deviation ofx be fixed at� is Gaussian. To show this we must maximize

H(x) =�
Z

p(x) logp(x)dx

with
�2 =

Z
p(x)x2 dx and 1=

Z
p(x)dx

as constraints. This requires, by the calculus of variations, maximizing
Z ��p(x) logp(x)+�p(x)x2+�p(x)

�
dx:

The condition for this is
�1� logp(x)+�x2+�= 0

and consequently (adjusting the constants to satisfy the constraints)

p(x) =
1p
2��

e�(x
2=2�2):

Similarly in n dimensions, suppose the second order moments ofp(x1; : : : ;xn) are fixed atAi j :

Ai j =

Z
� � �

Z
xixj p(x1; : : : ;xn)dx1 � � � dxn:

Then the maximum entropy occurs (by a similar calculation) whenp(x1; : : : ;xn) is then dimensional
Gaussian distribution with the second order momentsAi j .
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6. The entropy of a one-dimensional Gaussian distribution whose standard deviation is� is given by

H(x) = log
p

2�e�:

This is calculated as follows:

p(x) =
1p
2��

e�(x
2=2�2)

� logp(x) = log
p

2��+
x2

2�2

H(x) =�
Z

p(x) logp(x)dx

=
Z

p(x) log
p

2��dx+
Z

p(x)
x2

2�2 dx

= log
p

2��+
�2

2�2

= log
p

2��+ log
p

e

= log
p

2�e�:

Similarly then dimensional Gaussian distribution with associated quadratic formai j is given by

p(x1; : : : ;xn) =
jai j j 1

2

(2�)n=2
exp

�
�1

2 ∑ai j xixj

�

and the entropy can be calculated as

H = log(2�e)n=2jai j j� 1
2

wherejai j j is the determinant whose elements areai j .

7. If x is limited to a half line (p(x) = 0 for x� 0) and the first moment ofx is fixed ata:

a=
Z ∞

0
p(x)xdx;

then the maximum entropy occurs when

p(x) =
1
a

e�(x=a)

and is equal to logea.

8. There is one important difference between the continuous and discrete entropies. In the discrete case
the entropy measures in anabsoluteway the randomness of the chance variable. In the continuous
case the measurement isrelative to the coordinate system. If we change coordinates the entropy will
in general change. In fact if we change to coordinatesy1 � � �yn the new entropy is given by

H(y) =
Z
� � �

Z
p(x1; : : : ;xn)J

�x
y

�
logp(x1; : : : ;xn)J

�x
y

�
dy1 � � �dyn

whereJ
�

x
y

�
is the Jacobian of the coordinate transformation. On expanding the logarithm and chang-

ing the variables tox1 � � �xn, we obtain:

H(y) = H(x)�
Z
� � �

Z
p(x1; : : : ;xn) logJ

�x
y

�
dx1 : : :dxn:
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Thus the new entropy is the old entropy less the expected logarithm of the Jacobian. In the continuous
case the entropy can be considered a measure of randomnessrelative to an assumed standard, namely
the coordinate system chosen with each small volume elementdx1 � � �dxn given equal weight. When
we change the coordinate system the entropy in the new system measures the randomness when equal
volume elementsdy1 � � �dyn in the new system are given equal weight.

In spite of this dependence on the coordinate system the entropy concept is as important in the con-
tinuous case as the discrete case. This is due to the fact that the derived concepts of information rate
and channel capacity depend on thedifferenceof two entropies and this differencedoes notdepend
on the coordinate frame, each of the two terms being changed by the same amount.

The entropy of a continuous distribution can be negative. The scale of measurements sets an arbitrary
zero corresponding to a uniform distribution over a unit volume. A distribution which is more confined
than this has less entropy and will be negative. The rates and capacities will, however, always be non-
negative.

9. A particular case of changing coordinates is the linear transformation

yj = ∑
i

ai j xi :

In this case the Jacobian is simply the determinantjai j j�1 and

H(y) = H(x)+ logjai j j:

In the case of a rotation of coordinates (or any measure preserving transformation)J = 1 andH(y) =
H(x).

21. ENTROPY OF ANENSEMBLE OFFUNCTIONS

Consider an ergodic ensemble of functions limited to a certain band of widthW cycles per second. Let

p(x1; : : : ;xn)

be the density distribution function for amplitudesx1; : : : ;xn at n successive sample points. We define the
entropy of the ensemble per degree of freedom by

H 0 =�Lim
n!∞

1
n

Z
� � �

Z
p(x1; : : : ;xn) logp(x1; : : : ;xn)dx1 : : :dxn:

We may also define an entropyH per second by dividing, not byn, but by the timeT in seconds forn
samples. Sincen= 2TW, H = 2WH0.

With white thermal noisep is Gaussian and we have

H 0 = log
p

2�eN;

H =W log2�eN:

For a given average powerN, white noise has the maximum possible entropy. This follows from the
maximizing properties of the Gaussian distribution noted above.

The entropy for a continuous stochastic process has many properties analogous to that for discrete pro-
cesses. In the discrete case the entropy was related to the logarithm of theprobability of long sequences,
and to thenumberof reasonably probable sequences of long length. In the continuous case it is related in
a similar fashion to the logarithm of theprobability densityfor a long series of samples, and thevolumeof
reasonably high probability in the function space.

More precisely, if we assumep(x1; : : : ;xn) continuous in all thexi for all n, then for sufficiently largen��� logp
n

�H 0

���< �
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for all choices of(x1; : : : ;xn) apart from a set whose total probability is less than�, with � and� arbitrarily
small. This follows form the ergodic property if we divide the space into a large number of small cells.

The relation ofH to volume can be stated as follows: Under the same assumptions consider then
dimensional space corresponding top(x1; : : : ;xn). Let Vn(q) be the smallest volume in this space which
includes in its interior a total probabilityq. Then

Lim
n!∞

logVn(q)
n

= H 0

providedq does not equal 0 or 1.
These results show that for largen there is a rather well-defined volume (at least in the logarithmic sense)

of high probability, and that within this volume the probability density is relatively uniform (again in the
logarithmic sense).

In the white noise case the distribution function is given by

p(x1; : : : ;xn) =
1

(2�N)n=2
exp� 1

2N ∑x2
i :

Since this depends only on∑x2
i the surfaces of equal probability density are spheres and the entire distri-

bution has spherical symmetry. The region of high probability is a sphere of radius
p

nN. As n! ∞ the
probability of being outside a sphere of radius

p
n(N+ �) approaches zero and1n times the logarithm of the

volume of the sphere approaches log
p

2�eN.
In the continuous case it is convenient to work not with the entropyH of an ensemble but with a derived

quantity which we will call the entropy power. This is defined as the power in a white noise limited to the
same band as the original ensemble and having the same entropy. In other words ifH 0 is the entropy of an
ensemble its entropy power is

N1 =
1

2�e
exp2H 0:

In the geometrical picture this amounts to measuring the high probability volume by the squared radius of a
sphere having the same volume. Since white noise has the maximum entropy for a given power, the entropy
power of any noise is less than or equal to its actual power.

22. ENTROPY LOSS INLINEAR FILTERS

Theorem 14:If an ensemble having an entropyH1 per degree of freedom in bandW is passed through a
filter with characteristicY( f ) the output ensemble has an entropy

H2 = H1+
1
W

Z
W

logjY( f )j2 d f:

The operation of the filter is essentially a linear transformation of coordinates. If we think of the different
frequency components as the original coordinate system, the new frequency components are merely the old
ones multiplied by factors. The coordinate transformation matrix is thus essentially diagonalized in terms
of these coordinates. The Jacobian of the transformation is (forn sine andn cosine components)

J =
n

∏
i=1
jY( fi)j2

where thefi are equally spaced through the bandW. This becomes in the limit

exp
1
W

Z
W

logjY( f )j2 d f:

SinceJ is constant its average value is the same quantity and applying the theorem on the change of entropy
with a change of coordinates, the result follows. We may also phrase it in terms of the entropy power. Thus
if the entropy power of the first ensemble isN1 that of the second is

N1exp
1
W

Z
W

logjY( f )j2 d f:
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TABLE I

ENTROPY ENTROPY
GAIN POWER POWER GAIN IMPULSE RESPONSE

FACTOR IN DECIBELS

0 1!

1

1�! 1
e2 �8:69

sin2(t=2)
t2=2

0 1!

1

1�!2 �2
e

�4
�5:33 2

�
sint
t3 � cost

t2

�

0 1!

1

1�!3
0:411 �3:87 6

�
cost�1

t4 � cost
2t2 +

sint
t3

�

0 1!

1

p
1�!2 �2

e

�2
�2:67

�

2
J1(t)

t

0 1!

1

�

1
e2� �8:69�

1
�t2

�
cos(1��)t�cost

�

The final entropy power is the initial entropy power multiplied by the geometric mean gain of the filter. If
the gain is measured indb, then the output entropy power will be increased by the arithmetic meandb gain
overW.

In Table I the entropy power loss has been calculated (and also expressed indb) for a number of ideal
gain characteristics. The impulsive responses of these filters are also given forW = 2�, with phase assumed
to be 0.

The entropy loss for many other cases can be obtained from these results. For example the entropy
power factor 1=e2 for the first case also applies to any gain characteristic obtain from 1�! by a measure
preserving transformation of the! axis. In particular a linearly increasing gainG(!) = !, or a “saw tooth”
characteristic between 0 and 1 have the same entropy loss. The reciprocal gain has the reciprocal factor.
Thus 1=! has the factore2. Raising the gain to any power raises the factor to this power.

23. ENTROPY OF ASUM OF TWO ENSEMBLES

If we have two ensembles of functionsf�(t) andg�(t) we can form a new ensemble by “addition.” Suppose
the first ensemble has the probability density functionp(x1; : : : ;xn) and the secondq(x1; : : : ;xn). Then the
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density function for the sum is given by the convolution:

r(x1; : : : ;xn) =
Z
� � �

Z
p(y1; : : : ;yn)q(x1�y1; : : : ;xn�yn)dy1 � � �dyn:

Physically this corresponds to adding the noises or signals represented by the original ensembles of func-
tions.

The following result is derived in Appendix 6.

Theorem 15:Let the average power of two ensembles beN1 andN2 and let their entropy powers beN1

andN2. Then the entropy power of the sum,N3, is bounded by

N1+N2�N3�N1+N2:

White Gaussian noise has the peculiar property that it can absorb any other noise or signal ensemble
which may be added to it with a resultant entropy power approximately equal to the sum of the white noise
power and the signal power (measured from the average signal value, which is normally zero), provided the
signal power is small, in a certain sense, compared to noise.

Consider the function space associated with these ensembles havingn dimensions. The white noise
corresponds to the spherical Gaussian distribution in this space. The signal ensemble corresponds to another
probability distribution, not necessarily Gaussian or spherical. Let the second moments of this distribution
about its center of gravity beai j . That is, if p(x1; : : : ;xn) is the density distribution function

ai j =

Z
� � �

Z
p(xi��i)(xj �� j)dx1 � � �dxn

where the�i are the coordinates of the center of gravity. Nowai j is a positive definite quadratic form, and
we can rotate our coordinate system to align it with the principal directions of this form.ai j is then reduced
to diagonal formbii . We require that eachbii be small compared toN, the squared radius of the spherical
distribution.

In this case the convolution of the noise and signal produce approximately a Gaussian distribution whose
corresponding quadratic form is

N+bii :

The entropy power of this distribution is h
∏(N+bii )

i1=n

or approximately

=
h
(N)n+∑bii (N)n�1

i1=n

:
= N+

1
n ∑bii :

The last term is the signal power, while the first is the noise power.

PART IV: THE CONTINUOUS CHANNEL

24. THE CAPACITY OF A CONTINUOUS CHANNEL

In a continuous channel the input or transmitted signals will be continuous functions of timef (t) belonging
to a certain set, and the output or received signals will be perturbed versions of these. We will consider
only the case where both transmitted and received signals are limited to a certain bandW. They can then
be specified, for a timeT, by 2TW numbers, and their statistical structure by finite dimensional distribution
functions. Thus the statistics of the transmitted signal will be determined by

P(x1; : : : ;xn) = P(x)
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and those of the noise by the conditional probability distribution

Px1;:::;xn(y1; : : : ;yn) = Px(y):

The rate of transmission of information for a continuous channel is defined in a way analogous to that
for a discrete channel, namely

R= H(x)�Hy(x)

whereH(x) is the entropy of the input andHy(x) the equivocation. The channel capacityC is defined as the
maximum ofRwhen we vary the input over all possible ensembles. This means that in a finite dimensional
approximation we must varyP(x) = P(x1; : : : ;xn) and maximize

�
Z

P(x) logP(x)dx+
ZZ

P(x;y) log
P(x;y)
P(y)

dxdy:

This can be written ZZ
P(x;y) log

P(x;y)
P(x)P(y)

dxdy

using the fact that
ZZ

P(x;y) logP(x)dxdy=
Z

P(x) logP(x)dx. The channel capacity is thus expressed as

follows:

C = Lim
T!∞

Max
P(x)

1
T

ZZ
P(x;y) log

P(x;y)
P(x)P(y)

dxdy:

It is obvious in this form thatR andC are independent of the coordinate system since the numerator

and denominator in log
P(x;y)

P(x)P(y)



and we can assign a definite entropy to the noise (independent of the statistics of the signal), namely the
entropy of the distributionQ(n). This entropy will be denoted byH(n).

Theorem 16:If the signal and noise are independent and the received signal is the sum of the transmitted
signal and the noise then the rate of transmission is

R= H(y)�H(n);

i.e., the entropy of the received signal less the entropy of the noise. The channel capacity is

C = Max
P(x)

H(y)�H(n):

We have, sincey= x+n:
H(x;y) = H(x;n):

Expanding the left side and using the fact thatx andn are independent

H(y)+Hy(x) = H(x)+H(n):

Hence
R= H(x)�Hy(x) = H(y)�H(n):

SinceH(n) is independent ofP(x), maximizingR requires maximizingH(y), the entropy of the received
signal. If there are certain constraints on the ensemble of transmitted signals, the entropy of the received
signal must be maximized subject to these constraints.

25. CHANNEL CAPACITY WITH AN AVERAGE POWER LIMITATION

A simple application of Theorem 16 is the case when the noise is a white thermal noise and the transmitted
signals are limited to a certain average powerP. Then the received signals have an average powerP+N
whereN is the average noise power. The maximum entropy for the received signals occurs when they also
form a white noise ensemble since this is the greatest possible entropy for a powerP+N and can be obtained
by a suitable choice of transmitted signals, namely if they form a white noise ensemble of powerP. The
entropy (per second) of the received ensemble is then

H(y) =W log2�e(P+N);

and the noise entropy is
H(n) =W log2�eN:

The channel capacity is

C = H(y)�H(n) =W log
P+N

N
:

Summarizing we have the following:

Theorem 17:The capacity of a channel of bandW perturbed by white thermal noise powerN when the
average transmitter power is limited toP is given by

C=W log
P+N

N
:

This means that by sufficiently involved encoding systems we can transmit binary digits at the rate

W log2
P+N

N
bits per second, with arbitrarily small frequency of errors. It is not possible to transmit at a

higher rate by any encoding system without a definite positive frequency of errors.
To approximate this limiting rate of transmission the transmitted signals must approximate, in statistical

properties, a white noise.6 A system which approaches the ideal rate may be described as follows: Let

6This and other properties of the white noise case are discussed from the geometrical point of view in “Communication in the
Presence of Noise,”loc. cit.

43



M = 2s samples of white noise be constructed each of durationT. These are assigned binary numbers from
0 to M�1. At the transmitter the message sequences are broken up into groups ofs and for each group
the corresponding noise sample is transmitted as the signal. At the receiver theM samples are known and
the actual received signal (perturbed by noise) is compared with each of them. The sample which has the
least R.M.S. discrepancy from the received signal is chosen as the transmitted signal and the corresponding
binary number reconstructed. This process amounts to choosing the most probable (a posteriori) signal.
The numberM of noise samples used will depend on the tolerable frequency� of errors, but for almost all
selections of samples we have

Lim
�!0

Lim
T!∞

logM(�;T)

T
=W log

P+N
N

;

so that no matter how small� is chosen, we can, by takingT sufficiently large, transmit as near as we wish

to TW log
P+N

N
binary digits in the timeT.

Formulas similar toC = W log
P+N

N
for the white noise case have been developed independently

by several other writers, although with somewhat different interpretations. We may mention the work of
N. Wiener,7 W. G. Tuller,8 and H. Sullivan in this connection.

In the case of an arbitrary perturbing noise (not necessarily white thermal noise) it does not appear that
the maximizing problem involved in determining the channel capacityC can be solved explicitly. However,
upper and lower bounds can be set forC in terms of the average noise powerN the noise entropy powerN1.
These bounds are sufficiently close together in most practical cases to furnish a satisfactory solution to the
problem.

Theorem 18:The capacity of a channel of bandW perturbed by an arbitrary noise is bounded by the
inequalities

W log
P+N1

N1
�C�W log

P+N
N1

where

P= average transmitter power

N = average noise power

N1 = entropy power of the noise.

Here again the average power of the perturbed signals will beP+N. The maximum entropy for this
power would occur if the received signal were white noise and would beW log2�e(P+N). It may not
be possible to achieve this; i.e., there may not be any ensemble of transmitted signals which, added to the
perturbing noise, produce a white thermal noise at the receiver, but at least this sets an upper bound toH(y).
We have, therefore

C = MaxH(y)�H(n)

�W log2�e(P+N)�W log2�eN1:

This is the upper limit given in the theorem. The lower limit can be obtained by considering the rate if we
make the transmitted signal a white noise, of powerP. In this case the entropy power of the received signal
must be at least as great as that of a white noise of powerP+N1 since we have shown in in a previous
theorem that the entropy power of the sum of two ensembles is greater than or equal to the sum of the
individual entropy powers. Hence

MaxH(y)�W log2�e(P+N1)

7Cybernetics, loc. cit.
8“Theoretical Limitations on the Rate of Transmission of Information,”Proceedings of the Institute of Radio Engineers,v. 37,

No. 5, May, 1949, pp. 468–78.
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and

C�W log2�e(P+N1)�W log2�eN1

=W log
P+N1

N1
:

As P increases, the upper and lower bounds approach each other, so we have as an asymptotic rate

W log
P+N

N1
:

If the noise is itself white,N = N1 and the result reduces to the formula proved previously:

C=W log
�

1+
P
N

�
:

If the noise is Gaussian but with a spectrum which is not necessarily flat,N1 is the geometric mean of
the noise power over the various frequencies in the bandW. Thus

N1 = exp
1
W

Z
W

logN( f )d f

whereN( f ) is the noise power at frequencyf .

Theorem 19:If we set the capacity for a given transmitter powerP equal to

C=W log
P+N��

N1

then� is monotonic decreasing asP increases and approaches 0 as a limit.

Suppose that for a given powerP1 the channel capacity is

W log
P1+N��1

N1
:

This means that the best signal distribution, sayp(x), when added to the noise distributionq(x), gives a
received distributionr(y) whose entropy power is(P1+N� �1). Let us increase the power toP1+�P by
adding a white noise of power�P to the signal. The entropy of the received signal is now at least

H(y) =W log2�e(P1+N��1+�P)

by application of the theorem on the minimum entropy power of a sum. Hence, since we can attain the
H indicated, the entropy of the maximizing distribution must be at least as great and� must be monotonic
decreasing. To show that�! 0 asP! ∞ consider a signal which is white noise with a largeP. Whatever
the perturbing noise, the received signal will be approximately a white noise, ifP is sufficiently large, in the
sense of having an entropy power approachingP+N.

26. THE CHANNEL CAPACITY WITH A PEAK POWER LIMITATION

In some applications the transmitter is limited not by the average power output but by the peak instantaneous
power. The problem of calculating the channel capacity is then that of maximizing (by variation of the
ensemble of transmitted symbols)

H(y)�H(n)

subject to the constraint that all the functionsf (t) in the ensemble be less than or equal to
p

S, say, for all
t. A constraint of this type does not work out as well mathematically as the average power limitation. The

most we have obtained for this case is a lower bound valid for all
S
N

, an “asymptotic” upper bound (valid

for large
S
N

) and an asymptotic value ofC for
S
N

small.
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Theorem 20:The channel capacityC for a bandW perturbed by white thermal noise of powerN is
bounded by

C�W log
2
�e3

S
N
;

whereS is the peak allowed transmitter power. For sufficiently large
S
N

C�W log
2
�eS+N

N
(1+ �)

where� is arbitrarily small. As
S
N
! 0 (and provided the bandW starts at0)

C
.

W log

�
1+

S
N

�
! 1:

We wish to maximize the entropy of the received signal. If
S
N

is large this will occur very nearly when

we maximize the entropy of the transmitted ensemble.
The asymptotic upper bound is obtained by relaxing the conditions on the ensemble. Let us suppose that

the power is limited toSnot at every instant of time, but only at the sample points. The maximum entropy of
the transmitted ensemble under these weakened conditions is certainly greater than or equal to that under the
original conditions. This altered problem can be solved easily. The maximum entropy occurs if the different
samples are independent and have a distribution function which is constant from�pSto+

p
S. The entropy

can be calculated as
W log4S:

The received signal will then have an entropy less than

W log(4S+2�eN)(1+ �)

with �! 0 as
S
N
! ∞ and the channel capacity is obtained by subtracting the entropy of the white noise,

W log2�eN:

W log(4S+2�eN)(1+ �)�Wlog(2�eN) =W log
2
�eS+N

N
(1+ �):

This is the desired upper bound to the channel capacity.
To obtain a lower bound consider the same ensemble of functions. Let these functions be passed through

an ideal filter with a triangular transfer characteristic. The gain is to be unity at frequency 0 and decline
linearly down to gain 0 at frequencyW. We first show that the output functions of the filter have a peak

power limitationSat all times (not just the sample points). First we note that a pulse
sin2�Wt

2�Wt
going into

the filter produces
1
2

sin2�Wt
(�Wt)2

in the output. This function is never negative. The input function (in the general case) can be thought of as
the sum of a series of shifted functions

a
sin2�Wt

2�Wt

wherea, the amplitude of the sample, is not greater than
p

S. Hence the output is the sum of shifted functions
of the non-negative form above with the same coefficients. These functions being non-negative, the greatest
positive value for anyt is obtained when all the coefficientsa have their maximum positive values, i.e.,

p
S.

In this case the input function was a constant of amplitude
p

Sand since the filter has unit gain for D.C., the
output is the same. Hence the output ensemble has a peak powerS.
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The entropy of the output ensemble can be calculated from that of the input ensemble by using the
theorem dealing with such a situation. The output entropy is equal to the input entropy plus the geometrical
mean gain of the filter: Z W

0
logG2 d f =

Z W

0
log

�W� f
W

�2
d f =�2W:

Hence the output entropy is

W log4S�2W =W log
4S
e2

and the channel capacity is greater than

W log
2
�e3

S
N
:

We now wish to show that, for small
S
N

(peak signal power over average white noise power), the channel

capacity is approximately

C =W log

�
1+

S
N

�
:

More preciselyC
.

W log

�
1+

S
N

�
! 1 as

S
N
! 0. Since the average signal powerP is less than or equal

to the peakS, it follows that for all
S
N

C�W log

�
1+

P
N

�
�W log

�
1+

S
N

�
:

Therefore, if we can find an ensemble of functions such that they correspond to a rate nearlyW log

�
1+

S
N

�
and are limited to bandW and peakS the result will be proved. Consider the ensemble of functions of the
following type. A series oft samples have the same value, either+

p
Sor�pS, then the nextt samples have

the same value, etc. The value for a series is chosen at random, probability1
2 for +

p
Sand 1

2 for �pS. If
this ensemble be passed through a filter with triangular gain characteristic (unit gain at D.C.), the output is
peak limited to�S. Furthermore the average power is nearlySand can be made to approach this by takingt
sufficiently large. The entropy of the sum of this and the thermal noise can be found by applying the theorem
on the sum of a noise and a small signal. This theorem will apply if

p
t

S
N

is sufficiently small. This can be ensured by taking
S
N

small enough (aftert is chosen). The entropy power

will be S+N to as close an approximation as desired, and hence the rate of transmission as near as we wish
to

W log

�
S+N

N

�
:

PART V: THE RATE FOR A CONTINUOUS SOURCE

27. FIDELITY EVALUATION FUNCTIONS

In the case of a discrete source of information we were able to determine a definite rate of generating
information, namely the entropy of the underlying stochastic process. With a continuous source the situation
is considerably more involved. In the first place a continuously variable quantity can assume an infinite
number of values and requires, therefore, an infinite number of binary digits for exact specification. This
means that to transmit the output of a continuous source withexact recoveryat the receiving point requires,
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in general, a channel of infinite capacity (in bits per second). Since, ordinarily, channels have a certain
amount of noise, and therefore a finite capacity, exact transmission is impossible.

This, however, evades the real issue. Practically, we are not interested in exact transmission when we
have a continuous source, but only in transmission to within a certain tolerance. The question is, can we
assign a definite rate to a continuous source when we require only a certain fidelity of recovery, measured in
a suitable way. Of course, as the fidelity requirements are increased the rate will increase. It will be shown
that we can, in very general cases, define such a rate, having the property that it is possible, by properly
encoding the information, to transmit it over a channel whose capacity is equal to the rate in question, and
satisfy the fidelity requirements. A channel of smaller capacity is insufficient.

It is first necessary to give a general mathematical formulation of the idea of fidelity of transmission.
Consider the set of messages of a long duration, sayT seconds. The source is described by giving the
probability density, in the associated space, that the source will select the message in questionP(x). A given
communication system is described (from the external point of view) by giving the conditional probability
Px(y) that if messagex is produced by the source the recovered message at the receiving point will bey. The
system as a whole (including source and transmission system) is described by the probability functionP(x;y)
of having messagex and final outputy. If this function is known, the complete characteristics of the system
from the point of view of fidelity are known. Any evaluation of fidelity must correspond mathematically
to an operation applied toP(x;y). This operation must at least have the properties of a simple ordering of
systems; i.e., it must be possible to say of two systems represented byP1(x;y) andP2(x;y) that, according to
our fidelity criterion, either (1) the first has higher fidelity, (2) the second has higher fidelity, or (3) they have
equal fidelity. This means that a criterion of fidelity can be represented by a numerically valued function:

v
�
P(x;y)

�
whose argument ranges over possible probability functionsP(x;y).

We will now show that under very general and reasonable assumptions the functionv
�
P(x;y)

�
can be

written in a seemingly much more specialized form, namely as an average of a function�(x;y) over the set
of possible values ofx andy:

v
�
P(x;y)

�
=

ZZ
P(x;y)�(x;y)dxdy:

To obtain this we need only assume (1) that the source and system are ergodic so that a very long sample
will be, with probability nearly 1, typical of the ensemble, and (2) that the evaluation is “reasonable” in the
sense that it is possible, by observing a typical input and outputx1 andy1, to form a tentative evaluation
on the basis of these samples; and if these samples are increased in duration the tentative evaluation will,
with probability 1, approach the exact evaluation based on a full knowledge ofP(x;y). Let the tentative
evaluation be�(x;y). Then the function�(x;y) approaches (asT ! ∞) a constant for almost all(x;y) which
are in the high probability region corresponding to the system:

�(x;y)! v
�
P(x;y)

�
and we may also write

�(x;y)!
ZZ

P(x;y)�(x;y)dxdy

since ZZ
P(x;y)dxdy= 1:

This establishes the desired result.
The function�(x;y) has the general nature of a “distance” betweenx andy.9 It measures how undesirable

it is (according to our fidelity criterion) to receivey whenx is transmitted. The general result given above
can be restated as follows: Any reasonable evaluation can be represented as an average of a distance function
over the set of messages and recovered messagesx andy weighted according to the probabilityP(x;y) of
getting the pair in question, provided the durationT of the messages be taken sufficiently large.

The following are simple examples of evaluation functions:

9It is not a “metric” in the strict sense, however, since in general it does not satisfy either�(x;y) = �(y;x) or�(x;y)+�(y;z)� �(x;z).
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1. R.M.S. criterion.
v=

�
x(t)�y(t)

�2
:

In this very commonly used measure of fidelity the distance function�(x;y) is (apart from a constant
factor) the square of the ordinary Euclidean distance between the pointsx andy in the associated
function space.

�(x;y) =
1
T

Z T

0

�
x(t)�y(t)

�2
dt:

2. Frequency weighted R.M.S. criterion. More generally one can apply different weights to the different
frequency components before using an R.M.S. measure of fidelity. This is equivalent to passing the
differencex(t)� y(t) through a shaping filter and then determining the average power in the output.
Thus let

e(t) = x(t)�y(t)

and
f (t) =

Z ∞

�∞
e(�)k(t� �)d�

then

�(x;y) =
1
T

Z T

0
f (t)2 dt:

3. Absolute error criterion.

�(x;y) =
1
T

Z T

0

��x(t)�y(t)
��dt:

4. The structure of the ear and brain determine implicitly an evaluation, or rather a number of evaluations,
appropriate in the case of speech or music transmission. There is, for example, an “intelligibility”
criterion in which�(x;y) is equal to the relative frequency of incorrectly interpreted words when
messagex(t) is received asy(t). Although we cannot give an explicit representation of�(x;y) in these
cases it could, in principle, be determined by sufficient experimentation. Some of its properties follow
from well-known experimental results in hearing, e.g., the ear is relatively insensitive to phase and the
sensitivity to amplitude and frequency is roughly logarithmic.

5. The discrete case can be considered as a specialization in which we have tacitly assumed an evaluation
based on the frequency of errors. The function�(x;y) is then defined as the number of symbols in the
sequencey differing from the corresponding symbols inx divided by the total number of symbols in
x.

28. THE RATE FOR A SOURCE RELATIVE TO A FIDELITY EVALUATION

We are now in a position to define a rate of generating information for a continuous source. We are given
P(x) for the source and an evaluationv determined by a distance function�(x;y) which will be assumed
continuous in bothx andy. With a particular systemP(x;y) the quality is measured by

v=
ZZ

�(x;y)P(x;y)dxdy:

Furthermore the rate of flow of binary digits corresponding toP(x;y) is

R=

ZZ
P(x;y) log

P(x;y)
P(x)P(y)

dxdy:

We define the rateR1 of generating information for a given qualityv1 of reproduction to be the minimum of
R when we keepv fixed atv1 and varyPx(y). That is:

R1 = Min
Px(y)

ZZ
P(x;y) log

P(x;y)
P(xTm
(()Tj
/F4 1 Tf
10 0 0603 322.92 17Tj
/T22 1 Tf
0.12  0 8 Tf
10 0 0 10 387 -23 1 Tf
0.12 0 0 -0.12 284.632 0 0 -0.124807
(P)Tj
3.66 8 Tf
0.864 0 TD
[(when)-24

)M30 10 322.92 140.1 Tm
(x)Tj
/T22 4Tj
/T23 1 Tf
0.43
(;80 16422 .489.891 T30)Tj
/T22 1 T4644990 16422 .489.891 T30ZZ( y

x



subject to the constraint:

v1 =
ZZ

P(x;y)�(x;y)dxdy:

This means that we consider, in effect, all the communication systems that might be used and that
transmit with the required fidelity. The rate of transmission in bits per second is calculated for each one
and we choose that having the least rate. This latter rate is the rate we assign the source for the fidelity in
question.

The justification of this definition lies in the following result:

Theorem 21:If a source has a rateR1 for a valuationv1 it is possible to encode the output of the source
and transmit it over a channel of capacityC with fidelity as nearv1 as desired providedR1 �C. This is not
possible ifR1 >C.

The last statement in the theorem follows immediately from the definition ofR1 and previous results. If
it were not true we could transmit more thanC bits per second over a channel of capacityC. The first part
of the theorem is proved by a method analogous to that used for Theorem 11. We may, in the first place,
divide the(x;y) space into a large number of small cells and represent the situation as a discrete case. This
will not change the evaluation function by more than an arbitrarily small amount (when the cells are very
small) because of the continuity assumed for�(x;y). Suppose thatP1(x;y) is the particular system which
minimizes the rate and givesR1. We choose from the high probabilityy’s a set at random containing

2(R1+�)T

members where�! 0 asT ! ∞. With largeT each chosen point will be connected by a high probability
line (as in Fig. 10) to a set ofx’s. A calculation similar to that used in proving Theorem 11 shows that with
largeT almost allx’s are covered by the fans from the choseny points for almost all choices of they’s. The
communication system to be used operates as follows: The selected points are assigned binary numbers.
When a messagex is originated it will (with probability approaching 1 asT ! ∞) lie within at least one
of the fans. The corresponding binary number is transmitted (or one of them chosen arbitrarily if there are
several) over the channel by suitable coding means to give a small probability of error. SinceR1�C this is
possible. At the receiving point the correspondingy is reconstructed and used as the recovered message.

The evaluationv01 for this system can be made arbitrarily close tov1 by taking T sufficiently large.
This is due to the fact that for each long sample of messagex(t) and recovered messagey(t) the evaluation
approachesv1 (with probability 1).

It is interesting to note that, in this system, the noise in the recovered message is actually produced by a
kind of general quantizing at the transmitter and not produced by the noise in the channel. It is more or less
analogous to the quantizing noise in PCM.

29. THE CALCULATION OF RATES

The definition of the rate is similar in many respects to the definition of channel capacity. In the former

R= Min
Px(y)

ZZ
P(x;y) log

P(x;y)
P(x)P(y)

dxdy

with P(x) andv1 =

ZZ
P(x;y)�(x;y)dxdyfixed. In the latter

C= Max
P(x)

ZZ
P(x;y) log

P(x;y)
P(x)P(y)

dxdy

with Px(y) fixed and possibly one or more other constraints (e.g., an average power limitation) of the form
K =

RR
P(x;y)�(x;y)dxdy.

A partial solution of the general maximizing problem for determining the rate of a source can be given.
Using Lagrange’s method we consider

ZZ �
P(x;y) log

P(x;y)
P(x)P(y)

+�P(x;y)�(x;y)+�(x)P(x;y)

�
dxdy:
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The variational equation (when we take the first variation onP(x;y)) leads to

Py(x) = B(x)e���(x;y)

where� is determined to give the required fidelity andB(x) is chosen to satisfy
Z

B(x)e���(x;y) dx= 1:

This shows that, with best encoding, the conditional probability of a certain cause for various received
y, Py(x) will decline exponentially with the distance function�(x;y) between thex andy in question.

In the special case where the distance function�(x;y) depends only on the (vector) difference betweenx
andy,

�(x;y) = �(x�y)

we have Z
B(x)e���(x�y) dx= 1:

HenceB(x) is constant, say�, and
Py(x) = �e���(x�y):

Unfortunately these formal solutions are difficult to evaluate in particular cases and seem to be of little value.
In fact, the actual calculation of rates has been carried out in only a few very simple cases.

If the distance function�(x;y) is the mean square discrepancy betweenx andy and the message ensemble
is white noise, the rate can be determined. In that case we have

R= Min
�
H(x)�Hy(x)

�
= H(x)�MaxHy(x)

with N = (x�y)2. But the MaxHy(x) occurs wheny�x is a white noise, and is equal toW1 log2�eNwhere
W1 is the bandwidth of the message ensemble. Therefore

R=W1 log2�eQ�W1log2�eN

=W1 log
Q
N

whereQ is the average message power. This proves the following:

Theorem 22:The rate for a white noise source of powerQ and bandW1 relative to an R.M.S. measure
of fidelity is

R=W1 log
Q
N

whereN is the allowed mean square error between original and recovered messages.

More generally with any message source we can obtain inequalities bounding the rate relative to a mean
square error criterion.

Theorem 23:The rate for any source of bandW1 is bounded by

W1 log
Q1

N
�R�W1 log

Q
N

whereQ is the average power of the source,Q1 its entropy power andN the allowed mean square error.

The lower bound follows from the fact that the MaxHy(x) for a given(x�y)2 = N occurs in the white
noise case. The upper bound results if we place points (used in the proof of Theorem 21) not in the best way
but at random in a sphere of radius

p
Q�N.
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APPENDIX 5

Let S1 be any measurable subset of theg ensemble, andS2 the subset of thef ensemble which givesS1

under the operationT. Then
S1 = TS2:

Let H� be the operator which shifts all functions in a set by the time�. Then

H�S1 = H�TS2 = TH�S2

sinceT is invariant and therefore commutes withH�. Hence ifm[S] is the probability measure of the setS

m[H�S1] = m[TH�S2] = m[H�S2]

= m[S2] = m[S1]

where the second equality is by definition of measure in theg space, the third since thef ensemble is
stationary, and the last by definition ofg measure again.

To prove that the ergodic property is preserved under invariant operations, letS1 be a subset of theg
ensemble which is invariant underH�, and letS2 be the set of all functionsf which transform intoS1. Then

H�S1 = H�TS2 = TH�S2 = S1

so thatH�S2 is included inS2 for all �. Now, since

m[H�S2] = m[S1]

this implies
H�S2 = S2

for all � with m[S2] 6= 0;1. This contradiction shows thatS1 does not exist.

APPENDIX 6

The upper bound,N3 � N1+N2, is due to the fact that the maximum possible entropy for a powerN1+N2

occurs when we have a white noise of this power. In this case the entropy power isN1+N2.
To obtain the lower bound, suppose we have two distributions inn dimensionsp(xi) andq(xi) with

entropy powersN1 andN2. What form shouldp andq have to minimize the entropy powerN3 of their
convolutionr(xi):

r(xi) =
Z

p(yi)q(xi�yi)dyi :

The entropyH3 of r is given by

H3 =�
Z

r(xi) logr(xi)dxi :

We wish to minimize this subject to the constraints

H1 =�
Z

p(xi) logp(xi)dxi

H2 =�
Z

q(xi) logq(xi)dxi :
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We consider then

U =�
Z �

r(x) logr(x)+�p(x) logp(x)+�q(x) logq(x)
�
dx

�U =�
Z �

[1+ logr(x)]�r(x)+�[1+ logp(x)]�p(x)+�[1+ logq(x)]�q(x)
�
dx:

If p(x) is varied at a particular argumentxi = si , the variation inr(x) is

�r(x) = q(xi�si)

and
�U =�

Z
q(xi�si) logr(xi)dxi�� logp(si) = 0

and similarly whenq is varied. Hence the conditions for a minimum are
Z

q(xi�si) logr(xi)dxi =�� logp(si)
Z

p(xi�si) logr(xi)dxi =�� logq(si):

If we multiply the first byp(si) and the second byq(si) and integrate with respect tosi we obtain

H3 =��H1

H3 =��H2

or solving for� and� and replacing in the equations

H1

Z
q(xi�si) logr(xi)dxi =�H3 logp(si)

H2

Z
p(xi�si) logr(xi)dxi =�H3 logq(si):

Now supposep(xi) andq(xi) are normal

p(xi) =
jAi j jn=2

(2�)n=2
exp�1

2 ∑Ai j xixj

q(xi) =
jBi j jn=2

(2�)n=2
exp�1

2 ∑Bi j xixj :

Thenr(xi) will also be normal with quadratic formCi j . If the inverses of these forms areai j , bi j , ci j then

ci j = ai j +bi j :

We wish to show that these functions satisfy the minimizing conditions if and only ifai j = Kbi j and thus
give the minimumH3 under the constraints. First we have

logr(xi) =
n
2

log
1

2�
jCi j j� 1

2 ∑Ci j xixj

Z
q(xi�si) logr(xi)dxi =

n
2

log
1

2�
jCi j j� 1

2 ∑Ci j sisj � 1
2 ∑Ci j bi j :

This should equal
H3

H1

�
n
2

log
1

2�
jAi j j� 1

2 ∑Ai j sisj

�

which requiresAi j =
H1

H3
Ci j . In this caseAi j =

H1

H2
Bi j and both equations reduce to identities.
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APPENDIX 7

The following will indicate a more general and more rigorous approach to the central definitions of commu-
nication theory. Consider a probability measure space whose elements are ordered pairs(x;y). The variables
x, y are to be identified as the possible transmitted and received signals of some long durationT. Let us call
the set of all points whosex belongs to a subsetS1 of x points the strip overS1, and similarly the set whose
y belong toS2 the strip overS2. We dividex andy into a collection of non-overlapping measurable subsets
Xi andYi approximate to the rate of transmissionR by

R1 =
1
T ∑

i
P(Xi ;Yi) log

P(Xi ;Yi)

P(Xi)P(Yi)

where

P(Xi) is the probability measure of the strip overXi

P(Yi) is the probability measure of the strip overYi

P(Xi ;Yi) is the probability measure of the intersection of the strips:

A further subdivision can never decreaseR1. For letX1 be divided intoX1 = X01+X001 and let

P(Y1) = a P(X1) = b+c

P(X01) = b P(X01;Y1) = d

P(X001 ) = c P(X001 ;Y1) = e

P(X1;Y1) = d+e:

Then in the sum we have replaced (for theX1, Y1 intersection)

(d+e) log
d+e

a(b+c)
by d log

d
ab

+elog
e
ac
:

It is easily shown that with the limitation we have onb, c, d, e,

�
d+e
b+c

�d+e

� ddee

bdce

and consequently the sum is increased. Thus the various possible subdivisions form a directed set, with
R monotonic increasing with refinement of the subdivision. We may defineR unambiguously as the least
upper bound forR1 and write it

R=
1
T

ZZ
P(x;y) log

P(x;y)
P(x)P(y)

dxdy:

This integral, understood in the above sense, includes both the continuous and discrete cases and of course
many others which cannot be represented in either form. It is trivial in this formulation that ifx andu are
in one-to-one correspondence, the rate fromu to y is equal to that fromx to y. If v is any function ofy (not
necessarily with an inverse) then the rate fromx to y is greater than or equal to that fromx to v since, in
the calculation of the approximations, the subdivisions ofy are essentially a finer subdivision of those for
v. More generally ify andv are related not functionally but statistically, i.e., we have a probability measure
space(y;v), thenR(x;v)�R(x;y). This means that any operation applied to the received signal, even though
it involves statistical elements, does not increaseR.

Another notion which should be defined precisely in an abstract formulation of the theory is that of
“dimension rate,” that is the average number of dimensions required per second to specify a member of
an ensemble. In the band limited case 2W numbers per second are sufficient. A general definition can be
framed as follows. Letf�(t) be an ensemble of functions and let�T [ f�(t); f�(t)] be a metric measuring
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the “distance” fromf� to f� over the timeT (for example the R.M.S. discrepancy over this interval.) Let
N(�;�;T) be the least number of elementsf which can be chosen such that all elements of the ensemble
apart from a set of measure� are within the distance� of at least one of those chosen. Thus we are covering
the space to within� apart from a set of small measure�. We define the dimension rate� for the ensemble
by the triple limit

�= Lim
�!0

Lim
�!0

Lim
T!∞

logN(�;�;T)

T log�
:

This is a generalization of the measure type definitions of dimension in topology, and agrees with the intu-
itive dimension rate for simple ensembles where the desired result is obvious.

55


