
f f f f
fff fff fff ff

f
f f ff

Formalizing Plane Graph Theory –
Towards a Formalized Proof of the

Kepler Conjecture

Gertrud Josefine Bauer
Lehrstuhl für Software&Systems Engineering

Institut für Informatik
Technische Universität München





Lehrstuhl für Software & Systems Engineering

Institut für Informatik

Technische Universität München

Formalizing Plane Graph Theory –
Towards a Formalized Proof of the Kepler

Conjecture

Gertrud Josefine Bauer
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Kurzfassung

Im Jahre 1998 veröffentlichte der Mathematiker Thomas Hales einen Beweis
der auf Kepler zurückgehenden Vermutung, daß die kubisch dichte Kugel-
packung (englisch cubic close packing) die dichteste Kugelpackung ist. Der
Beweis beruht auf einer umfangreichen, durch ein Programm generierten Fal-
lunterscheidung über ca. 3050 Fälle. Dabei wird jeder Fall durch einen
planen Graphen mit bestimmten Eigenschaften, einem sogenannten zahmen
Graphen repräsentiert. Wesentlich für den Beweis ist die Vollständigkeit
dieser Aufzählung.

In dieser Arbeit geht es um eine Formalisierung einer Theorie planer Graphen
in dem Theorembeweiser Isabelle/HOL, basierend auf einer Definition als
induktive Menge: Eine Konstruktion eines Graphen beginnt mit einer einzi-
gen Fläche, an die sukzessive neue Flächen angelegt werden. Darauf auf-
bauend wird ein Teil des Beweises der Kepler Vermutung formalisiert, die
Vollständigkeit der Aufzählung der zahmen Graphen.
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Abstract

In 1998, Thomas Hales published a proof of the Kepler Conjecture, which
states that the cubic close packing is the densest possible packing of equally-
sized spheres. The proof is by exhaustion on a set of 3050 plane graphs
satisfying certain properties, called tame plane graphs. The enumeration of
this set has been generated by a computer program, hence the completeness
of this enumeration is essential for the proof.

In this thesis, we formalize a theory of plane graphs defined as an inductive set
in the theorem prover Isabelle/HOL: a plane graph is constructed starting
with one face and repeatedly adding new faces. Based on this theory, we
formalize one part of the proof of the Kepler Conjecture, the completeness
of the enumeration of tame plane graphs.
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Notation

We use the following Isabelle/HOL notation for lists. Given a list xs,

[] is the empty list;
x#xs appends an element x in front of xs ;
[a,b,c] is the list containing the elements a, b, c;
xs@ys is the concatenation of the lists xs and ys ;
hd xs is the head element of xs ;
last xs is the last element of xs ;
butlast xs is the list xs without the last element;
take n xs returns the list of the first n elements of the list xs ;
drop n xs returns the list xs without the first n elements;
rev xs is the reversed list;
foldr f xs y repeatedly applies a function f x on y for all x ∈ set xs ;
|xs| is the length of xs ;
xs [[i ]] is the element at position i in xs where 0 ≤ i < |xs|;
xs [i :=a] is the list xs where the element at position i is

replaced by a ;
set xs is the set of elements in xs ;
[x ∈ xs . P x ] is the list of all elements of xs that obey property P ;
[f x . x ∈ xs ] is the list of all elements of f x where x ∈ set xs ;
replicate n x is the list consisting of n times the element x ;
[0 ..< n] is the list of numbers from 0 to n − 1 ;
xs × ys is a list containing all elements (x ,y) where x ∈ set xs and

y ∈ set ys ;
xs ∩ ys is a list containing all elements x with x ∈ set xs ∩ set ys ;
xs − ys is a list containing all elements x with x /∈ set ys ;∑

x ∈ xs f x is the sum
∑i<|xs|

i=0 f xs [[i ]];
∪x ∈ xs f x is the concatenation of all lists f x where x ∈ set xs.
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We use the following Isabelle/HOL notation for arrays.

[[f x . x < n]] is an array consisting of elements f i where 0 ≤ i < n;
f [[i ]] is the element at position i in the array f.

We use the following Isabelle/HOL notation for sets. Let A and B be sets.

{} is the empty set;
a ∈ A means a is contained in A;
{a, b, c} is the set of elements a, b, c;
A ∪ B is the union of A and B ;
A ∩ B is the intersection of A and B ;
A − B is the difference of A and B ;
A × B is the Cartesian product of A and B ;
A ⊆ B is the subset relation of A and B ;
A ⊂ B is the proper subset relation of A and B ;
A//R is the quotient of a set A by an equivalence relation R;
{x . P x} is the set of all elements x with P x ;
{f x | x . x ∈ A} is the set of all elements f x with x ∈ A;
∀ x ∈ A. P x means for all elements x in A holds P x;
∃ x ∈ A. P x means there exists an element x in A with P x.

We use the following mathematical notation.

N is the set of natural numbers;
R is the set of real numbers;
R+

0 is the set of non-negative real numbers;
V is the set of vertices in a graph;
E is the set of edges in a graph;
F is the set of faces in a graph;

A(2 ) is the set two element-sets (unordered pairs) of A.
f 1 ∼= f 2 is the equivalence relation of two faces f 1 and f 2;
g1 ' g2 is proper isomorphism of two graphs g1 and g2;
g1 ∼= g2 is isomorphism of two graphs g1 and g2;

We use the following notation to indicate if lemmas or theorems have been
formally proved in Isabelle/HOL or not yet.

! is the symbol for lemmas not yet formally proved in Isabelle;√
is the symbol for proved lemmas in Isabelle.
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Chapter 1

Introduction

The traditional understanding of a rigorous mathematical proof is a sequence
of steps derived from an accepted sets of axioms, such that a reader can
comprehend each step, or even such that each step can be reduced to basic
logical rules. It is an argument suitable to convince a reader of the correctness
of a statement.

In the last decades some proofs of mathematical theorems were published that
do not fulfill these strict criteria, because they heavily rely on complex com-
puter computations. One example is the proof of the Four-Color-Conjecture
by Kenneth Appel and Wolfgang Haken 1977 [1], [2], [3], improved by Neil
Robertson, Daniel Sanders, Paul Seymour and Robin Thomas 1996 [30], [32].
Another example is the proof of the Kepler Conjecture, presented by Thomas
C. Hales 1998 [17]. Both proofs are by exhaustion and the large set of cases
to be analyzed was generated and checked by a computer program. Hence
one part of the proof is to verify every case, the other part is to prove that
the cases are exhaustive, i.e. to show the completeness of the computer pro-
gram generating the cases. Of course it is infeasible for a human to verify the
correctness of a computer program by hand, due to the complexity of pos-
sibilities to be considered. This is the reason why to some mathematicians
such a proof is not quite acceptable, as the proof cannot be reviewed. This
motivates computer-aided verification of these programs.

In 1998, Thomas C. Hales of the University of Michigan announced that he
found a proof of the Kepler conjecture, making extensive use of computer
calculations. At that stage it consisted of 250 pages of notes and 3 gigabytes
of computer programs, data and results [17] (including [12], [18], [15], [16],

1



2 CHAPTER 1. INTRODUCTION

[19], [20], [11], [21]). Later, Hales published an overview of the proof in [23],
which has been updated [24] and submitted for the Annals of Mathematics.
A committee of 12 referees was constituted in order to check correctness of the
proof. After four years, Gabor Fejes Tóth, the head of the referees, reported
that they were “99% certain” of the correctness of the proof, but they could
not certify the correctness of all of the computer calculations. Anyhow, the
Annals now have enough confidence in the proof and will publish it in [25].

The Kepler Conjecture states that the way oranges are usually stacked at the
market (in a so called cubic close sphere packing) is the densest possible way.
A packing is represented by a finite set of sphere centers. The first part of

Figure 1.1: Cubic close packing

the proof presented by Hales is to reduce this infinite problem to a finite one,
i.e. to show that it suffices to fix one sphere and consider only the spheres
which are ‘close’ to this sphere. Then, the set of close spheres is represented
by a plane graph, i.e. a graph embedded in the plane, characterizing which
of those again are close to each other. All graphs corresponding to possible
counterexamples of the Kepler Conjecture have certain properties, summa-
rized in a property tame. This set of tame plane graphs is finite and can be
enumerated by a computer program. The completeness of this enumeration
is essential for the proof of the Kepler conjecture. It reduces the proof to the
analysis of all tame plane graphs: it has to be verified that every tame plane
graph gives rise to a packing with density not greater than the density of the
cubic close packing.

In response to the difficulties in verifying his proof, in January of 2003, Hales
initiated the project ”Flyspeck” (”Formal Proof of Kepler”) in an attempt
to use computers to verify every step of the proof [14]. In English, flyspeck
can also mean examine closely. Hales expects the project to take about 20
person-years of work. This project has also attracted attention in popular
print media (Science [27],[26] and Nature [31]).
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Similar efforts have been made in the verification of the Four-Color-Conjecture
by Georges Gonthier [13], who finally completely proved the Four-Color-
Conjecture in the theorem prover Coq [9]. A case-study on the Five-Color-
Theorem has been carried out in Isabelle/HOL, which is based on the same
mathematical background as the Four-Color-Conjecture, but it does not need
this extensive case analysis used in the proof of the Four-Color-Conjecture.

The aim of this work is a formalization of one part of the proof: the complete-
ness of the enumeration of the set of tame plane graphs, using the theorem
prover Isabelle/HOL. This is based on a formalization of plane graphs that
can also be used for further applications on the theory of plane graphs.

1.1 Contributions

Our starting point is a Java program written by Thomas C. Hales, which
computes a certain class of plane graphs where each one represents a case in
Hales’ proof.

• We translate Hales’ Java program for enumerating all tame plane graphs
to an Isabelle/HOL function Enumeration. We introduce a data struc-
ture for graphs, which is similar to the pointer structures in Hales’ Java
program, but uses lists of values instead of references. We define func-
tions by primitive recursion in the higher-order logic of Isabelle/HOL.
We define plane graphs by an inductive set and formalize the notion of
tame graphs as a HOL predicate.

• We show how completeness of Enumeration can be proved by proposing
a proof structure in Isabelle and partially carry out the proof in Isabelle.
The completeness proof yields the result that all tame plane graphs are
generated by Enumeration.

• As next step, we prove completeness of Hales’ Java program, i.e. that
the Java program completely enumerates all tame plane graphs. Using
Isabelle’s code generation facility [6], which is one of the trusted parts
of Isabelle, we generate executable ML code, execute it and compare
the output with the output of Hales’ Java program. Hence we ob-
tain a confirmation that all plane graphs are generated by Hales’ Java
program.
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• Finally we validate our formalization: we show that our definition of
plane graphs really represents all plane graphs.

1.2 Overview

In Chapter 2, we give a short overview of the proof for the Kepler Conjecture
and introduce some mathematical background for the graph theoretic part
of the Kepler Conjecture. Moreover, we discuss possible formalizations of
plane graphs in theorem provers and introduce Isabelle/HOL notation used
for definitions and proofs.

We have implement one of these formalizations in the theorem prover Is-
abelle/HOL. This is presented in Chapter 3. We introduce data structures
and construction functions for faces and graphs and prove their correctness.
We give the abstract definition of plane graphs and their implementation as
inductive set and derive an induction principle. We define isomorphims on
plane graphs and implement an executable isomorphism test.

In Chapter 4, we recall the definition of tameness from Hales’ proof of the
Kepler Conjecture and present its formalization in Isabelle/HOL.

In Chapter 5, we introduce a sequence of refinement steps starting from
the definition of plane graphs, succeedingly restricting the set of graphs by
imposing the restrictions of tameness, ending up with a finite set of graphs
Enumeration.

We present a proof structure of the completeness theorem induced by a set
of refinement steps of the enumeration algorithm. Chapter 6, contains the
completeness proofs.

Finally, in Chapter 7 we summarize the results and discuss future works. We
present some basic algorithms in Appendix A and some readable Isabelle/Isar
proof texts in Appendices B and C.



Chapter 2

Preliminaries

In Section 2.1, we give an overview of the proof of the Kepler conjecture.

In Section 2.2, we introduce planar and plane graphs and briefly present
properties of plane graphs that have to be reflected in a formalization. In
Section 2.3, we describe a formalization of plane graphs in terms of sets of
faces. In the following Section 2.4, we discuss alternative formalizations of
plane graphs, which are also suitable for verification in a theorem prover:
using triangulations (see Section 2.4.1) or oriented combinatorial maps (see
Section 2.4.2). Next, we compare some aspects of these formalizations with
regard to adequacy for formalization in a theorem prover.

Finally, in Section 2.5 we introduce Isabelle/HOL notation used for defini-
tions and proofs.

2.1 The Kepler Conjecture

In 1611, Kepler proposed that the cubic close packing (see Figure 1.1) is the
densest possible packing of equally-sized spheres.

Theorem (Kepler Conjecture)
The cubic close packing of unit spheres has optimal density.

5



6 CHAPTER 2. PRELIMINARIES

2.1.1 History

In 1611, the german astronomer Johannes Kepler (1571-1630) describes pack-
ings of equally sized spheres in the space in a small booklet strena seu de
nive sexangula (“About the hexagonal snowflake”). Spheres can be arranged
in a plane in two different ways: either in a square (A) or in a triangular
arrangement (B). In the first case every sphere is touched by 4 surrounding
spheres, in the second by 6 spheres.

An arrangement of spheres in the space is constructed by putting layers of
the kind A on top of each other, such that in the higher layers every sphere
lies on four spheres of the layer below. Hence, every sphere is touched by 4
spheres of the same layer, 4 spheres of the layer below and 4 spheres of the
layer above. This packing is now known as the cubic close packing (ccp).
This is the way oranges are typically stacked at the market.

Kepler made the following assertion, which is now known as the Kepler Con-
jecture:

Coaptatio fiet arctissima, ut nullo praeterea ordine plures
globuli in idem vas compingi queant.

In English:

This packing will be the densest, such that in no other ar-
rangement could more spheres be stuffed into the same container.
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2.1.2 Cubic Close Packings

Putting layers of kind B on top of each other, forming a triangular pyramid
(with triangular base), leads to a second kind of packing.

Both packings are identical up to rotation: if we consider a square pyramid
(with square base) formed by layers of spheres of kind A and if we consider
one side of this pyramid, we observe that it is formed by layers of spheres of
type B. If we take this layer as the base layer of the packing and compare
the two packings, we observe that the packings are in fact identical.

Figure 2.1: Face centered cubic packing

There are always 2 possible ways to put a layer of kind B on top of another.
There are 3 different positions of the layers (see Figure2.2), called 1, 2, 3.

Any sequence of layers, where any two subsequent layers differ (like for ex-
ample 1, 2, 1, 3, 2, . . . ) leads to a packing of the same density, since shifting
the layers does not change the density of a packing. Along all these packings,
the cubic close packing is the one with a cyclic sequence of layers (1, 2, 3,
1, 2, 3, . . . ). An other one is the hexagonal close packing (hcp), which has a
sequence of layers (1, 2, 1, 2, 1, 2, . . . ).
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Figure 2.2: 3 different layers in the face centered cubic packing

After Kepler’s assertion, many centuries passed without a rigorous proof.
When Hilbert proposed a list of 23 open problems to the mathematics com-
munity in 1900, he included the Kepler Problem (“What is the densest pack-
ing of equal sized spheres in space?”) as part of the 18th problem.

2.1.3 Density

A packing is an arrangement of congruent spheres that are non-overlapping in
the sense that interiors of the spheres are pairwise disjoint. We may assume
that the radius of the spheres is 1, since the density is independent of the
radius. We may also assume that the packing is saturated, i.e. that there is
no space to add further spheres, because otherwise the density of the packing
is not maximal. A saturated packing is represented by the set of centers Λ
of the spheres in the packing. The choice of radius of 1 implies that any two
points in Λ have a distance of at least 2 from each other.

The density of a packing is the ratio of the space occupied by the spheres
to the total space. We first define finite density δ(x, r, Λ) as the ratio of the
space occupied by the spheres of the packing within a sphere of radius r at
center x.

δ(x, r, Λ) =
vol(P (Λ) ∩ S(x, r))

vol(S(x, r))

where P (Λ) is the union of all spheres in the packing Λ, and S(x, r) is a
sphere at center x with radius r.
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The density δ(Λ) of a packing Λ is then defined as the limit of finite densities
with increasing radius r.

δ(Λ) = lim
r→∞

δ(x, r, Λ) for an arbitrary point x.

A Voronoi cell around a point x ∈ Λ is the set of all points in the space
that are closer to v than to any other center point of Λ. The volume of
each Voronoi cell in the cubic close packing is

√
32, hence the density is√

32
4/3π

= π
3
√

2
≈ 74.048%.

2.1.4 Hales’ Computer Based Proof

Structure of Hales’ proof of the Kepler Conjecture
(by classical contradiction)

1. The first part in the proof is the reduction of an infinite problem (in-
finitely many variables representing infinitely many positions of spheres
in the space) to a finite one. To this aim, a so called decomposition star
is constructed around the center v of one sphere in a packing, depend-
ing only on the set Λ of all sphere centers in the packing. Hales defines
a continuous function σ on the space of all decomposition stars in [12].
Hales shows that the Kepler conjecture can be reduced to the statement

σ(D) ≤ 8 for all decomposition stars D.

2. To every possible counterexample D (‘contravening decomposition star’),
a plane graph (’contravening plane graph’) (see Chapter 3) is associated
in the following way:

We fix one sphere s in the packing and consider all other spheres of a
packing that are close to s. Two spheres in a packing have minimal
distance 2. Two spheres are called close if the distance of their centers
is not greater than a fixed constant 2.51. For every sphere close to s,
we draw a vertex on the surface of s, projecting its center in direction
of the center of of s.

Two vertices are connected by an edge if the corresponding spheres are
close to each other. In this way a planar graph is drawn on the surface
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of s. Intersecting lines are avoided by the maximal distance of 2.51,
which is proved in [22]. This graph can also be drawn in the plane,
e. g. using stereographic projection.

Example
The following plane graphs are associated with the cubic close packing
and the hexagonal close packing:

3. All counterexamples have certain properties. These properties are re-
flected in properties of the contravening plane graphs and collected in
a notion of tame plane graphs (see Chapter 4).

Theorem
Every contravening plane graph is tame.

This theorem reduces the search for a contravening plane graph to the
set of tame plane graphs.

4. A superset of the set of tame plane graphs is enumerated by a computer
program. From the output of the program, a list of plane graphs is
created, called the archive, which contains about 3050 graphs.

Theorem (Completeness of Enumeration)
Every tame plane graph is isomorphic to a graph in the archive.

This reduces the proof of the Kepler conjecture to the analysis of the
decomposition stars attached to the finite list of graphs in the archive.

5. For every decomposition star it must be verified that it is not con-
travening, using linear programing solving equations with 100 to 200
variables and 1,000 to 2,000 constraints. This leads to the conclusion

Theorem
Every graph in the archive is not contravening.

Qed
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2.2 Planar Graphs

The usual definition of planar graphs uses an embedding in the plane, rep-
resented by closed non-intersecting curves, which are continuous function
from an interval [0, 1] to R2. A difficulty of this definition is that a lot of
mathematical background (e. g. on continuous functions) is required. More-
over, a particular graph can be drawn in many different ways in the plane.
Hence an abstraction identifying these equivalent embeddings is beneficial
for a verification.

Definition
A graph g = (V , E) is a finite, nonempty set of vertices V and a set of
(unoriented) edges E , such that E is a subset of V(2), the set of two-element
sets (unordered pairs) of V [8].

By definition, graphs do not contain loops (i. e. edges joining a vertex to
itself) or multiple edges, (i. e. several edges joining the same two vertices).

loops: multiple edges:

Definition
We say that an edge {v, w} joins the vertices v and w. Two vertices v and
w are called adjacent or neighboring in g if {v, w} ∈ E . Both vertices v and
w are called incident with {v, w}.

A graph g′ = (V ′, E ′) is a subgraph of g = (V , E) iff V ′ ⊆ V and E ′ ⊆ E .

A graph with n vertices and
(

n
2

)
edges is called a complete n-graph and is

denoted by Kn.

The degree of a vertex is the number of adjacent vertices.

A path of length l is a graph of the form p = (Vp, Ep), where Vp = {v0, v1, . . . vl}
and Ep = {{v0, v1}, {v1, v2} . . . {vl−1, vl}}. v0 and vl are the endpoints of p
and we say that p is a path from v0 to vl. A path of distinct vertices of length
n whose endpoints coincide is called an n-cycle.

Definition
A planar graph is one that can be embedded in the plane i. e. it can be drawn
in the plane such that no two edges intersect. An embedding of a graph
g = (V , E) is a function from V to R2 such that for every edge {v, w} ∈ E we
can connect the points associated with v and w by non-intersecting curves.



12 CHAPTER 2. PRELIMINARIES

Example
The complete graph K5 of five vertices is not planar.

K5:

Note that an embedding in the plane is not unique. This is illustrated by
the following example.

Example
It is always possible to arrange the points of a planar graph such that the
vertices are connected by straight lines (see Figure 2.3 (a)). Given an em-
bedding, any face can be chosen to be the exterior one (see Figure 2.3 (b)).
The set of faces is not necessarily unique (see Figure 2.3 (c)). Given an em-
bedding, the mirrored embedding is also an embedding for the same graph
(see Figure 2.3 (d)).

1

5
3

3

(a) (b) (c) (d)

2

4
4

5

1

34
1

2
2

34

5
1
2

3 4
2

1
55

Figure 2.3: Different embeddings of a graph in the two dimensional plane

Definition
A plane graph is one that is embedded in the plane, i. e. a graph together
with an embedding. If we remove all points from the plane which are asso-
ciated to the vertices and edges of a plane graph, the remainder is divided
into connected components, called faces. Every face can be represented by
the set of its bounding edges, which induce a cyclic subgraph of g. Then an
embedding can be represented by a set of faces. Hence a plane graph g can
be represented by g = (V , E ,F), where V is the set of vertices, E is the set
of edges, and F is the set of faces.
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2.3 A Formalization of Plane Graphs

In this section, we give an abstract mathematical definition of graphs in
terms of sets of faces. We follow the graph representation used in Hales’ Java
program. In Section 3.1, we present the implementation of these concepts in
Isabelle/HOL.

Definition
A face f is a finite set of vertices Vf of cardinality at least 3, together with
a cyclic permutation on then. We write this permutation as v 7→ f ·v. Con-
sequently, f ·v 6= v for all v ∈ Vf .

In order to draw graphs, we need to decide on a convention on the orientation
in which faces are to be drawn. We draw faces in clockwise orientation (see
the following example).

Example
A face of length 6.

4f  v. 3f  v.

5f  v. 2f  v.

f v.v

f 

Definition
An unoriented edge is a two-element set {v, w} of vertices such that f ·v = w
for some face f . An (oriented) edge is a pair (v, w) such that f ·v = w for
some face f . We usually mean oriented edges when we refer to edges.

Definition
A plane graph g is a nonempty finite set of faces with the following properties:

1. For a face f in a graph g, if f ·v = w then there is a unique face f ′ in
g, with f ′·w = v.

Hence an automorphism of the faces of g incident with v is associated
to each vertex v in g. We write f 7→ (g, v)·f = f ′ for this function.

Note that the convention of drawing the vertices in a face in clockwise
orientation implies that the automorphim f 7→ (g, v)·f permutes the
faces around a vertex v in counterclockwise orientation.
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Moreover, each unoriented edge occurs in exactly two faces of g with
opposite orientation. That is, for a face f and an edge in e there is
exactly one face f ′ that contains the edge with opposite orientation.

w = f v

f’ w = v f
f’

.

.

2. For each vertex, the function f 7→ (g, v)·f is a cyclic permutation of
the set of faces containing v.

3. Euler’s formula holds, relating the number of vertices |V|, the number
of edges |E| and the number of faces |F|

|V| − |E|+ |F| = 2

2 .

3.

4 .

. f

(g,v)   f

(g,v)   f

(g,v)   f

(g,v) f

Definition
The length |f | is the number of vertices in a face f . A face of length 3 is
called a triangle, a face of length 4 is called a quadrilateral, faces of length
at least 5 are called exceptional. The degree of a vertex is the number of
faces containing the vertex itself. tri(v) is the number of triangles containing
a vertex v. quad(v) is the number of quadrilaterals containing a vertex v.
except(v) is the number of exceptionals containing a vertex v. The type of a
vertex is a triple (p, q, r), where p is the number of triangles, q the number
of quadrilaterals, and r is the number of exceptional faces containing the
vertex. We write type(v) = (p, q) as a shorthand for type(v) = (p, q, 0).

Definition
Two graphs g and h are called properly isomorphic (g ' h) if there is a
bijection of vertices, inducing a bijection of faces. For each graph g there is
an opposite graph gop obtained by reversing the cyclic order in each face. A
graph g1 is called isomorphic to another graph g2, if g1 is isomorphic to g2

or gop
2 .
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For the construction of plane graphs we distinguish two different kinds of
faces: A face is marked either final or nonfinal . We use the terminology of
the Java program [23], whereas in Hales’ overview paper [24] faces are called
complete/incomplete. . In figures we draw final faces white and nonfinal faces
grey (except a nonfinal face at the outside of a graph). Nonfinal faces are
temporary faces during a construction of a graph. They can be further refined
by adding new faces, whereas final faces may not be changed any more. A
graph is called final if all faces are final, otherwise it is called nonfinal or
partial.

2.4 Alternative Formalizations

In the following section we compare two other approaches to formalize the
theory of plane graphs.

2.4.1 Formalization by Triangulations

This section describes a way to formalize plane graphs, as subgraphs of trian-
gulations. We first define triangulations inductively and obtain plane graphs
by omitting some edges. This approach was proposed by John Harrison. A
case study on the proof of the five-color-theorem based on this formalization
has been carried out in Isabelle/HOL [4].

Figure 2.4: Example: A planar graph embedded in triangulations

A graph is planar iff it is a subgraph of a triangulation, i.e. if it can be
extended to a triangulation by only adding edges (see Figure 2.4). Note
that this triangulation is not unique: a graph may be embedded in different
triangulations.
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Representation The representation of graphs is as follows:

Vertices are elementary objects. Edges are sets of 2 vertices. Faces are sets
of vertices. A (plane) graph is represented by a set of faces. We distinguish
between interior faces and the boundary (the exterior face) of a graph. In-
terior faces contain exactly 3 vertices, whereas the exterior face may contain
an arbitrary number of vertices.

Definition
Triangulations are plane graphs where every face (including the exterior face)
is a triangle. Triangulations are defined in terms of near triangulations. Near
triangulations are plane graphs where every face except the exterior face is a
triangle. Near triangulation can be defined as an inductive set: We start the

Figure 2.5: Example: Construction of a triangulation

construction with one triangle. A new triangle face can be added to the set
of faces of a graph by attaching it to the exterior face of a graph (see Figure
2.6). We can attach triangles {a, b, c} in two different ways: if there is an
edge {a, c} on the boundary, we can add a new vertex b and edges {a, b} and
{b, c} (Type I). If there are two edges {a, b} and {b, c} on the boundary, we
can add an edge {c, a} (Type II). Explicitely excluded are triangles where
two new edges {a, b} and {b, c} must be added and the vertex b is one of
the vertices already constructed (Type III), because otherwise the boundary
may become a set of cycles during the construction.

A triangulation can finally be defined as a near triangulation with a triangle
exterior face.

Type I Type IIIType II 

a

b

c

a

b

c

a

c

b

c

b

a

Figure 2.6: Inductive definition of near triangulations

The advantage of this definition is that we get an induction principle for free
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which allows proofs on the construction of a triangulation. For example we
can prove by induction that every edge is contained in exactly two faces.
Another example of a property proved by induction for all generated graphs
is Euler’s formula.

There are many different ways to construct a given triangulation. Moreover,
we can start the construction with any of its faces. This property can be
stated as follows:

Lemma
If we can construct a certain (near) triangulation by successively adding the
faces f0, f1, f2, . . . , fm, then we can generate the same (near-)triangulation
by another valid sequence of faces starting with fi, where i ∈ {0 . . . m}.

Note that not every permutation of faces is allowed for the construction: at
any time in the construction the graph must be connected and particularly
the boundary must be a single simple cycle. A generalization which implies
the above lemma is the following property:

Lemma
If we can both construct near triangulations g and h and h is a subgraph of
g, then we can reach g by some construction starting with h.

The restriction to only one boundary complicates the following proof, since
it restricts the order in which faces may be added.

Proof
We prove the lemma by induction on the cardinality of the set difference
g − h.

Base case: if h = g the assertion is trivially true.

Induction case: h ⊂ g. We assume that the hypothesis holds for all
subgraphs h′ of g with |g − h′| < |g − h| and particularly for all graphs h′,
where h ⊂ h′. Thus, is suffices to show that for any subgraph h we can find
a face f ∈ g − h that can be added.

It is always possible to find a face f that lies in g − h and contains an
edge of the boundary of h: every edge in a near triangulation is contained
in exactly two interior faces, except boundary edges which are contained in
exactly one interior face. Since g 6= h, there must be a boundary edge of h
that is not a boundary edge of g. This edge is contained in two interior faces
of g but only one face of h.
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h
g

f

f’

If f is of Type I or II for the graph h then it can be added, but not if f
is of Type III. Hence we need to find a different face that can be added. We
will find one in the region of g that is enclosed by f and h: first, we need to
introduce the notion of the interior of a cycle, the set of faces enclosed by a
circle. If f is of Type III, then there must be a face f ′ enclosed by a cycle
consisting of edges of f and the boundary h, and sharing an edge with the
boundary of h. Take the face f ′′ with the minimal set of faces enclosed by
f ′′ and h. This set cannot contain any faces of Type III (contradiction to
minimality), but it must contain at least one face that shares an edge with
h. This face can be added to h. We obtain a graph h′ with h ⊂ h′, hence we
can reach g from h′. Qed

2.4.2 Formalization by Combinatorial Maps

Another way to represent planar graphs is by planar (oriented) combinatorial
maps [33, 10]. This formalization was used in Gonthier’s proof of the four-
color-theorem [13].

Representation We restrict ourselves to connected graphs. We exclude
disconnected graphs and especially graphs with isolated vertices, i. e. vertices
that are joined with no other vertex (vertices of degree 0):

Disconnected graphs: Isolated vertex:

Moreover, we assume that no vertex appears twice in a face. Every face is
isomorphic to a polygon and the length of every face is at least 3. Hence, for
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example, vertices of degree 1 are excluded:

The basic elements of (oriented) combinatorial maps are half-edges (directed
edges). Consider a set of half-edges T .

Definition
An (oriented) combinatorial map is a pair (α, σ) of permutations of T such
that

1. the permutation group generated by the permutations {α, σ} is transi-
tive.

2. α2 = I, and

3. α(e) 6= e for all e ∈ T .

(e)σ

(e)σ2

(e)σα

(ασ)2(e)

(e)σ3

α (e)

(e)σ4

v

w

e

Figure 2.7: Oriented combinatorial maps

The cycles of α are called edges, the cycles of σ are called vertices. The
permutation α associates to every edge the inverse edge. The permutation σ
permutes the half-edges around of a vertex. A vertex v is incident with an
edge e iff e and v share a half-edge. Two vertices v and w are adjacent iff
both v and w are incident with a common edge.

The composition s1s2 of two permutations s1, s2 is defined by (s1s2) e =
s2(s1(e)) (“first s1, then s2”). The cycles of the composition ασ of α and σ
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are called faces. A graph graph(m) is associated with every oriented map
m = (α, σ): vertices in maps correspond to vertices in graphs, edges in maps
correspond to edges in graphs, and faces in maps correspond to faces in plane
graphs.

Definition
The Euler characteristic is the number |V|−|E|+|F|, where |V| is the number
of vertices, |E| is the number of edges, and |F| is the number of faces.

Definition
An oriented map is plane if its Euler characteristic is 2. Hence a plane map is
an abstraction for a (non-intersecting) embedding of a graph in the plane. A
plane graph is associated with every plane oriented map. A graph is planar
if it is isomorphic to some graph of a plane map.

Example
Two oriented maps for K4, the complete graph with four vertices.
The first map is not plane:
α = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12), hence |V| = 6
σ = (12, 4, 5)(6, 2, 7)(10, 1, 11)(8, 3, 9), hence |E| = 4
ασ = (1, 7, 3, 5, 2, 11, 4, 9)(12, 10, 8, 6), hence |F| = 2

The second map is plane:
α = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12), hence |V| = 6
σ = (12, 4, 5)(6, 7, 2)(1, 10, 11)(8, 3, 9), hence |E| = 4
ασ = (1, 6, 12)(2, 10, 8)(3, 5, 7)(4, 9, 11)), hence |F| = 4

11
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4 3

7
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2.4.3 Summary

In this section we compare different aspects of formalizations. We discuss
advantages and disadvantages of their application in theorem provers.

Inductive Definitions have the advantage that we obtain an induction
principle on the construction, which we can use to prove properties
about graphs. A problem of inductive definitions is that the construc-
tion implicitly defines an order in which the faces are inserted. For
reasoning about graphs we need to abstract from this order and be
able to reorder the faces such that we obtain an isomorphic graph.

Interior Faces/Single Exterior Faced vs. Final Faces/Nonfinal Faces:
The approach with one outer face has the disadvantage that faces of
Type III may not be allowed. This restricts the possibilities of adding
new faces. The approach with final/nonfinal faces allows more reorder-
ings of faces, which allows for simpler proofs. However, arbitrary re-
orderings of faces are not possible, either: at any step in the construc-
tion the graph must be connected.

Triangles vs. Polygons: The definition using triangles is by far eas-
ier. This simplifies proofs about the construction. If faces of arbi-
trary length can be added, the graph modifications and proofs about
those are more complex. On the other hand, a formalization based
on triangles requires operations to delete edges in order to construct
non-triangular graphs, which complicates a verification.

Directed vs. Undirected Edges: Directed edges make it possible to
distinguish the interior and exterior of a cycle. This is required to
formalize a discrete version of the Jordan Curve Theorem.

Redundant Data Structures can improve the efficiency of algorithms.
For example, we can extend the representation of plane graphs g =
(V , E ,F) by a mapping V → P(F) that stores for every vertex v ∈ V
the set of faces that contain v. The disadvantage is that we need
consistency lemmas about the representation, which can be proved by
induction on the construction.

The following table summarize these aspects for the different formalizations.
It shows that the formalizations based on directed faces and combinatorial
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maps are quite similar, whereas the formalization based on triangulation
differs significantly:

Directed Faces Triangulations Combinatorial Maps
Inductive Interior / Exterior Final / Nonfinal No Inductive
Definition Faces Faces Definition

Faces Polygons Triangles Polygons
Edges directed undirected directed

2.5 Isabelle

The formalization of plane graphs and tameness was carried out in Isabelle/HOL.
We give a short overview of the basic concepts of the object logic HOL, which
are used in this thesis. For an introduction to Isabelle/HOL see [29].

Basic Types and Functions

Proof rules are expressed in the meta-logic of Isabelle/HOL, consisting of
meta implication =⇒ and meta-quantification

∧
x . P x. We write A =⇒ B

=⇒ C for A =⇒ (B =⇒ C ). Functions may be defined using definitional
equality ≡, or as recursive functions, for example on an inductive datatype.
We use the following standard functions of the Isabelle/HOL Library.

Bool The type bool of all logical formulas contains the elements True and
False. The following connectives are defined: ∧ (and), ∨ (or), ¬ (negation)
and the (overloaded) = on booleans (‘if and only if’)

Moreover, ∀ x . P x means for all elements x holds P x; ∃ x . P x means there
exists an element x with P x; and ∃ !x . P x means there exists a unique
element x with P x.

Sets The type ′a set is the type of all sets of elements of type ′a. Here ′a
is a type variable. We write a ∈ A if an element a is contained in the set A.
The empty set is denoted by {}. A particular set may be denoted like {a, b,
c}. The union of two sets A and B is denoted by A ∪ B ; set intersection is
denoted by A ∩ B ; set difference is denoted by A − B ; the Cartesian product
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is denoted by A × B. The subset relation is denoted by A ⊆ B ; a proper
subset relation is denoted by A ⊂ B.

∀ x ∈ A. P x means for all elements x in A holds P x; ∃ x ∈ A. P x means
there exists an element x in A with P x. Set comprehension {a. P a} is used
to construct the set of all elements with property P ; {f x | x . x ∈ A} is the
set of all elements f x with x ∈ A The notation A//R denotes a quotient
construction of set A by an equivalence relation R ⊆ A × A.

Functions The type ′a ⇒ ′b, is the type of all functions of elements of type
′a to elements of type ′b. Function application is written in curried style: f x
is the function f applied to an argument x. We use λ-notation λx . f x for a
function which assigns to an argument x the value f x .

Natural Numbers and Integers The type nat of natural numbers is an
inductive datatype with the constructors 0 and Suc. We denote particular
natural numbers like 0 , 1 , 2 , 3 , 4 , ..., the type int is the type of all integers.
We denote particular integers like ..., −2 , −1 , 0 , 1 , 2 , .... On both types we
use + (addition), − (subtraction), ∗ (multiplication), <, ≤, = (comparisons),
and mod (modulus). Primitive recursive functions on natural numbers are
defined in the following style.

f :: nat ⇒ ′b
f 0 = ...
f (Suc n) = ... (f n) ...

Lists We widely use lists in our formalization in order to obtain an ex-
ecutable algorithm out of the definition. On the one hand we use lists to
represent a permutation on a finite set; we then use functions which return
equivalent results on all rotations of a list. On the other hand, we use lists
to implement finite sets. We implement set functions as ∩, ×, − on lists,
using an overloaded notation. The result of a function, considered as set is
independent of the order of elements in the list.

Lemma set (as × bs) = set as × set bs

The type ′a list of all lists of elements of ′a is an inductive datatype with
constructors [] and #. The base case is the empty list [], and if xs is of type
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′a list and x is of type ′a, then x#xs is again of type ′a list.
A primitive recursive function f is defined in the following style.

f :: ′a list ⇒ ′b
f [] = ...
f (x#xs) = ... (f xs) ...

Particular lists are denoted like [a,b,c]. We concatenate two lists xs and ys
by xs@ys. Let xs be a list. hd xs is the head element of xs ; last xs is the
last element of xs ; butlast xs is the list xs without the last element; take n xs
returns the list of the first n elements of the list xs ; drop n xs returns the list
xs without the first n elements; rev xs is the reversed list; |xs| is the length
of xs ; xs [[i ]] is the element at position i in xs where 0 ≤ i < |xs|; xs [i :=a] is
the list xs where the element at position i is replaced by a; set xs is the set
of elements in xs ; [x ∈ xs . P x ] is the list of all elements of xs that satisfy
property P ; [f x . x ∈ xs ] is the list of all elements of f x where x ∈ set xs ;
replicate n x is the list consisting of n times the element x ; [0 ..< n] is the
list of numbers from 0 to n − 1 ; xs × ys a the list of all elements (x ,y)
where x ∈ set xs and y ∈ set ys ; xs ∩ ys a the list of all elements x where x
∈ set xs and x ∈ set ys (see Appendix A.1); xs − ys is a list containing all

elements x with x /∈ set ys ;
∑

x∈xs f x is the sum
∑i<|xs|

i=0 f xs [[i ]];
∪x ∈ xs f x is the concatenation of all lists obtained by f x where x ∈ set xs.
The function minimal f x xs returns the minimal element of the set {x} ∪ set
xs with respect to f. The functions minList x ys and maxList x ys calculate
the minimal and maximal element set {x} ∪ set xs (see Appendix A.1).

Product Types The type a ′ × ′b is the type of all pairs (a, b), where a is
of type ′a and b is of type ′b. A pair is constructed by (a, b). We select the
first component of a pair p = (a,b) by fst p = a, and the second component
by snd p = b. We write ′a × ′b × ′c for ′a × ( ′b × ′c).

Arrays We introduce the type ′a array for lists of fixed length. An array
of length n may be constructed by A = [[f i . i < n]] from elements f i, where
0 ≤ i < n, and indexed at position i by A[[i ]]. Higher-dimensional arrays are
constructed for example like [[f x y z . x < nx, y < ny, z < nz]] and indexed
at position (i, j, k) by A[[i ,j ,k ]].
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Option Type The type ′a option is an inductive datatype with construc-
tors None and Some a where a is of type ′a. The function the applied to an
element Some a of option type returns a.

Tables We introduce a type ( ′a, ′b) table for all lists of pairs (a, b), where a
is of type ′a and b is of type ′b . We introduce functions removeKeyList to re-
move elements from a table, indexed by the first element (see Appendix A.1).

HOL is a logic of total functions. However we may define functions partially;
for example, for a function f of type ′a list ⇒ ′b we may omit a definition
for the empty list. Then the result of f [] is an element of type ′b, however,
we can not prove anything about it.

Code generation

For executable functions, Isabelle/HOL provides a mechanism for ML code
generation[6], which is based only on equalities proven in Isabelle/HOL.
Hence the execution can be trusted not to introduce any inconsistencies.
All primitive recursive and well-founded recursive function are translated to
recursive ML functions. Finite sets may be implemented by lists. The ex-
pressions ∃ x ∈ set xs . P x and ∀ x ∈ set xs . P x are executable, provided the
predicate P is executable. They are implemented by corresponding functions
on lists. For acceptable performance natural numbers may be implemented
via integers in ML, using appropriate proven equalities for the translation.
We also may provide for a function f a more efficient version f ′, for example
by avoiding duplicate calculations, proving equivalence in Isabelle/HOL, and
translating f to the ML function generated for f ′.

Proofs

The formal proofs in this thesis use the Isabelle/Isar proof language with
the aim to generate readable formal proof documents. For an introduction
to Isar see [34], here we only present the very basic language elements. In
order to proof a lemma “if A and B then C”, we may assume A and B, prove
some intermediate result D, and finally derive C. The proof beginning with
”proof −” means ”do not apply any proof methods”.

Lemma A =⇒ B =⇒ C
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proof −
assume A and B
have D
show C

qed

We write “A then have B”, when we want to use A in the proof of B. We
can also name facts have a: A. We write “from a” to use A in a later proof.
We write “C with a” to use the previous fact C and A.

assume a: A
then have B
from a have C
with a have D

If we start a proof by “proof”, a standard proof rule is applied. In this
example, the proof is split up in two cases, where each case is to be proven
separately, separated by “next”.

Lemma A =⇒ C
proof −
assume A
then have A1 ∨ A2
then show C
proof
assume A1 then show C

next
assume A2 then show C

qed
qed

If we can derive the existence of an element x with a property B x, we write
“obtain x where B x” and subsequently prove the existence.

Lemma A =⇒ C
proof −
assume A
then obtain x where B x
then show C

qed

We collect facts A1, A2, and A3 we need to prove C by “moreover” and
make them available in the proof of C by “ultimately”.
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Lemma A =⇒ C
proof −
assume A
then have A1
moreover have A2
moreover have A3
ultimately show C

qed

We prove a chain of equations (or inequations) by proving every single equa-
tion and combining them using transitivity rules. The dots “. . .” abbreviate
the right hand side of the previous equation.

Lemma a = b
proof −
have a = a1
also have . . . = a2
also have . . . = a3
also have . . . = b
finally show a = b .

qed

We use the symbol ! to indicate a statement not yet formally proved in
Isabelle and the symbol

√
for formally proved statements.



28 CHAPTER 2. PRELIMINARIES



Chapter 3

A Formalization of Plane
Graphs

In this chapter we present a formalization of plane graphs in Isabelle/HOL
based on directed faces. The mathematical foundations were introduced in
Section 2.3.

In Section 3.1, we show the general data structure for the representation of
graphs, following the representation used in Hales’ Java program, but using
lists instead of pointer structures. Then, we define the set of plane graphs in
Section 3.2 by an inductive set.

3.1 Formalization of Graphs

In this section, we present a formalization of graphs in Isabelle. In Sec-
tion 3.1.1, we introduce a formalization of faces by lists of vertices and a
permutation function. We continue with the definition of equivalence of faces
(see Section 3.1.2) and characteristic properties of faces (see Section 3.1.3).

Finally, we define an Isabelle data structure for the representation of graphs
(see Section 3.1.5) and introduce some operations on graphs (see Section 3.1.6).
This representation is used for an inductive definition of plane graphs in Sec-
tion 3.2.

29



30 CHAPTER 3. A FORMALIZATION OF PLANE GRAPHS

3.1.1 Representation of Faces

We formalize faces as permutations of vertices, i.e. we represent them by
distinct lists of vertices and provide a function nextVertex that yields for
every face f the permutation function λv . f ·v. Consequently, we have to
prove that all operations on faces are preserved under rotation of the vertex
list, i.e. that the operations are independent from the actual representation
of a face.

We represent vertices by natural numbers.

vertex = nat

For the representation of faces, we introduce a new data type, consisting of
two components, the (distinct) list of vertices of the face and the type of
the face. The type of a face is either final or nonfinal; it is represented as a
two-element datatype.

facetype = Final | Nonfinal
face = Face (vertex list) facetype

We define an overloaded function final on faces that determines if a face is
final. The function final will later also be defined for graphs.

final :: ′a ⇒ bool
final (Face vs f ) = (case f of Final ⇒ True | Nonfinal ⇒ False)

We define selector functions type and vertices on faces that select the respec-
tive component of a face. The function vertices is overloaded. Later it will
also be defined for graphs. The set of vertices Vf in a face f is denoted by
set (vertices f ). A face may be made final by the function setFinal.

type :: ′a ⇒ facetype
type (Face vs f ) = f

vertices :: ′a ⇒ vertex list
vertices (Face vs f ) = vs

setFinal :: face ⇒ face
setFinal f ≡ Face (vertices f ) Final

Next Vertex We implement the permutation function of a face by the
function nextVertex (written as f ·v). This function is based on nextElem.
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If x is contained in a (distinct) list as and if x is not the last element of as,
nextElem as b x returns the successor of an element x in as.

Otherwise, the function nextElem returns a default element b. f ·v returns the
next vertex for a vertex v in the face f in cyclic order by calling nextElem
with the head element in the vertex list of f as default element. Hence,
nextVertex implements the permutation function f ·v.
nextElem :: ′a list ⇒ ′a ⇒ ′a ⇒ ′a
nextElem [] b x = b
nextElem (a#as) b x =

(case as of [] ⇒ b
| (a ′#as ′) ⇒ if x = a then a ′ else nextElem as b x )

nextVertex :: face ⇒ vertex ⇒ vertex
f ·v ≡ let vs = vertices f in nextElem vs (hd vs) v

Note that in Isabelle/HOL all functions need to be total; however, it is
assumed that the function nextVertex is only applied on vertices v that are
contained in the face f and that the vertex list of f is distinct. For the
verification this means that we have to prove these preconditions whenever
we use properties about nextVertex.

The function f n·v returns the n-fold application of f ·v.
nextVertices :: face ⇒ nat ⇒ vertex ⇒ vertex
f n·v ≡ ((f ·)ˆn) v

A vertex v is called incident with a face f if v is contained in the set of
vertices of f , i.e. v ∈ set (vertices f ). An edge (a, b) is contained in a face f
if b is the successor of a in f .

edges :: ′a ⇒ (vertex × vertex ) list
edges (f ::face) ≡ [(a, f ·a). a ∈ vertices f ]

Opposite Face For every face f, we obtain the opposite (inverse) face f op

by reversing the cyclic order of the vertices of f.

(vs::vertex list)op ≡ rev vs
(Face vs f )op = Face (rev vs) f

We also define the permutation function f −1·v of the inverse face f op.
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prevVertex :: face ⇒ vertex ⇒ vertex
f−1·v ≡ (let vs = vertices f in nextElem (rev vs) (last vs) v)

3.1.2 Equivalence of Faces

Two faces f 1 and f 2 are equivalent (f 1 ∼= f 2) if they represent the same
permutation of vertices, i.e. if we can obtain one vertex list from the other
by rotation. The type of the faces is insignificant.

The function rotate n is a standard Isabelle list function that performs n
rotations of a list by 1, where a rotation by 1 of a list [x0, x1, ..., xn] yields
[x1, ..., xn, x0]. The symbol ∼= is further used for the the equivalence relation
of faces as a set of pairs of faces:

vs1 ∼= (vs2::vertex list) ≡ ∃n. vs2 = rotate n vs1
f 1 ∼= (f 2::face) ≡ vertices f 1 ∼= vertices f 2

∼= ≡ {(f 1, f 2). f 1 ∼= f 2}

3.1.3 Properties of Faces

In order to prove characteristic properties of faces, we introduce the boolean
functions is-sublist and is-nextElem xs on lists.

is-sublist is a relation on lists. xs is a sublist of ys if we obtain xs by cutting
off elements at the start or the end of ys.

is-sublist :: ′a list ⇒ ′a list ⇒ bool
is-sublist xs ys ≡ (∃ as bs. ys = as @ xs @ bs)

For a list xs, is-nextElem xs is the relation of succeeding vertices in xs modulo
rotation. y is the element of xs that follows x modulo rotation. That is, either
the list [x ,y ] is a sublist of xs or x is the last element and y the first in xs.

is-nextElem :: ′a list ⇒ ′a ⇒ ′a ⇒ bool
is-nextElem xs x y ≡ is-sublist [x ,y ] xs ∨ xs 6= [] ∧ x = last xs ∧ y = hd xs

By using these definitions, we prove several properties of faces: the value
returned by the function nextElem as b x is either an element of as or the
default element b. If x is not in the list as or x is the last element of as, the
result is b. If x is an element of the list, the function implements the successor
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of x modulo rotation. If two vertex lists as and as′ are equivalent, then the
functions nextElem as (hd as) and nextElem as ′ (hd as ′) are identical on all
elements of as (or as′):

Lemma x /∈ set as =⇒ nextElem as b x = b
√

Lemma distinct as =⇒ nextElem as b (last as) = b
√

Lemma distinct as =⇒ x ∈ set as =⇒
is-nextElem as x y = (nextElem as (hd as) x = y)

√

Lemma as ∼= as ′ =⇒ distinct as =⇒ x ∈ set as =⇒
nextElem as (hd as) x = nextElem as ′ (hd as ′) x

√

The permutation function of f applied to an element v of the vertices of f
returns an element of the vertices f . f ·v is the successor in the vertex list
of f modulo rotation. For two equivalent faces f1 and f2, the permutation
functions are identical on all vertices of f1 (or f2):

Lemma v ∈ set (vertices f ) =⇒ f ·v ∈ set (vertices f )
√

Lemma distinct (vertices f ) =⇒ v ∈ set (vertices f ) =⇒
is-nextElem (vertices f ) v (f ·v)

√

Lemma f 1 ∼= f 2 =⇒ distinct (vertices f 1) =⇒ v ∈ set (vertices f 1) =⇒
f 1·v = f 2·v

√

3.1.4 Operations on Faces

Splitting a Vertex List at a Vertex First we define some auxiliary
functions on lists: The function splitAt c as splits a list as at an element c in
two lists: the first part contains all elements from the first element of as up
to (and excluding) c, the second one contains all elements from (excluding)
c up to the last element of the list. If c is not contained in as, the function
returns the original list as and the empty list:

vs c bsas

splitAtRec :: ′a ⇒ ′a list ⇒ ′a list ⇒ ′a list × ′a list
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splitAtRec c bs [] = (bs,[])
splitAtRec c bs (a#as) = (if a = c then (bs, as) else splitAtRec c (bs@[a]) as)

splitAt :: ′a ⇒ ′a list ⇒ ′a list × ′a list
splitAt c as ≡ splitAtRec c [] as

The function splitAt ram vs is characterized by the following properties. If
ram is none of the vertices of vs then the function returns the pair (vs , []).
If ram is one of the vertices of vs then splitAt returns a pair (as , bs) where
vs = as @ [ram] @ bs.

Lemma ram /∈ set vs =⇒ splitAt ram vs = (vs, [])
√

Lemma ram ∈ set vs =⇒ (as, bs) = splitAt ram vs =⇒
vs = as @ [ram] @ bs

√

Normalized Faces For the verification, we introduce a function vertices-
From f v, which rotates the vertex list of a face f such that v is the head
element. The rotated list is equivalent to the original vertex list and contains
at position i the ith successor of v in f . This function is not used for the
execution of the algorithm, but only for the verification.

verticesFrom :: face ⇒ vertex ⇒ vertex list
verticesFrom f v ≡ v # snd (splitAt v (vertices f )) @ fst (splitAt v (vertices f ))

Lemma distinct (vertices f ) =⇒ v ∈ set (vertices f ) =⇒
vertices f ∼= verticesFrom f v

√

Lemma distinct (vertices f ) =⇒ i < |vertices f | =⇒
v ∈ set (vertices f )=⇒ (verticesFrom f v)[[i ]] = f i·v

√

Moreover, we can normalize faces such that we can reduce the equivalence
test of faces to a comparison of the normalized vertex lists. For the definition
of minList see Appendix A.1.

minVertex :: face ⇒ vertex
minVertex f ≡ minList (hd (vertices f )) (vertices f )

normFace :: face ⇒ vertex list
normFace f ≡ verticesFrom f (minVertex f )

Lemma vertices f 1 6= [] =⇒ (f 1 ∼= f 2) = (normFace f 1 = normFace f 2)
√
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Selecting the Vertices Between two Vertices The function between vs
ram1 ram2 returns a list that contains all elements of vs between ram1 and
ram2 (both end points excluded), considering vs as a ring. The precondition
for this function is that vs is distinct, both ram1 and ram2 occur in vs, and
ram1 6= ram2. We split vs at ram1 in two lists pre1 and post1, then we split
up the sublist that contains ram2 in two lists pre2 and post2.

There are two cases to distinguish:

1. ram1 appears before ram2 in vs, i.e. ram2 occurs in post1. Then the
result is pre2.

ram 1 ram 2 post2pre1 pre2vs

2. ram2 appears before ram1 in vs or c = b, i.e. ram2 does not occur in
post1. Then the result is post1 @ pre2.

pre2 post1ram 2 post2 ram 1vs

between :: ′a list ⇒ ′a ⇒ ′a ⇒ ′a list
between vs ram1 ram2 ≡

let (pre1, post1) = splitAt ram1 vs in
if ram2 ∈ set post1
then let (pre2, post2) = splitAt ram2 post1 in pre2
else let (pre2, post2) = splitAt ram2 pre1 in post1 @ pre2

We summarize the preconditions for the function between vs ram1 ram2 in a
predicate pre-between:

pre-between :: ′a list ⇒ ′a ⇒ ′a ⇒ bool
pre-between vs ram1 ram2 ≡

distinct vs ∧ ram1 ∈ set vs ∧ ram2 ∈ set vs ∧ ram1 6= ram2

We also introduce a list function before. before vs ram1 ram2 determines
whether an element ram1 occurs before an element ram2 in vs.

before :: ′a list ⇒ ′a ⇒ ′a ⇒ bool
before vs ram1 ram2 ≡ ∃ as bs cs. vs = as @ ram1 # bs @ ram2 # cs

Based on this definitions we prove characteristic properties of the function
between: Under the assumption that the precondition of between holds, and
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if we split vs at ram1 in (as , bs) and the condition of the if-statement ram2
∈ set bs holds, then ram1 occurs before ram2 in vs and between vs ram1
ram2 contains the elements of vs between ram1 and ram2 in vs. Otherwise
ram2 occurs before ram1 and the function returns the list of all elements
from ram1 to the end of vs and then from the beginning of vs to ram2. The
result of between vs ram1 ram2 is independent of the actual representation
of vs, i.e. rotation does not change the result:

Lemma pre-between vs ram1 ram2 =⇒
(¬ before vs ram1 ram2) = before vs ram2 ram1

√

Lemma distinct vs =⇒ (as, bs) = (splitAt ram1 vs) =⇒
ram2 ∈ set bs = before vs ram1 ram2

√

Lemma pre-between vs ram1 ram2 =⇒ before vs ram1 ram2 =⇒
∃ as bs. vs = as @ [ram1] @ between vs ram1 ram2 @ [ram2] @ bs

√

Lemma pre-between vs ram1 ram2 =⇒ before vs ram2 ram1 =⇒
∃ as bs cs. between vs ram1 ram2 = cs @ as
∧ vs = as @ [ram2] @ bs@ [ram1] @ cs

√

Lemma between-eqF : pre-between vs ram1 ram2 =⇒ eqF vs vs ′ =⇒
between vs ram1 ram2 = between vs ′ ram1 ram2

√

Directed Length The function directedLength f a b counts the number of
edges in the face f between two vertices a and b.

directedLength :: face ⇒ vertex ⇒ vertex ⇒ nat
directedLength f a b ≡ if a = b then 0 else |between (vertices f ) a b| + 1

3.1.5 Representation of Graphs

We formalize graphs as sets of faces. In order to make all definitions exe-
cutable, a set A is represented by a distinct list containing all elements of
A. Hence a graph is represented by a distinct list of faces. Consequently, all
graph operations and properties must be independent of the order in which
the faces are stored in the list.

A graph g is represented as a data type with the following components:

• faces g, the list of faces in g.
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• countVertices g, the number of vertices in g.

• faceListAt g, an incidence list of face lists, associating to each vertex
v a list of faces in g containing v. The function facesAt g assigns to
every vertex v in g the list of faces incident with v, i.e. the element at
position v in the list faceListAt g.

• heights g, a list of natural numbers, associating to each vertex a height.
The function height g assigns to a vertex v the element at position v
in the list heights g. This is only used for optimization purposes.

• baseVertex g, one of the vertices.

The list of vertices of a graph contains the natural numbers from 0 upto
(excluding) countVertices.

Additionally, we define the corresponding selector functions on graphs.

graph = Graph (face list) nat face list list nat list (vertex option)

faces :: graph ⇒ face list
faces (Graph fs n f h b) = fs

countVertices :: graph ⇒ nat
countVertices (Graph fs n f h b) = n

vertices (Graph fs n f h b) = [0 ..< n]

faceListAt :: graph ⇒ face list list
faceListAt (Graph fs n f h b) = f

facesAt :: graph ⇒ vertex ⇒ face list
facesAt g v ≡ if v ∈ set(vertices g) then faceListAt g [[v ]] else []

heights :: graph ⇒ nat list
heights (Graph fs n f h b) = h

height :: graph ⇒ vertex ⇒ nat
height g v ≡ heights g [[v ]]

baseVertex :: graph ⇒ vertex option
baseVertex (Graph fs n f h b) = b
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Note that the representation is highly redundant in order to avoid duplicate
calculations and obtain acceptable performance for the enumeration algo-
rithm. For example, countVertices g and faceListAt g could be calculated
from faces g. The last two components are only used for optimization of the
generation process. The general definition also allows graphs that are not
well-formed (inconsistent): for example, if the incidence list has not the same
length as the number of vertices. Well-formedness is guaranteed for the set of
plane graphs by its inductive definition (see Section 3.2). This can be proved
by induction on the construction. Note that the definition of plane graphs
(see Section 3.2) imposes further restrictions on graphs (see Section 2.3).

The general definition allows graphs that do not correspond to graphs drawn
in the plane, like in the following example:

Example
The following graph represented by the set of faces {[1 ,2 ,3 ], [1 ,3 ,4 ], [1 ,2 ,4 ],
[2 ,3 ,4 ], [4 ,3 ,2 ,1 ]} is not plane.

1 2

4 3.

3.1.6 Operations on Graphs

A graph is final, iff all faces are final:

finals :: graph ⇒ face list
finals g ≡ [f ∈ faces g . final f ]

nonFinals :: graph ⇒ face list
nonFinals g ≡ [f ∈ faces g . ¬ final f ]

final g ≡ (nonFinals g = [])

A vertex is final if all incident faces are final; i.e. there are no non-final
incident faces:

nonFinalsAt :: graph ⇒ vertex ⇒ face list
nonFinalsAt g v ≡ [f ∈ facesAt g v . ¬ final f ]
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finalVertex :: graph ⇒ vertex ⇒ bool
finalVertex g v ≡ (nonFinalsAt g v = [])

The degree of a vertex v in a graph g is the number of faces incident with v
in g. tri g v is the number of incident final triangles, quad g v is the number
of incident final quadrilaterals, and except g v is the number of incident final
exceptional faces:

degree :: graph ⇒ vertex ⇒ nat
degree g v ≡ |facesAt g v |

tri :: graph ⇒ vertex ⇒ nat
tri g v ≡ |[f ∈ facesAt g v . final f ∧ |vertices f | = 3 ]|

quad :: graph ⇒ vertex ⇒ nat
quad g v ≡ |[f ∈ facesAt g v . final f ∧ |vertices f | = 4 ]|

except :: graph ⇒ vertex ⇒ nat
except g v ≡ |[f ∈ facesAt g v . final f ∧ 5 ≤ |vertices f | ]|

An edge (a, b) is contained in a graph g if it is contained in some face f of g.

edges (g ::graph) ≡ ∪f ∈ faces g edges f

The function neighbors calculates all vertices adjacent to a vertex v.

neighbors :: graph ⇒ vertex ⇒ vertex list
neighbors g v ≡ [f ·v . f ∈ facesAt g v ]

The function nextFace, denoted by (g ,v)·f, permutes the faces at a vertex v.
prevFace, denoted by (g ,v)−1·f, is the inverse operation.

nextFace :: graph × vertex ⇒ face ⇒ face
(g ,v)·f ≡ (let fs = (facesAt g v) in

(case fs of [] ⇒ f
| g#gs ⇒ nextElem fs (hd fs) f ))

prevFace :: graph × vertex ⇒ face ⇒ face
(g ,v)−1·f ≡ (let fs = (facesAt g v) in

(case fs of [] ⇒ f
| g#gs ⇒ nextElem (rev fs) (last fs) f ))
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3.2 Formalization of Plane Graphs

We inductively define (connected) plane graphs.

We start the construction with initial graphs (seed graphs). Initial graphs
consist one final face and one nonfinal outer face, where the final one is the
inverse face of the nonfinal one (see Section 3.2.1).

The basic graph modifications are splitting a nonfinal face in two faces, and
making a nonfinal face final. The face split operation is explained in Sec-
tion 3.2.2, the application to a graph in Section 3.2.3. The operation of
making a nonfinal face final is described in Section 3.2.4.

One step in the construction of a plane graph g consists of adding a new
final face in a nonfinal face f of g by means of these two basic operations
(see Section 3.2.4). We say we apply a patch for f at an edge e of f . A patch
p is represented by a graph with at least 2 faces, one final face fn (the final
face we want to add to the graph), one nonfinal face f ′ (the inverse face of
f , i.e. the boundary of the patch) and 0 or more nonfinal faces, uniquely
determined by f and fn, filling the ‘gap’ between the old nonfinal face f and
the new final face fn.

We apply a patch by replacing f in g by p − {f ′}. The new nonfinal faces
complete the new graph such that, again, every edge is contained in exactly
two faces in opposite directions. Hence, this property of plane graphs is
preserved. In Section 3.2.5 we explain in detail the enumeration of all possible
patches.

Example
All possible patches at a fixed edge for a face of length 6 with a final face of
length 3 are presented in Figure 3.1.

Figure 3.1: Patches of length 3

Definition
We define a partial plane graph inductively by the following two clauses:
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(initial) Every initial graph is a partial plane graph.

(add face) Given a partial plane graph, the graph obtained by adding one
final face is a partial plane graph.

A final graph is one in which every face is final. Only final plane graphs are
considered as plane graphs.

We present the Isabelle formalization of this inductive definition of a tree of
generated graphs in Section 3.2.6.

Every graph generated using this inductive definition is plane. This can be
verified by induction over the generation, using Euler’s formula. Furthermore
it must be shown that we can reach every plane graph using this construc-
tion, i.e. that our definition actually covers all plane graphs.

Theorem
Every plane graph can be reached using the construction described above.
Proof
Let g be any plane graph. We can choose any face as the initial graph. Let h
be a nonempty connected subset of g and h′ a partial plane graph, reachable
by the inductive definition, such that the set of faces of h is the set of final
faces of h′. Then g can be reached from h′. The proof is by induction on the
cardinality of the difference of set of faces in g and the set of final faces in
h′. We show that we can always add a new final face to h′: if h′ is nonempty,
there is a nonfinal face f in h′ that shares an edge with one of the final
faces in h′. In g there is exactly one face f2 that shares this edge with one
of the final faces in h. We can add the final face f2 to h′ with a patch for
the nonfinal face f with final face f2. The theorem follows by the induction
hypothesis.
Qed

We refine the process of generating graphs by successively generating graphs
with maximum face length n, starting from n = 3, 4, . . . (see Figure 3.2). We
can get the set of all plane graphs with maximum face length n by starting
with an initial graph with face length n, and in every step adding only new
faces with length between 3 and n. Note that the sets of graphs generated
by these trees are distinct.
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Figure 3.2: Trees of generated plane graphs

3.2.1 Construction of Seed Graphs

An initial graph (simple seed graph) is a graph with one final face of length
n and one nonfinal face of length n (in opposite direction).

It is constructed by the function graph.

graph :: nat ⇒ graph
graph n ≡

(let vs = [0 ..< n];
fs = [Face vs Final , Face (rev vs) Nonfinal ];
b = (if n < 5 then None else Some 0 )
in (Graph fs n (replicate n fs) (replicate n 0 ) b))

Example
An initial triangle graph has one final face containing the vertices [0 , 1 , 2 ]
and one nonfinal face containing the vertices [2 , 1 , 0 ]. The set of vertices is
[0 , 1 , 2 ] and for each vertex in the graph, the list of adjacent faces contains
both faces. The height of a vertex v is the minimal distance of v to one of
the vertices of the seed graph, hence the values for the heights of the vertices
are initially 0.

graph 3 =
Graph [Face [0 , 1 , 2 ] Final , Face [2 , 1 , 0 ] Nonfinal ]

3
[[Face [0 , 1 , 2 ] Final , Face [2 , 1 , 0 ] Nonfinal ],
[Face [0 , 1 , 2 ] Final , Face [2 , 1 , 0 ] Nonfinal ],
[Face [0 , 1 , 2 ] Final , Face [2 , 1 , 0 ] Nonfinal ]]

[0 , 0 , 0 ]
None

0 2

1
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3.2.2 Splitting a Nonfinal Face

The basic operation for the modification of graphs is to split a face, imple-
mented by the function splitFace. splitFace splits a (nonfinal) face f at two
vertices ram1 and ram2, inserting a list of new vertices (newVs) in the inte-
rior of f and producing a pair (f 1, f 2) of new nonfinal faces (see Figure 3.3).
f 1 contains the vertices of f from ram1 to ram2 (including the end points
ram1 and ram2) and the new vertices newVs. f 2 contains the vertices of f
from ram2 to ram1 and the new vertices newVs in reversed order.

ram1

ram2

ram1

ram2

f2 1f
vsf

Figure 3.3: Split Face Operation

splitFace :: face ⇒ vertex ⇒ vertex ⇒ vertex list ⇒ face × face
splitFace f ram1 ram2 newVs ≡ let vs = vertices f ;

f 1 = [ram1] @ between vs ram1 ram2 @ [ram2];
f 2 = [ram2] @ between vs ram2 ram1 @ [ram1] in
(Face (newVs @ f 1) Nonfinal ,
Face (f 2 @ rev newVs) Nonfinal)

We define the precondition of the function splitFace by a predicate pre-splitFace.
Both vertices ram1 and ram2 must be elements of the vertex list of oldF and
the set of vertices in newVs must be new in oldF :

pre-splitFace :: face ⇒ vertex ⇒ vertex ⇒ vertex list ⇒ bool
pre-splitFace oldF ram1 ram2 newVs ≡ distinct (vertices oldF ) ∧ distinct newVs

∧ (set (vertices oldF ) ∩ (set newVs)) = {} ∧ ram1 6= ram2
∧ ram1 ∈ set (vertices oldF ) ∧ ram2 ∈ set (vertices oldF )

The new faces preserve the successor relation of oldF. Every edge (a,b) of
oldF is contained in exactly one of the new faces.

Lemma (f 1, f 2) = splitFace oldF ram1 ram2 newVs =⇒
pre-splitFace oldF ram1 ram2 newVs =⇒ (a, b) ∈ set (edges oldF ) =⇒
(a,b) ∈ set (edges f 1) = (¬ (a,b) ∈ set (edges f 2)) !
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Lemma (f 1, f 2) = splitFace oldF ram1 ram2 newVs =⇒
pre-splitFace oldF ram1 ram2 newVs =⇒ (a,b) ∈ set (edges f 1) =⇒
(a,b) ∈ set (edges oldF ) ∨ is-sublist [x ,y ] ([ram2] @ newVs @ [ram1]) !

Lemma (f 1, f 2) = splitFace oldF ram1 ram2 newVs =⇒
pre-splitFace oldF ram1 ram2 newVs =⇒ (a,b) ∈ set (edges f 2) =⇒
(a,b) ∈ set (edges oldF ) ∨ is-sublist [x ,y ] ([ram1] @ rev newVs @ [ram2]) !

3.2.3 Splitting a Nonfinal Face in a Graph

Replacing Faces We introduce an auxiliary function replacefacesAt that
modifies the face incidence list F, replacing a face f by a list of faces fs at
all positions F [[i ]], where i ∈ ns.

This function replacefacesAt is based on replace(see Appendix A.1).

replacefacesAt :: nat list ⇒ face ⇒ face list ⇒ face list list ⇒ face list list
replacefacesAt ns f fs F ≡ mapAt ns (replace f fs) F

Heights of New Vertices The height of a vertex v is the minimal distance
of v to one of the vertices of the seed graph. This is only used for optimization
purposes. When we add a new face in a nonfinal face f, we are free to
choose a vertex where we add the new face. We add new faces at a vertex
with minimal height in order to obtain more ‘compact’ graphs, which allow
to calculate better lower bounds and to detect graphs earlier that will not
produce any tame graphs:

heightsNewVertices :: nat ⇒ nat ⇒ nat ⇒ nat list
heightsNewVertices h1 h2 n ≡ [min (h1 + i + 1 ) (h2 + n − i). i ∈ [0 ..< n]]

Example
heightsNewVertices 0 2 4 = [1 , 2 , 3 , 3 ]

FaceDivisionGraph Now we define a function FaceDivisionGraph g ram1
ram2 oldF newVs, which splits a nonfinal face oldF in a graph g by applying
a splitFace operation on the face oldF. This introduces a set of new vertices
newVs in g and replaces oldF by two new nonfinal faces f 1 and f 2. Hence the
following modifications must be applied to the graph g. The set of vertices
of g is augmented by the list of new vertices newVs. In the set of faces of g,
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the nonfinal face oldF is replaced by the new faces f 1 and f 2. The number
of vertices is increased by the number of new vertices. The list faceListAt g
v of incident faces is changed depending on v :

• For all vertices v between ram1 and ram2, oldF is replaced by f 1.

• For all vertices v between ram2 and ram1, oldF is replaced by f 2.

• For v = ram1 and for v = ram2, oldF is replaced by f 1 and f 2.

• For all new vertices v, faceListAt g v initially contains only f 1 and f 2.

ram1

ram2

ram1

ram2

f2 1f

vsf

FaceDivisionGraph
:: graph ⇒ vertex ⇒ vertex ⇒ face ⇒ vertex list ⇒ face × face × graph

FaceDivisionGraph g ram1 ram2 oldF newVs ≡
let fs = faces g ;
n = countVertices g ;
Fs = faceListAt g ;
h = heights g ;
b = baseVertex g ;
vs1 = between (vertices oldF ) ram1 ram2;
vs2 = between (vertices oldF ) ram2 ram1;
(f 1, f 2) = splitFace oldF ram1 ram2 newVs;
Fs = replacefacesAt vs1 oldF [f 1] Fs;
Fs = replacefacesAt vs2 oldF [f 2] Fs;
Fs = replacefacesAt [ram1] oldF [f 2, f 1] Fs;
Fs = replacefacesAt [ram2] oldF [f 1, f 2] Fs;
Fs = Fs @ replicate |newVs| [f 1, f 2] in
(f 1, f 2, Graph ((replace oldF [f 2] fs)@ [f 1])

(n + |newVs| )
Fs
(h @ heightsNewVertices h[[ram1]] h[[ram2]] |newVs| )
b)
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We define the precondition of the function FaceDivisionGraph by a predicate
pre-FaceDivisionGraph.

pre-FaceDivisionGraph :: graph ⇒ vertex ⇒ vertex ⇒ face ⇒ vertex list ⇒ bool
pre-FaceDivisionGraph g ram1 ram2 oldF newVs ≡

oldF ∈ set (faces g) ∧ distinct (vertices oldF ) ∧ distinct newVs
∧ set (vertices g) ∩ set newVs = {}
∧ set (vertices oldF ) ∩ set newVs = {}
∧ ram1 ∈ set (vertices oldF ) ∧ ram2 ∈ set (vertices oldF ) ∧ ram1 6= ram2
∧ ((ram1,ram2) /∈ set (edges oldF ) ∧ (ram2,ram1) /∈ set (edges oldF )
∧ (ram1,ram2) /∈ set (edges g) ∧ (ram1,ram2) /∈ set (edges g) ∨ newVs 6= [])

FaceDivisionGraph replaces a face oldF of a graph g by two new faces f 1
and f 2 obtained by a splitFace operation:

Lemma oldF ∈ set (faces g) =⇒
(f 1, f 2, newGraph) = FaceDivisionGraph g ram1 ram2 oldF newVs =⇒
set (faces newGraph) = {f 1, f 2} ∪ set (faces g) − {oldF} !

Lemma oldF ∈ set (faces g) =⇒
(f 1, f 2, newGraph) = FaceDivisionGraph g ram1 ram2 oldF newVs =⇒
(f 1, f 2) = splitFace oldF ram1 ram2 newVs

√

3.2.4 Adding a New Final Face in a Nonfinal Face

There are two ways of adding a new final face to a nonfinal graph g:

1. Replace a nonfinal face f of g by a final one.

2. Select a nonfinal face f and an edge e in f . Replace f by a patch for f .
i.e. one new final face and possibly some nonfinal faces are introduced,
such that the new face has at least one edge in common with f and
contains only vertices of f or new vertices.

Replacing a Nonfinal Face by a Final One

We replace a nonfinal face f of a graph g by a final face using the function
makeFaceFinal, which replaces all occurrences of f in the face list and all
incidence lists by the final copy of f .

The function makeFaceFinal is based on a list function replace (see Ap-
pendix A.1).
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makeFaceFinalFaceList :: face ⇒ face list ⇒ face list
makeFaceFinalFaceList f fs ≡ replace f [setFinal f ] fs

makeFaceFinal :: face ⇒ graph ⇒ graph
makeFaceFinal f g ≡

Graph (makeFaceFinalFaceList f (faces g))
(countVertices g)
[makeFaceFinalFaceList f fs. fs ∈ faceListAt g ]
(heights g)
(baseVertex g)

Adding a New Final Face in a Nonfinal Face

The function addFace g f vs corresponds to applying a patch for f (see
Section 3.2, add face). It adds a new final face to a graph g in a nonfinal
face f of g. The vertices of the new face are given by the list vs : if an element
v ∈ set vs is None, a new vertex is produced if it is Some w, where w ∈ set
vertices f, then w will be the next vertex in the new final face. Hence the
FaceDivisionGraph operation is applied at vertex w.

Example
An addFace operation with vertex list of the new final face vs = [Some 1 ,
Some 3 , None, Some 4 , None, Some 8 ].

ram2

ram3

ram1

ram4

6
57

2
1

8

3

4
f

The function addFace g f vs searches for the first vertex w1 in the vertex
list vs, then addFaceSnd g f w1 n vs searches for the next vertex w2 in vs,
starting at the given vertex w1. For every None element between w1 and
w2 a new vertex is created, the number of new vertices is counted by the
variable n. If the vertices w1 and w2 are neighbors and there are no new
vertices between w1 and w2, then there is nothing to do. Otherwise a face
split is applied between w1 and w2 with n new vertices. Then the function
continues with the remaining vertices of vs, starting at the vertex w2 in the
new nonfinal face f 2, the face containing all vertices of f between w2 and
w1. Finally, when vs is empty, the last nonfinal face f 2 is made final.
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f2

f1
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3
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For the special case in which the vertex list vs of the new face contains all
vertices of the old face, starting at v, the nonfinal face f is made final, and
no new nonfinal faces are created.

addFaceSnd :: graph ⇒ face ⇒ vertex ⇒ nat ⇒ vertex option list ⇒ graph
addFaceSnd g f w1 n [] = makeFaceFinal f g
addFaceSnd g f w1 n (v#vs) =

(case v of None ⇒ addFaceSnd g f w1 (Suc n) vs
| (Some w2) ⇒

if f ·w1 = w2 ∧ n = 0
then addFaceSnd g f w2 0 vs
else let ws = [countVertices g ..< countVertices g + n];
(f 1, f 2, g ′) = FaceDivisionGraph g w1 w2 f (rev ws) in
addFaceSnd g ′ f 2 w2 0 vs)

addFace :: graph ⇒ face ⇒ vertex option list ⇒ graph
addFace g f [] = g
addFace g f (v#vs) =

(∗ search for starting point : vertex followed by null or a non-adjacent edge ∗)
(case v of None ⇒ addFace g f vs

| (Some w1) ⇒ addFaceSnd g f w1 0 vs)

The predicate pre-addFace summarizes the preconditions for the addFace
operation. The function removeNones filters out all None elements of a list.

removeNones :: ′a option list ⇒ ′a list
removeNones vs ≡ [the v . v ∈ vs, (λv . v 6= None)]

pre-addFace :: face ⇒ vertex option list ⇒ bool
pre-addFace f vs ≡

let w = the (hd vs) in
[v ∈ verticesFrom f w . v ∈ set (removeNones vs)] = removeNones vs

∧ distinct (vertices f )
∧ w ∈ set (vertices f )
∧ last vs = Some (last (verticesFrom f w))
∧ 2 < | vs |
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3.2.5 Enumeration of all Possible Patches

Now we aim for a function that completely enumerates all possible patches.
Given a nonfinal face f of length n in a graph g and a vertex v in f . Let e
be the edge in f which ends in v.

We calculate the set of successor graphs (represented as list) obtained by
applying a patch for f , such that the new final face f2 has the edge e in
common with f .

Example
All patches for a face of length 6 with a new final triangle:

v2v5

v=v0 v1

v3v4

v2v5

v=v0 v1

v3v4

e
v2v5

v=v0 v1

v3v4

e
v2v5

v=v0 v1

v3v4

e
v2v5

v=v0 v1

v3v4

e
v2v5

v=v0 v1

v3v4

e

5v

0v[Some , 

Some ]
, Some v1

5v

0v[Some , 

5v

0v[Some , 

Some ]
, Some v2

0v

5v 5v

0v

f
e

Some ]
, Some v3

[0, 3, 5][0, 2, 5][0, 1, 5]

[Some , 
None, 
Some ]

[0, 0, 5]

]
, Some v4

, [Some

Some

[0, 4, 5]

Let m be the length of the new final face f2 in a patch.

Assume that the vertices in f are labeled by v0, v1, . . . , vn−1 starting from
v0 = v, such that f2 contains the edge from vn−1 to v0.

Every patch can be represented by an increasing list of indices [i0, ..., im−1] of
length m with first element i0 = 0, last element im−1 = n−1 and penultimate
element im−2 < im−1, i.e.

0 = i0 ≤ i1 ≤ . . . ≤ im−2 < im−1 = n− 1.

The list of all possible patches is calculated in three steps:
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1. enumerator m n calculates the index lists for all patches for a nonfinal
face of length n with a new final face of length m.

2. indexToVertexList v f is converts an index list to a list of optional
vertices, where Some v i represents an existing vertex vi in the face f
and None represents a new vertex.

3. addFace g f vs constructs a new graph by applying the patch to the
face f in g.

Enumeration of Increasing Index Lists

The function enumerator produces all increasing lists of length m with first
element 0, last element n − 1 and penultimate element at most n − 2. The
first element in every list is 0 and the last element is n− 1. In between there
is an increasing list of m− 2 elements of the set {0, .., n− 2}. The function
enumBase creates all singleton lists with an element of the set {0, .., nmax},
where nmax = n − 2. The function enumAppend extends every list is by
one element that is at least the last element of is and at most the maximal
value nmax :

enumBase :: nat ⇒ nat list list
enumBase nmax ≡ [[i ]. i ∈ [0 .. nmax ]]

enumAppend :: nat ⇒ nat list list ⇒ nat list list
enumAppend nmax iss ≡ ∪is∈iss [is @ [n]. n ∈ [last is .. nmax ]]

enumerator :: nat ⇒ nat ⇒ nat list list
enumerator inner outer ≡ if inner < 3 then [[0 , outer − 1 ]]

else let nmax = outer − 2 ; k = inner − 3 in
[[0 ] @ is @ [outer − 1 ]. is ∈ ((enumAppend nmax )ˆk) (enumBase nmax )]

Example
The index lists for all patches for a face of length 6 with a new triangle are
enumerator 3 6 = [[0 , 0 , 5 ], [0 , 1 , 5 ], [0 , 2 , 5 ], [0 , 3 , 5 ], [0 , 4 , 5 ]]

For a new quadrilateral we have enumerator 4 6 =[[0 , 0 , 0 , 5 ],
[0 , 0 , 1 , 5 ], [0 , 0 , 2 , 5 ], [0 , 0 , 3 , 5 ], [0 , 0 , 4 , 5 ], [0 , 1 , 1 , 5 ], [0 , 1 , 2 , 5 ],
[0 , 1 , 3 , 5 ], [0 , 1 , 4 , 5 ], [0 , 2 , 2 , 5 ], [0 , 2 , 3 , 5 ], [0 , 2 , 4 , 5 ], [0 , 3 , 3 , 5 ],
[0 , 3 , 4 , 5 ], [0 , 4 , 4 , 5 ]].
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The predicate increasing defines the property of a list to be increasing: the
successor y of an element x in the list is at least x. The predicate in-
crIndexList characterizes the index lists that represent patches. A patch
of a nonfinal face of length n with a new final face of length m is represented
by an increasing list of length m with head element 0, last element n−1 and
penultimate element smaller than n− 1.

increasing :: ( ′a::linorder) list ⇒ bool
increasing ls ≡ ∀ x y as bs. ls = as @ x # y # bs −→ x ≤ y

incrIndexList :: nat list ⇒ nat ⇒ nat ⇒ bool
incrIndexList ls m n ≡

1 < m ∧ 1 < n ∧ hd ls = 0 ∧ last ls = (n − 1 ) ∧ |ls| = m
∧ last (butlast ls) < last ls ∧ increasing ls

We prove both correctness and completeness of the enumeration function.

Lemma 1 < m =⇒ 1 < n =⇒
ls ∈ set (enumerator m n) =⇒ incrIndexList ls m n

√

Lemma incrIndexList ls m n =⇒ ls ∈ set (enumerator m n)
√

Conversion to a List of Vertices

indexToVertexList converts a list of indices to a list of vertices in f starting
at a vertex v in f . Now, for every element v in the list which is the same as
its predecessor in the list, a new vertex must be created. This is indicated by
replacing v by None. Otherwise v remains in the list as Some v. We calculate
the list of vertices from the index list, and replace duplicate vertices by None:

hideDupsRec :: ′a ⇒ ′a list ⇒ ′a option list
hideDupsRec a [] = []
hideDupsRec a (b#bs) =

(if a = b then None # hideDupsRec b bs
else Some b # hideDupsRec b bs)

hideDups :: ′a list ⇒ ′a option list
hideDups [] = []
hideDups (b#bs) = Some b # hideDupsRec b bs

indexToVertexList :: face ⇒ vertex ⇒ nat list ⇒ vertex option list
indexToVertexList f v is ≡ (hideDups [f k·v . k ∈ is])
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The function indexToVertexList is only applied on increasing index lists.
Consider a vertex list vs obtained by converting an increasing index list to a
vertex list using the function indexToVertexList. After removing all elements
None, using the function removeNones, the vertices occur in the same order
as in f starting at v. This is a precondition for the application of the function
addFace to this vertex list.

Lemma distinct (vertices f ) =⇒ v ∈ set (vertices f ) =⇒
incrIndexList es |es| |vertices f | =⇒
[x ∈ verticesFrom f v . x ∈ set (removeNones (indexToVertexList f v es))]
= removeNones (indexToVertexList f v es)

√

Applying the Patches

Now we calculate the list of successor graphs from the enumerated patches.
The function generatePolygon n v f g enumerates all index lists of length n
for patches of a nonfinal face f of g, at a vertex v of f. Now, every index
list is converted to a vertex list and the function addFace is called on every
vertex list.

Before applying a patch for a nonfinal face f , it must be checked that none
of the newly created edges (a, b) are already present in the graph, as we do
not allow multiple edges. Multiple edges would violate the property of plane
graphs that every edge occurs in a plane graph in exactly two faces with
opposite directions (see Section 2.3).

a

b
f

The function containsDuplicateEdge tests if one of the edges of g would be
duplicated if we applied an addFace operation to a vertex list obtained from
an index list is. This situation can only occur if an edge (a, b) is introduced
which joins two vertices already present in the face f , i.e. (a, b) does not
contain new vertices. This is only the case if there is an index i in the index
list is such that the predecessor p and the successor n are different from i.
Then the edge joining a = f i·v and b = f n·v is introduced by an addFace
operation (this is a property of the function indexToVertexList).
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The condition duplicateEdge for a duplicate edge (a, b) states that it is already
an edge of g, hence b ∈ set (neighbors g a), and (a, b) is not an edge of f .
Hence the distance between a and b is at least 2. Note that the case that
(a, b) is an edge in f must not be excluded, because then addFace leaves the
graph unchanged.

duplicateEdge :: graph ⇒ face ⇒ vertex ⇒ vertex ⇒ bool
duplicateEdge g f a b ≡

let ab = directedLength f a b;
ba = directedLength f b a in
2 ≤ ba ∧ 2 ≤ ab ∧ b ∈ set (neighbors g a)

containsUnacceptableEdgeSnd :: (nat ⇒ nat ⇒ bool) ⇒ nat ⇒ nat list ⇒ bool
containsUnacceptableEdgeSnd N v [] = False
containsUnacceptableEdgeSnd N v (w#ws) =

(case ws of [] ⇒ False
| (w ′#ws ′) ⇒ if v < w ∧ w < w ′ ∧ N w w ′ then True

else containsUnacceptableEdgeSnd N w ws)

containsUnacceptableEdge :: (nat ⇒ nat ⇒ bool) ⇒ nat list ⇒ bool
containsUnacceptableEdge N [] = False
containsUnacceptableEdge N (v#vs) =

(case vs of [] ⇒ False
| (w#ws) ⇒ if v < w ∧ N v w then True

else containsUnacceptableEdgeSnd N v vs)

containsDuplicateEdge :: graph ⇒ face ⇒ vertex ⇒ nat list ⇒ bool
containsDuplicateEdge g f v is ≡

containsUnacceptableEdge (λi j . duplicateEdge g f (f i·v) (f j·v)) is

Finally, we define a function generatePolygon which calculates all successor
graphs for nonfinal graphs by enumerating all possible patches and applying
them to the graph:

generatePolygon :: ′parameter ⇒ nat ⇒ vertex ⇒ face ⇒ graph ⇒ graph list
generatePolygonparam n v f g ≡

let enumeration = enumerator n |vertices f |;
enumeration = [is ∈ enumeration. ¬ containsDuplicateEdge g f v is];
vertexLists = [indexToVertexList f v is. is ∈ enumeration] in
[addFace g f vs. vs ∈ vertexLists]
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3.2.6 Inductive Definition of Plane Graphs

Now we define the set of plane graphs. Having defined a function which
calculates all successor graphs for a nonfinal graph, we now define the tree
of all graphs that are reachable by applying the successor function, starting
with an initial graph.

We first define inductively a generic function tree as the reachability relation
induced by a given successor function succs. An intuitive definition of the
set of reachable graphs from a start graph g is the following: g is reachable
from g (rule root). If g′ is reachable from g and g′′ is one of the successors of
g′ then g′′ is reachable from g (rule succs).

We define a function Tree :: (graph ⇒ graph list) ⇒ graph ⇒ graph set by
the following two clauses:

root : g ∈ Tree succs g
succs: g ′ ∈ Tree succs g =⇒ g ′′ ∈ set (succs g ′) =⇒ g ′′ ∈ Tree succs g

We aim at a definition of plane graphs from which we can generate executable
ML code. However, the ML code generated from this first definition of Tree
does not terminate, even if the defined set is finite. This is due to the depth-
first evaluation strategy used for inductive definitions [6]. When all elements
of a finite set are enumerated, the generated function can still recursively call
itself, such that the termination condition is never reached.

For this reason, we need to change the order of the premises in the induction
step. Now, the evaluation is stopped as soon as set (succs g) is empty. This
does not allow us to treat the initial graph as a constant in the definition,
hence we need to define trees as a binary relation of graphs rather than
a function from graphs to a list of graphs. We end up with the following
definition (see Figure 3.4):

g

g’

g’’

Figure 3.4: Inductive definition of graph trees.
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We define a function tree by the following two clauses:

tree :: (graph ⇒ graph list) ⇒ (graph × graph) set
(g , g) ∈ tree succs
g ′ ∈ set (succs g) =⇒ (g ′, g ′′) ∈ tree succs =⇒ (g , g ′′) ∈ tree succs

Now we define the set of all terminal (final) graphs in a tree, generated by a
given parameter param, and with given seed and succs functions.

terminalsTreeParam :: ′parameter ⇒ ( ′parameter ⇒ graph) ⇒
( ′parameter ⇒ graph ⇒ graph list) ⇒ graph set

(seed param, g) ∈ tree (succs param) =⇒ final g =⇒
g ∈ terminalsTreeparam seed succs

Then the set of all terminal graphs is the set of all graphs generated by any
parameter:

terminalsTree ::
( ′parameter ⇒ graph) ⇒ ( ′parameter ⇒ graph ⇒ graph list) ⇒ graph set

param: g ∈ terminalsTreeparam seed succs =⇒
g ∈ terminalsTree seed succs

We show that both definitions tree and Tree are equivalent, hence we can use
the induction principles of both definition. For the proof see Appendix B.

Lemma tree-eq : ((g , g ′) ∈ tree succs) = (g ′ ∈ Tree succs g)
√

For the definition of plane graphs it is sufficient to start generation with a
seed graph consisting of a single face of arbitrary length and restrict the
length of new faces to the length of the initial face.

Every seed graph is represented by a parameter which is the length of the
final face, i.e. a natural number not smaller than 3:

planeparameter = {i ::nat . 3 ≤ i}

The function Seedparam constructs a seed graph for the parameter param.
The successor function successorsListparam g calculates all patches for a
graph g for all nonfinal faces f in g at all edges given by a vertex v in f,
with a new final face of length i between 3 and the maximum face length
given by the parameter param. Note that the functions Seed and maxGon
are overloaded, i.e. for every parameter type there is a specific definition,
whereas the function successorsList is a generic function and can be used for
any parameter type. Using these functions, we finally define plane graphs.
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planeSeed-def : Seedm::planeparameter ≡ graph (toNat m)
planeMaxGon-def : maxGonm::planeparameter ≡ toNat m

successorsList :: ′parameter ⇒ graph ⇒ graph list
successorsListparam g ≡ if final g then []

else let polylimit = maxGonparam in
∪f ∈nonFinals g ∪v∈vertices f ∪i∈[3 ..polylimit ] generatePolygonparam i v f g

PlaneGraphs :: graph set
PlaneGraphs ≡ terminalsTree (Seed ::planeparameter ⇒ graph) successorsList

PlaneGraphsParam :: planeparameter ⇒ graph set
PlaneGraphsparam ≡

terminalsTreeparam (Seed ::planeparameter ⇒ graph) successorsList

PlaneGraphsTree :: planeparameter ⇒ graph set
PlaneGraphsTreeparam ≡ Tree successorsListparam Seedparam

This definition of plane graphs contains infinitely many trees and each tree
has infinitely many elements. From the inductive definition of trees, exe-
cutable ML code can be generated that traverses the tree by a depth-first-
strategy [6]. Note that this algorithm is neither terminating nor suitable to
enumerate the complete set of plane graphs, as the depth of the trees which
represents all plane graphs is unbounded.

3.2.7 Isomorphism of Plane Graphs

This section is devoted to the formal definition of plane graph isomorphism.
We introduce plane graph isomorphism based on the equivalence relation
on faces. Then we simplify the graph representation for final plane graphs
by eliminating redundant information and abstracting from the type of the
faces. Finally, we present an executable isomorphism test and its correctness
theorem.

Isomorphism of Graphs

A proper isomorphism of two plane graphs g1 and g2 is a bijection ϕ of the
set vertices of g1 into the set of vertices of g2 that induces a bijection of the
set of faces of g1 into the set of faces of g2. It suffices that ϕ is injective on
the set of vertices of g1 and the homomorphism on the set of faces induced
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by ϕ is surjective, i.e. set (faces g2) is the image of set (faces g1) under ϕ
modulo equivalence on faces.

The function liftFace ϕ is the morphism on faces induced by a morphism ϕ
on vertices.

liftFace :: (vertex ⇒ vertex ) ⇒ face ⇒ face
liftFace ϕ (Face vs t) = Face [ϕ v . v ∈ vs] t

isHom :: (vertex ⇒ vertex ) ⇒ face list ⇒ face list ⇒ bool
isHom ϕ fs1 fs2 ≡ set ([liftFace ϕ f . f ∈ fs1])//∼= = set fs2 //∼=

isPrIso :: (vertex ⇒ vertex ) ⇒ face list ⇒ face list ⇒ bool
isPrIso ϕ fs1 fs2 ≡ isHom ϕ fs1 fs2 ∧ inj-on ϕ (

⋃
f ∈ set fs1. set (vertices f ))

Two plane graphs are properly isomorphic (written as g1 ' g2) if there exists
a graph isomorphism of their face lists.

fs1 ' fs2 ≡ ∃ϕ. isPrIso ϕ fs1 fs2

For each plane graph we obtain the opposite (mirrored) plane graph by re-
versing the cyclic order in each face.

(fs::face list)op ≡ [f op. f ∈ fs]
(Graph fs n f h b)op = (Graph (fsop) n [fiop. fi ∈ f ] h b)

Two plane graphs g1 and g2 with face lists fs1 and fs2 are isomorphic (written
as g1 ∼= g2) if fs1 is properly isomorphic to fs2 or fsg2

op.

fs1 ∼= (fs2 :: face list) ≡ fs1 ' fs2 ∨ fs1 ' (fs2op)
g1 ∼= (g2::graph) ≡ (faces g1) ∼= (faces g2)

Abstraction of Plane Graphs

In order to make the construction of partial plane graphs efficient, the data
structure of partial plane graphs stores more information than needed. Once
a final plane graph is generated, this information is not needed any more.
Moreover, we can abstract from the face type (Final/Nonfinal), and use a
simpler representation by lists of faces, where a face is simply represented by
a list of vertices.
′a fsgraph = ′a list list
fsgraph :: graph ⇒ nat fsgraph
fsgraph g ≡ [vertices f . f ∈ (faces g)]
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An Executable Isomorphism Test for Plane Graphs

The following executable isomorphism test for plane graphs was developed
by Tobias Nipkow [5]. Morphisms are represented as a list of pairs. The
function test checks if two morphisms are compatible and the function merge
merges two compatible morphisms. The isomorphism test tries to pair faces
of the same length and iterates over all rotations of the two faces. If the
current isomorphism can be extended by some morphism I ′ (the result of a
new pairing of two faces) then the function continues, otherwise it fails.

test :: ( ′a, ′b) table ⇒ ( ′a, ′b) table ⇒ bool
test I I ′ ≡ ∀ xy ∈ set I . ∀ xy ′ ∈ set I ′. (fst xy = fst xy ′) = (snd xy = snd xy ′)

merge :: ( ′a, ′b) table ⇒ ( ′a, ′b) table ⇒ ( ′a, ′b) table
merge I ′ I ≡ [xy ∈ I ′. ∀ xy ′ ∈ set I . fst xy 6= fst xy ′] @ I

pr-iso-test :: ( ′a, ′b) table ⇒ ′a fsgraph ⇒ ′b fsgraph ⇒ bool
pr-iso-test I [] Fs2 = (Fs2 = [])

pr-iso-test I (F1#Fs1) Fs2 =
(∃F2 ∈ set Fs2. |F1| = |F2| ∧
(∃n<|F2|.
let I ′ = zip F1 (rotate n F2) in
test I ′ I ∧ pr-iso-test (merge I ′ I ) Fs1 (remove1 F2 Fs2)))

To improve the performance of the generated ML code, we first test if the
two graphs have the same number of vertices and faces. To allow a quick
check, we extend the graph representation by the number of vertices, which
we can obtain from the representation of partial plane graphs.

pr-iso-test ′ :: (nat × ′a fsgraph) ⇒ (nat × ′b fsgraph) ⇒ bool
pr-iso-test ′ ≡ λ(n1,Fs1) (n2,Fs2). n1 = n2 ∧ |Fs1| = |Fs2|

∧ pr-iso-test [] Fs1 Fs2

We obtain the following correctness theorem for the proper isomorphism test
on abstracted graphs. The isomorphism test works only under the assump-
tion that for the representation of graphs certain conditions hold:

• The list of faces does not contain duplicate faces (modulo equivalence).

• Every face does not contain duplicate vertices.

• The number of vertices in a graph is calculated correctly.
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Lemma ∀F ∈ set Fs1. distinct F =⇒
∀F ∈ set Fs2. distinct F =⇒ [] /∈ set Fs2 =⇒
distinct Fs1 =⇒inj-on (λxs.{xs}//EqF ) (set Fs1) =⇒
distinct Fs2 =⇒ inj-on (λxs.{xs}//EqF ) (set Fs2) =⇒
n1 = card(

⋃
F∈set Fs1 set F ) =⇒

n2 = card(
⋃

F∈set Fs2 set F ) =⇒
(Fs1 ' Fs2) = pr-iso-test ′ (n1, Fs1) (n2, Fs2)

√

All these assumptions hold for all generated plane graphs, shown by induc-
tion on the construction (see Section 3.3), and can be used to simplify the
correctness theorem.

Lemma g1 ∈ PlaneGraphsTreeparam =⇒ g2 ∈ PlaneGraphsTreeparam =⇒
g1 ' g2 =
(let Fs1 = ( |vertices g1|, fsgraph g1);
Fs2 = ( |vertices g2|, fsgraph g2) in
pr-iso-test ′ Fs1 Fs2) !

The archive provided by Thomas Hales contained 5486 graphs, among those
also some isomorphic copies. This is harmless for the proof of completeness of
the enumeration algorithm, but it means extra work for further verification
steps of the Kepler conjecture. With the verified executable isomorphism
test we generate a reduced archive from the archive of tame graphs provided
by Hales. This reduced the archive to 3050 graphs.

We use the isomorphism test for the second test function to decide if for every
graph generated by the Isabelle function Enumeration there is an isomorphic
graph contained in the reduced archive.

Finally we introduce some notation, used for both faces and graphs.

g ∈∼= G ≡ (∃ h ∈ G . g ∼= h)
g /∈∼= G ≡ ¬ g ∈∼= G
G ⊆∼= H ≡ ∀ g ∈ G . g ∈∼= H
G =∼= H ≡ G ⊆∼= H ∧ H ⊆∼= G
G ⊂∼= H ≡ G ⊆∼= H ∧ (∃ g ∈ H . g /∈∼= G)

3.3 Invariants

Invariants are properties that hold for all partial graphs during the construc-
tion of a plane graph. They are proved by induction on the construction.
The are two different kinds of invariants.
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• We need consistence properties of plane graphs that characterize well-
formed graphs, since the data structure used for the representation of
graphs is highly redundant.

• Moreover, by the inductive definition, planarity imposes more restric-
tions on plane graphs. Some of them can be expressed by local prop-
erties of plane graphs.

In every construction step, at least one final face is added to a partial plane
graph. The elementary operation is addFace. To verify that a property
holds for all graphs during the construction, it is sufficient to show that the
property is preserved by addFace. We use the following induction principle.

Lemma g ∈ PlaneGraphsTreeparam =⇒
P Seedparam =⇒
(
∧

g f v i e is g ′ . f ∈ set (nonFinals g) =⇒ 2 < i =⇒
v ∈ set (vertices f ) =⇒
g ′ = addFace g f is =⇒
e ∈ set (enumerator i |vertices f | ) =⇒
is = indexToVertexList f v e =⇒ P g ′) =⇒ P g

√

An addFace operation calls a sequence of face split operations FaceDivision-
Graph and makeFaceFinal operations to make a face final. Hence, we may
prove a property P if we can show that P is preserved under makeFaceFi-
nal and FaceDivisionGraph operations, provided the preconditions of these
operations hold. This is reflected in the following induction principle.

Lemma g ∈ PlaneGraphsTreeparam =⇒
P Seedparam =⇒
(
∧

g f . f ∈ set (faces g) =⇒ P g =⇒ P (makeFaceFinal f g)) =⇒
(
∧

g f ram1 ram2 n. newVs = [countVertices g ..<countVertices g + n] =⇒
pre-FaceDivisionGraph g ram1 ram2 f newVs =⇒ P g =⇒
(f 1, f 2, g ′) = FaceDivisionGraph g ram1 ram2 f (rev newVs) =⇒
P g ′) =⇒

P g
√

Using this induction principle simplifies a proof by induction, as it is not nec-
essary to reason about the more complex addFace operation. However, not
all properties may be proved using this induction principle, e.g. the property
of a plane graph to contain no two adjacent nonfinal faces.
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Consistence properties

The following properties are consistence properties of the data structure. The
first follows from the definition of facesAt ; for the other properties it has to
be be verified that they are preserved by the splitFace operation.

Every face in the incidence list of a vertex v contains the vertex v.

Lemma f ∈ set (facesAt g v) =⇒ v ∈ set (vertices g)
√

Every vertex v contained in a face f is also an element of the graph vertex
list.

Lemma g ∈ PlaneGraphs =⇒ f ∈ set (faces g) =⇒ v ∈ set (vertices f ) =⇒
v ∈ set (vertices g)

√

The list of incident faces with a vertex v consists of exactly the faces that
contain v.

Lemma g ∈ PlaneGraphs =⇒ v ∈ set (vertices g) =⇒
set (facesAt g v) = {f . f ∈ set (faces g) ∧ v ∈ set (vertices f )}

√

Finality

All terminal graphs in a tree of an arbitrary successor function are final by
construction. The first property follows from the definition, the others follow
from the definition of terminal graphs.

Lemma finalVertex g v =⇒ f ∈ set (facesAt g v) =⇒ final f
√

Lemma g ∈ PlaneGraphs =⇒ final g
√

Lemma g ∈ PlaneGraphs =⇒ v ∈ set (vertices g) =⇒ finalVertex g v
√

Lemma g ∈ PlaneGraphs =⇒ f ∈ set (facesAt g v) =⇒ final f
√

Lemma g ∈ PlaneGraphs =⇒ f ∈ set (faces g) =⇒ final f
√
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Distinctness of Vertices and Faces

Preconditions for correctness of most of the functions used for the definition of
the graph modification operations like splitFace and addFace are distinctness
and non-emptiness of the list of vertices or faces. Moreover, every face must
contain at least 3 vertices. The face list must not contain two equivalent
faces, i. e. the list of normed faces must be distinct.

Again, it must be shown that these invariants are preserved by the splitFace
operation.

Lemma g ∈ PlaneGraphs =⇒ set (vertices g) 6= {}
√

Lemma g ∈ PlaneGraphs =⇒ set (faces g) 6= {} !

Lemma g ∈ PlaneGraphs =⇒ v ∈ set (vertices g) =⇒
set (facesAt g v) 6= {} !

Lemma g ∈ PlaneGraphs =⇒ f ∈ set (faces g) =⇒ 3 ≤ | vertices f |
√

Lemma g ∈ PlaneGraphs =⇒ distinct (vertices g)
√

Lemma g ∈ PlaneGraphs=⇒ distinct [normFace f . f ∈ faces g ]
√

Lemma g ∈ PlaneGraphs=⇒ distinct (faces g)
√

Lemma g ∈ PlaneGraphs =⇒ distinct [normFace f . f ∈ facesAt g v ]
√

Lemma g ∈ PlaneGraphs =⇒ distinct (facesAt g v)
√

Lemma g ∈ PlaneGraphs =⇒ f ∈ set (faces g) =⇒ distinct (vertices f )
√

Lemma g ∈ PlaneGraphs =⇒ f ∈ set (facesAt g v) =⇒ distinct (vertices f )
√

The following properties hold for all partial graphs during the construction.
Navigation operations in graphs are well-defined. The next vertex f ·v and
the previous vertex f −1·v of a vertex v in a face f are again in f .

Lemma g ∈ PlaneGraphsTreeparam =⇒ v ∈ set (vertices g) =⇒
f ∈ set (facesAt g v) =⇒ f ·v ∈ set (vertices g) !

Lemma g ∈ PlaneGraphsTreeparam =⇒ v ∈ set (vertices g) =⇒
f ∈ set (facesAt g v) =⇒ f−1·v ∈ set (vertices g) !
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The next face (g ,v)·f and the previous vertex (g ,v)−1·f of a face f incident
with v are again incident with v.

Lemma g ∈ PlaneGraphsTreeparam =⇒ f ∈ set (facesAt g v) =⇒
(g ,v)·f ∈ set (facesAt g v) !

Lemma g ∈ PlaneGraphsTreeparam =⇒ f ∈ set (facesAt g v) =⇒
(g ,v)−1·f ∈ set (facesAt g v) !

The next face (g ,v)·f of a face f incident with v is also incident with the
next vertex w = f ·v of v in f and f is incident with w.

Lemma g ∈ PlaneGraphsTreeparam =⇒ f ∈ set (facesAt g v) =⇒ f ·v = w =⇒
(g ,v)·f ∈ set (facesAt g w) !

Lemma g ∈ PlaneGraphsTreeparam =⇒ f ∈ set (facesAt g v) =⇒ f ·v = w =⇒
f ∈ set (facesAt g w) !

Plane graphs do not contain loops.

Lemma g ∈ PlaneGraphsTreeparam =⇒ f ∈ set (facesAt g a) =⇒ f ·a 6= a !

If we repeatedly move to the next vertex in a face of length n, starting at v,
after n iterations we return to v.

Lemma g ∈ PlaneGraphsTreeparam =⇒ f ∈ set (faces g) =⇒
v ∈ set (vertices f ) =⇒ f length(vertices f )·v = v !

The following invariants are imposed by planarity of graphs.

w = f v

f

f’

v = f’ w.

.

Lemma g ∈ PlaneGraphsTreeparam =⇒ f ∈ set (facesAt g v) =⇒
f ·v = w =⇒ (g ,v)·f = f ′ =⇒ f ′·w = v !

Lemma g ∈ PlaneGraphsTreeparam =⇒ f ′ ∈ set (facesAt g v) =⇒
f = (g ,v)−1·f ′ =⇒ f ·v = f ′−1·v !

Lemma g ∈ PlaneGraphsTreeparam =⇒ f ∈ set (facesAt g v) =⇒
f ·v = w =⇒ (g ,v)·f = f ′ =⇒ (g , w)−1·f = f ′ !
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Lemma g ∈ PlaneGraphsTreeparam =⇒ f ∈ set (facesAt g v) =⇒
(g ,v)·f = f ′ =⇒ (v , w) ∈ set (edges f ) =⇒ (w , v) ∈ set (edges f ′) !

Lemma g ∈ PlaneGraphsTreeparam =⇒
f ∈ set (faces g) =⇒ f ′ ∈ set (faces g) =⇒
(v , w) ∈ set (edges f ) =⇒ (v , w) ∈ set (edges f ′) =⇒ f = f ′ !

A corollary is the property of plane graphs that every edge is contained in
exactly two faces in opposite directions. Every edge (v, w) of a graph g is
contained in one of the faces of g. Then (w, v) is only contained in f ′ =
(g ,v)·f.
corollary g ∈ PlaneGraphsTreeparam =⇒ (v , w) ∈ set (edges g) =⇒

(∃ !f . (v , w) ∈ set (edges f )) ∧ (∃ !f ′. (w , v) ∈ set (edges f ′)) !

Euler’s formula holds for all plane graphs, which can be proved by induction
on the construction of a plane graph.

Theorem Euler :
card (set(vertices g)) + card (set (faces g)) − card (set (edges g)) = 2 !

Since the set of graphs to be considered in the proof of the Kepler conjecture
is finite, these invariants can also be verified by a finite exhaustion. This
can be achieved by introducing a test function in Isabelle which checks if
the invariants hold for a given graph, and from which executable ML code
can be generated. During generation, every generated partial graph can be
tested for the invariants. This does not help for the proof of correctness of the
enumeration though, since the properties are only verified for the enumerated
graphs, not for all plane graphs. But the correctness proof relies on these
properties for all plane graphs.

However, instead of actually verifying the invariants, this may be a useful
test strategy for the graph operations. A good coverage with significant test
cases may be expected since the selection of test cases is independent from
the invariants. Whenever a graph is neglected, the test for the invariants is
also carried out. A test strategy that generates arbitrary objects of graph
type (as could be done for example with quickcheck [7], [?]) is not suitable to
verify invariants, since the probability for an arbitrary graph object to hold
the invariant is nearly 0. Hence almost no graph will be found for which the
modification can be executed.



Chapter 4

Tame Plane Graphs

In this chapter we first recall the definition of tame plane graphs according
to [24] (see Section 4.1) and then show how this definition of tameness can
be defined in Isabelle/HOL (see Sections 4.2, 4.3, 4.4 and 4.5).

However, during the formalization it turned out that the definition must be
modified: The original definition of tame graphs allowed graphs that were not
generated by the enumeration program. Hence the enumeration program is
not complete according to the original definition in [24]. Fortunately it can be
shown that none of these graphs gives rise to a possible counterexample to the
Kepler conjecture. Therefore the definition of tame plane graphs is changed
in the way that these graphs are explicitely excluded (see Section 4.5).

4.1 Original Definition

In this section we present the definition of tame graphs according to [24].
First we need to define several constants and functions:

The constant 14.8 is called the target.

65
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a : N → R is defined by

a(n) =


14.8 n = 0, 1, 2,
1.4 n = 3,
1.5 n = 4,
0 otherwise

b : N×N → R is defined by the following table (where x=target=14.8), for
all other values the result is 14.8.

b(t,q) q = 0 1 2 3 4 5
t = 0 x x x 7.135 10.649 x
1 x x 6.95 7.135 x x
2 x 8.5 4.756 12.981 x x
3 x 3.642 8.334 x x x
4 4.139 3.781 x x x x
5 0.55 11.22 x x x x
6 6.339 x x x x x
7 x x x x x x

c : N → R is defined by

c(n) =


1 n = 3,
0 n = 4,
−1.03 n = 5,
−2.06 n = 6,
−3.03 otherwise

d : N → R is defined by

d(n) =



0 n = 3,
2.378 n = 4,
4.896 n = 5,
7.414 n = 6,
9.932 n = 7,
10.916 n = 8,
14.8 otherwise

A set of vertices is V called a separated set of vertices, iff

1. for every vertex in V there is an exceptional face containing it,
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2. no two vertices in V are adjacent,

3. no two vertices in V lie on a common quadrilateral, and

4. each vertex in V has degree 5.

A weight assignment is a function w : G → R+
0 . A weight assignment is

admissible, iff

1. d(|f |) ≤ w(f),

2. if v has type (p, q), then b(p, q) ≤
∑
v∈f

w(f),

3. let V be any set of vertices of type (5,0),
if the cardinality k of V is ≤ 4, then 0.55k ≤

∑
V ∩f 6=∅

w(f),

4. let V be any separated set of vertices, and
then

∑
v∈V

a(tri(v)) ≤
∑

V ∩f 6=∅
(w(f)− d(|f |)).

Definition. A plane graph is called tame, if it satisfies the following condi-
tions:

1. The length of each face is at least 3 and at most 8.

2. Every 3-cycle is a face or the opposite of a face.

3. Every 4-cycle surrounds one of the cases illustrated in Figure 4.1.

Figure 4.1: Tame 4-cycles

4. The degree of every vertex is at least 2 and at most 6.

5. If a vertex is contained in an exceptional face, then the degree of the
vertex is at most 5.
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6. The following inequality holds:∑
f∈F

c(|f |) ≥ 8.

7. There exists an admissible weight assignment of total weight
∑
f

w(f)

less than the target, 14.8.

4.2 Constants

We show the representation of these definitions in Isabelle/HOL. The names
of the defined constants correspond to the numbers of properties in the def-
inition, e.g. tame3 corresponds to property 3 of tame. The representation
is quite close to the mathematical description for the conditions of tameness
that can be expressed in set theoretic formulas. Other conditions, e.g. “all
quadrilaterals surround a certain set of configurations”, must be modeled ex-
plicitely. We multiply all constants by 1000 in order to calculate with integer
values, since no higher precision ever occurs in the program.

squanderTarget :: nat
squanderTarget ≡ 14800

excessTCount :: nat ⇒ nat
a t ≡ if t < 3 then squanderTarget

else if t = 3 then 1400
else if t = 4 then 1500
else 0

squanderVertex :: nat ⇒ nat ⇒ nat
b p q ≡ if p = 0 ∧ q = 3 then 7135

else if p = 0 ∧ q = 4 then 10649
else if p = 1 ∧ q = 2 then 6950
else if p = 1 ∧ q = 3 then 7135
else if p = 2 ∧ q = 1 then 8500
else if p = 2 ∧ q = 2 then 4756
else if p = 2 ∧ q = 3 then 12981
else if p = 3 ∧ q = 1 then 3642
else if p = 3 ∧ q = 2 then 8334
else if p = 4 ∧ q = 0 then 4139
else if p = 4 ∧ q = 1 then 3781
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else if p = 5 ∧ q = 0 then 550
else if p = 5 ∧ q = 1 then 11220
else if p = 6 ∧ q = 0 then 6339
else squanderTarget

scoreFace :: nat ⇒ int
c n ≡ if n = 3 then 1000

else if n = 4 then 0
else if n = 5 then −1030
else if n = 6 then −2060
else if n = 7 then −3030
else if n = 8 then −3030
else −3030

squanderFace :: nat ⇒ nat
d n ≡ if n = 3 then 0

else if n = 4 then 2378
else if n = 5 then 4896
else if n = 6 then 7414
else if n = 7 then 9932
else if n = 8 then 10916
else squanderTarget

4.3 Separated Sets of Vertices

A set of vertices V is separated, iff the following conditions hold:

1. For each vertex in V there is an exceptional face containing it:

separated1 :: graph ⇒ vertex set ⇒ bool
separated1 g V ≡ ∀ v ∈ V . except g v 6= 0

2. No two vertices in V are adjacent:

separated2 :: graph ⇒ vertex set ⇒ bool
separated2 g V ≡ ∀ v ∈ V . ∀ f ∈ set (facesAt g v). f ·v /∈ V

3. No two vertices lie on a common quadrilateral:

separated3 :: graph ⇒ vertex set ⇒ bool
separated3 g V ≡
∀ v ∈ V . ∀ f ∈ set (facesAt g v). |vertices f |≤4 −→ set (vertices f )∩V = {v}
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A set of vertices is called preseparated, iff no two vertices are adjacent or lie
on a common quadrilateral:

preSeparated :: graph ⇒ vertex set ⇒ bool
preSeparated g V ≡ separated2 g V ∧ separated3 g V

4. Every vertex in V has degree 5:

separated4 :: graph ⇒ vertex set ⇒ bool
separated4 g V ≡ ∀ v ∈ V . degree g v = 5

separated :: graph ⇒ vertex set ⇒ bool
separated g V ≡

separated1 g V ∧ separated2 g V ∧ separated3 g V ∧ separated4 g V

4.4 Admissible Weight Assignments

A weight assignment w :: face ⇒ nat assigns a natural number to every face.

We formalize the admissibility requirements as follows:

1. d(|f |) ≤ w(f):

admissible1 :: (face ⇒ nat) ⇒ graph ⇒ bool
admissible1 w g ≡ ∀ f ∈ set (faces g). d |vertices f | ≤ w f

2. If v has type (p, q), then b(p, q) ≤
∑
v∈f

w(f):

admissible2 :: (face ⇒ nat) ⇒ graph ⇒ bool
admissible2 w g ≡
∀ v ∈ set (vertices g). except g v = 0 −→
b (tri g v) (quad g v) ≤

∑
f ∈ facesAt g v w f

3. Let V be any set of vertices of type (5,0).
If the cardinality of V is k ≤ 4, then 0.55k ≤

∑
V ∩ f 6=∅

w(f):

admissible3 :: (face ⇒ nat) ⇒ graph ⇒ bool
admissible3 w g ≡
∀V . card V ≤ 4 −→
V ⊆ {v . v ∈ set (vertices g) ∧ tri g v = 5 ∧ quad g v = 0} −→∑

f ∈ [f ∈ faces g . V ∩ set (vertices f ) 6= {}] w f ≤ 550 ∗ card V
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4. Let V be any separated set of vertices.
Then

∑
v∈V

a(tri(v)) ≤
∑

V ∩ f 6=∅
(w(f)− d(|f |)):

admissible4 :: (face ⇒ nat) ⇒ graph ⇒ bool
admissible4 w g ≡

∀V . separated g (set V ) −→
set V ⊆ set (vertices g) −→

(
∑

v∈V a (tri g v))
+ (

∑
f ∈[f ∈faces g . ∃ v ∈ set V . f ∈ set (facesAt g v)] d |vertices f | )

≤
∑

f ∈[f ∈faces g . ∃ v ∈ set V . f ∈ set (facesAt g v)] w f

Finally we define admissibility of weights functions.

admissible :: (face ⇒ nat) ⇒ graph ⇒ bool
admissible w g ≡

admissible1 w g ∧ admissible2 w g ∧ admissible3 w g ∧ admissible4 w g

4.5 Tameness

In the algorithm of generating all tame plane graphs a graph is neglected if
it contains two adjacent vertices of type (4, 0) (see Figure 4.2). Therefore the

Figure 4.2: Two adjacent vertices of type (4, 0)

original definition of tame graphs as proposed Hales in fact includes graphs
that are not generated by the algorithm. These graphs are of the following
form: two adjacent vertices of type (4, 0), bounded by a 4-cycle. On the
outside one of the tame configurations of Figure 4.1, discarding any that give
fewer than 8 triangles, for example the following graphs:
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Hales [private communication] suggested to strengthen the notion of tame-
ness in order to match the algorithm because it can be shown that all coun-
terexamples must satisfy the stronger notion. Therefore we extended the
definition of tame by a new restriction tame8 that no two adjacent vertices
of type (4, 0) occur in a tame graph. Properties tame1 to tame7 correspond
to properties 1 to 7 of the original definition.

1. The length of each face is (at least 3 and) at most 8:

tame1 :: graph ⇒ bool
tame1 g ≡ ∀ f ∈ set (faces g). 3 ≤ |vertices f | ∧ |vertices f | ≤ 8

2. Every 3-cycle is a face or the opposite of a face:

A face given by a vertex list vs is contained in a graph g, if it is isomorphic
to one of the faces in g. The notation f ∈∼= F means ∃ f ′∈ F . f ∼= f ′, where
∼= is the equivalence relation on faces (see Chapter 3.2.7).

A 3-cycle in a graph g is a cyclic path of length 3 along any faces of g such
that the vertices of the path are distinct.

c

b

a

T3cycle :: vertex ⇒ vertex ⇒ vertex ⇒ graph ⇒ bool
3cycle a b c g ≡ distinct [a, b, c]
∧ (∃ f ∈ set (faces g). (a, b) ∈ set (edges f ))
∧ (∃ f ∈ set (faces g). (b, c) ∈ set (edges f ))
∧ (∃ f ∈ set (faces g). (c, a) ∈ set (edges f ))

tame2 :: graph ⇒ bool
tame2 g ≡

∀ a b c. 3cycle a b c g −→
(Face [a, b, c] Final) ∈∼= set (faces g) ∨
(Face [c, b, a] Final)∈∼= set (faces g)

3. Every 4-cycle surrounds one of the following configurations:
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A 4-cycle in a graph g is a cyclic path of length 4 along any faces of g, such
that the vertices along the path are distinct.

a b

d c

T4cycle :: vertex ⇒ vertex ⇒ vertex ⇒ vertex ⇒ graph ⇒ bool
4cycle a b c d g ≡ distinct [a, b, c, d ]
∧ (∃ f ∈ set (faces g). (a, b) ∈ set (edges f ))
∧ (∃ f ∈ set (faces g). (b, c) ∈ set (edges f ))
∧ (∃ f ∈ set (faces g). (c, d) ∈ set (edges f ))
∧ (∃ f ∈ set (faces g). (d , a) ∈ set (edges f ))

a a a a b b b b

e e
d c d c d c d c

tameConf 1 :: vertex ⇒ vertex ⇒ vertex ⇒ vertex ⇒ face set
tameConf 1 a b c d ≡ {Face [a, b, c, d ] Final}

tameConf 2 :: vertex ⇒ vertex ⇒ vertex ⇒ vertex ⇒ face set
tameConf 2 a b c d ≡ {Face [a, b, c] Final , Face [a, c, d ] Final}

tameConf 3 :: vertex ⇒ vertex ⇒ vertex ⇒ vertex ⇒ vertex ⇒ face set
tameConf 3 a b c d e ≡

{Face [a, b, e] Final , Face [b, c, e] Final , Face [a, e, c, d ] Final}

tameConf 4 :: vertex ⇒ vertex ⇒ vertex ⇒ vertex ⇒ vertex ⇒ face set
tameConf 4 a b c d e ≡

{Face [a, b, e] Final , Face [b, c, e] Final , Face [c, d , e] Final ,
Face [d , a , e] Final}

Given a fixed 4-cycle and using the convention of drawing faces clockwise,
a tame configuration can occur in the ‘interior’ or on the outside of the 4-
cycle. For configuration tameConf 2 there are two possible rotations of the
triangles, for configuration tameConf 3 there are 4. The notation F 1 ⊆∼= F 2
means ∀ f ∈ F 1. f ∈∼= F 2.

Note that our definition only ensures the existence of certain faces in the
graph, not the fact that no other faces of the graph may lie in the interior
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or on the outside. Hence it is slightly weaker than the definition in Hales’
paper.

tame4cycles :: graph ⇒ vertex ⇒ vertex ⇒ vertex ⇒ vertex ⇒ bool
tame4cycles g a b c d ≡

∃ e. tameConf 1 a b c d ⊆∼= set (faces g)
∨ tameConf 2 a b c d ⊆∼= set (faces g)
∨ tameConf 2 b c d a ⊆∼= set (faces g)
∨ tameConf 3 a b c d e ⊆∼= set (faces g)
∨ tameConf 3 b c d a e ⊆∼= set (faces g)
∨ tameConf 3 c d a b e ⊆∼= set (faces g)
∨ tameConf 3 d a b c e ⊆∼= set (faces g)
∨ tameConf 4 a b c d e ⊆∼= set (faces g)

tame3 :: graph ⇒ bool
tame3 g ≡ ∀ a b c d . 4cycle a b c d g −→

tame4cycles g a b c d ∨ tame4cycles g d c b a

4. The degree of every vertex is at least 2 and at most 6:

tame4 :: graph ⇒ bool
tame4 g ≡ ∀ v ∈ set (vertices g). 2 ≤ degree g v ∧ degree g v ≤ 6

5. If a vertex is contained in an exceptional face, then the degree of the vertex
is at most 5:

tame5 :: graph ⇒ bool
tame5 g ≡

∀ f ∈ set (faces g). ∀ v ∈ set (vertices f ). 5 ≤ |vertices f | −→ degree g v ≤ 5

6. The following inequality holds:

tame6 :: graph ⇒ bool
tame6 g ≡ 8000 ≤

∑
f ∈ faces g c |vertices f |

Note that this property implies that there are at least 8 triangles in a tame
graph.

7. There exists an admissible weight assignment of total weight less than the
target:

tame7 :: graph ⇒ bool
tame7 g ≡ ∃w . admissible w g ∧

∑
f ∈ faces g w f < squanderTarget

Property tame7 implies that the set of tame plane graphs is finite.
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8. We formalize the additional restriction (compared with the original defi-
nition) that tame graphs do not contain two adjacent vertices of type (4, 0):

type40 :: graph ⇒ vertex ⇒ bool
type40 g v ≡

tri g v = 4 ∧ quad g v = 0 ∧ except g v = 0

hasAdjacent40 :: graph ⇒ bool
hasAdjacent40 g ≡
∃ v ∈ set (vertices g). type40 g v ∧
(∃w ∈ set (neighbors g v). type40 g w)

tame8 :: graph ⇒ bool
tame8 g ≡ ¬ hasAdjacent40 g

Finally we define the notion of tameness.

tame :: graph ⇒ bool
tame g ≡

tame1 g ∧ tame2 g ∧ tame3 g ∧ tame4 g ∧ tame5 g ∧ tame6 g ∧ tame7 g
∧ tame8 g
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Chapter 5

Enumeration of Tame Plane
Graphs

Starting from the definition of plane graphs we obtain a first algorithm to
enumerate all tame plane graphs: enumerate all plane graphs (by breadth-
first-strategy) and remove graphs that are definitely not tame. This first
algorithm is not terminating, since the set of all plane graphs is not finite.

However, the definition of tameness implies that the set of tame graphs is
finite. Hence we use the following approach: We start with the set of all
plane graphs (Ref0 = PlaneGraphs in Figure. 5.1). We gradually reduce the
generated set of graphs, imposing the restrictions of tameness to it (Ref1,
. . . , Ref4), such that the generated set of graphs eventually becomes finite, is
efficiently enumerable, and still contains all tame graphs (and maybe some
graphs that are not tame) (Ref5 = Enumeration).

This leads to a series of proof obligations, i.e. the completeness of each refine-
ment step. All completeness proofs together yield the completeness theorem
for Enumeration.

Note that it is not necessary to remove all graphs that are not tame. It is
sufficient to generate a superset of the set of tame plane graphs.

Basically, there are two different reasons why a graph g can be neglected
(types of refinements):

(I) if all final graphs generated by g are not tame or

77
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    Ref5 = Enumeration

    Ref1

= Plane Graphs0    Ref

Graphs
Tame Plane 

Figure 5.1: Proof structure

(II) if for every final graph generated by g an isomorphic graph will be
generated by another path in the tree.

5.1 Fixing a Face and an Edge

In the definition of plane graphs we calculate successors for all edges in all
nonfinal faces. As a first refinement step we fix one nonfinal face and one
edge in this face and calculate the successors only for this edge. We denote
the generated set of graphs by PlaneGraphs2. This does not reduce the set
of generated graphs modulo isomorphism. For all graphs which are left out,
an isomorphic graph is generated by another path in the tree. This is an
optimization of type (II). Hence this may still be considered as a definition
for plane graphs. The completeness proof is by induction on the generation
of a graph. It is sufficient to show that, modulo graph isomorphism, the
generation does not depend on which nonfinal face f and which edge in f we
apply the addFace operation first. The following functions select a certain
nonfinal face and a certain vertex in a face.

The function minimalTempFace g returns a nonfinal face with minimal num-
ber of vertices, if a nonfinal face exists in g.

minimalTempFace:: graph ⇒ face option
minimalTempFace g ≡

let fs = nonFinals g in
if fs = [] then None
else Some (minimal (length ◦ vertices) (hd fs) (fs))
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An edge in a face f is uniquely determined by a vertex v, the endpoint of the
edge. The function minimalVertex g f returns a vertex with minimal height
in the face f of g. The height of a vertex is the distance to one of the vertices
in the seed a graph was generated from. The selection of a vertex of minimal
height has the side effect that the generated nonfinal graphs stay ’compact‘.

minimalVertex :: graph ⇒ face ⇒ vertex
minimalVertex g f ≡ let vs = vertices f in minimal (height g) (hd vs) vs

The successor function of a nonfinal graph g selects a minimal face f in g and
a vertex v of minimal height in f and generates the list of successor graphs,
where a face of length i is created at vertex v in f , and i is between 3 and
the maximal face length given by the parameter of the tree.

successorsList ′ :: ′parameter ⇒ graph ⇒ graph list
successorsListparam ′ g ≡

if final g then []
else let fopt = minimalTempFace g in
case fopt of None ⇒ []
| Some f ⇒

let v = minimalVertex g f ;
polylimit = maxGonparam in
∪i∈[3 ..polylimit ]generatePolygon param i v f g

We define the alternative set of plane graphs:

PlaneGraphsN :: graph set
PlaneGraphsN ≡ terminalsTree (Seed ::planeparameter ⇒ graph) successorsList ′

PlaneGraphsNParam :: planeparameter ⇒ graph set
PlaneGraphsN param ≡

terminalsTreeparam (Seed ::planeparameter ⇒ graph) successorsList ′

PlaneGraphsNTree :: planeparameter ⇒ graph set
PlaneGraphsNTreeparam ≡ Tree successorsListparam ′ Seedparam

For the completeness of this refinement we show that for every plane graph an
isomorphic graph is generated by the optimized definition (see Section 6.2).

Theorem planeN-complete:
g ∈ PlaneGraphs =⇒ g ∈∼= PlaneGraphsN
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5.2 Restriction of Maximum Face Size to 8

Since all tame graphs have maximum face size 8 (tame1, see Section 4.5),
we can exclude all seed graphs with face size greater than 8. Every graph
generated from these seeds will contain a face of size greater than 8 and hence
will not be tame. This is a refinement of type (I).

We restrict the set of seed parameters to the finite set {3, . . . , 8}.
finparameter = {3 ::nat ..8}
Seedm::finparameter ≡ graph (toNat m)
maxGonm::finparameter ≡ toNat m

We define a restricted set of plane graphs with maximum face length 8.

PlaneGraphs2 :: graph set
PlaneGraphs2 ≡ terminalsTree (Seed ::finparameter ⇒ graph) successorsList

PlaneGraphs2Param :: finparameter ⇒ graph set
PlaneGraphs2param ≡

terminalsTreeparam (Seed ::finparameter ⇒ graph) successorsList

PlaneGraphs2Tree :: finparameter ⇒ graph set
PlaneGraphs2Treeparam ≡ Tree successorsListparam Seedparam

For the correctness theorem, we need to show that we do not lose any tame
graphs by this restriction (see Section 6.3).

Theorem plane2-complete:
g ∈ PlaneGraphsN =⇒ tame g =⇒ g ∈∼= PlaneGraphs2

5.3 Complex Seed Graphs

In the next refinement step we replace the first two seed graphs (consisting
of a final triangle and a final quadrilateral, respectively) by a new finite set
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of complex seed graphs (see Figure 5.2). Every new seed graph has one final
vertex v. It consists of one nonfinal face and a set of final triangles and final
quadrilaterals, arranged around v.

This refinement is divided into the following steps: partitioning of quad
parameters, introduction of complex seed graphs, restriction to tame seed
graph, and neglecting graphs containing earlier seed graphs.

Partitioning of Quad Parameters

The first step is an equivalent definition to the previous one separating the set
of parameters in two groups, quad parameter {3, 4} and exceptional parameter
{5, . . . , 8}.

qparameter = {3 ::nat ,4}
exceptionalparameter = {5 ::nat ..8}

qeparameter =
Qparameter qparameter

| Eparameter exceptionalparameter

SeedQparameter (m::qparameter) = graph (toNat m)
SeedEparameter (m::exceptionalparameter) = graph (toNat m)

maxGonQparameter (m::qparameter) = toNat m
maxGonEparameter (m::exceptionalparameter) = toNat m

PlaneGraphs3 :: graph set
PlaneGraphs3 ≡ terminalsTree (Seed ::qeparameter ⇒ graph) successorsList

PlaneGraphs3Param :: qeparameter ⇒ graph set
PlaneGraphs3param ≡ terminalsTreeparam Seed successorsList

PlaneGraphs3Tree :: qeparameter ⇒ graph set
PlaneGraphs3Treeparam ≡ Tree successorsListparam Seedparam

For the proof of the completeness theorem see Section 6.4.

Theorem plane3-complete:
g ∈
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Complex Seed Graphs

In the second step we replace the two quad seed graphs

by an (infinite) enumerable set of complex seed graphs (vertex seed graphs)
with one nonfinal face and a set of final faces arranged around one final vertex
v (of degree at least 2).

Each seed graph is represented by a vertex parameter, i.e. a list of quad
parameters (of the length of the degree of v) representing the sizes of the
faces incident with v in cyclic order. Hence we can enumerate all vertex
seed graphs by constructing all graphs with one final vertex of degree n
surrounded by all possible combinations of triangles and quadrilaterals, for
n = 2, 3, 4, . . ..

vertexparameter = {ns::qparameter list . 2 ≤ length ns}
veparameter =

QParameter vertexparameter
| EParameter exceptionalparameter

The function SeedGraph constructs a vertex seed graph from a list of lengths
of faces.

SeedGraph :: nat list ⇒ graph
Seed (QParameter (m::vertexparameter)) = SeedGraph (toNatList m)
Seed (EParameter (m::exceptionalparameter)) = graph (toNat m)

The successors function is adjusted to add triangles as well and quadrilaterals:
the maximal face length maxGon of faces that can be added is 4.

maxGonQParameter (m::vertexparameter) = 4
maxGonEParameter (m::exceptionalparameter) = toNat m

We define the set of plane graphs, generated by complex seed graphs.

PlaneGraphs4 :: graph set
PlaneGraphs4 ≡ terminalsTree (Seed ::veparameter ⇒ graph) successorsList

PlaneGraphs4Param :: veparameter ⇒ graph set
PlaneGraphs4param ≡ terminalsTreeparam Seed successorsList
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PlaneGraphs4Tree :: veparameter ⇒ graph set
PlaneGraphs4Treeparam ≡ Tree (successorsListparam) (Seedparam)

Again, in this steps no graphs are excluded up to isomorphism and the cor-
rectness theorem is:

Theorem plane4-complete:
g ∈ PlaneGraphs3 =⇒ g ∈∼= PlaneGraphs4

For the proof see Section 6.4.

Restriction to Tame Complex Seed Graphs

As the next step we exclude seed graphs which will never lead to tame graphs
using properties (tame7) and (admissible2).

We call (t, q) the type of a seed graph s iff (p, q) is the type of the final vertex
v in s. From the set of vertex seed graphs we exclude every seed graph s
of type (p, q) if 14 .8 ≤ b p q. Every graph g generated by s contains a
vertex v with 14 .8 ≤ b p q and for every admissible weight assignment w,
b p q ≤

∑
f ∈faces gw f (admissible2). Hence there is no admissible weight

assignment with total weight less than the target 14.8 for g and g is not tame
(tame7).

Therefore we make a list of all types (p, q) with 14 .8 ≤ b p q and create all
seed graphs (up to isomorphism) of this type. This results in a list of 17 seed
graphs shown in Figure 5.2. Moreover we impose a fixed order on these seed
graphs by assigning each graph an index out of the set {0, . . . , 16}. Every
graph is represented by this index as parameter.

quadparameter = {0 ..16 ::nat}
parameter =

QuadParameter quadparameter
| ExceptionalParameter exceptionalparameter
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[3,3,3,3,3]

[3,3,3,3,3,3]

[3,3,4] [3,3,3,4,4]

[3,3,3,3,4]

[3,4,3,4,4] [3,3,3,3,3,4] [4,4,4,4]

[4,4,4]

[3,3,4,4,4]

[3,3,4,3,4] [3,4,4] [3,4,4,4]

[3,3,3,3][3,3,3,4][4,3,4,3][3,3,4,4]

Figure 5.2: Complex Seed graphs with maximum face length of 4

quadCase :: nat ⇒ nat list
quadCase i ≡ if i = 0 then [3 , 3 , 4 , 4 , 4 ]

else if i = 1 then [3 , 4 , 3 , 4 , 4 ]
else if i = 2 then [3 , 3 , 3 , 3 , 3 , 4 ]
else if i = 3 then [4 , 4 , 4 , 4 ]
else if i = 4 then [3 , 3 , 4 ]
else if i = 5 then [3 , 3 , 3 , 4 , 4 ]
else if i = 6 then [3 , 3 , 4 , 3 , 4 ]
else if i = 7 then [3 , 4 , 4 ]
else if i = 8 then [3 , 4 , 4 , 4 ]
else if i = 9 then [4 , 4 , 4 ]
else if i = 10 then [3 , 3 , 3 , 3 , 3 , 3 ]
else if i = 11 then [3 , 3 , 4 , 4 ]
else if i = 12 then [4 , 3 , 4 , 3 ]
else if i = 13 then [3 , 3 , 3 , 4 ]
else if i = 14 then [3 , 3 , 3 , 3 ]
else if i = 15 then [3 , 3 , 3 , 3 , 4 ]
else if i = 16 then [3 , 3 , 3 , 3 , 3 ]
else []

0 (2,3)
1 (2,3)
2 (5,1)
3 (0,4)
4 (2,1)
5 (3,2)
6 (3,2)
7 (1,2)
8 (1,3)
9 (0,3)
10 (6,0)
11 (2,2)
12 (2,2)
13 (3,1)
14 (4,0)
15 (4,1)
16 (5,0)

SeedQuadParameter (n::quadparameter) = SeedGraph (quadCase (toNat n))
SeedExceptionalParameter (m::exceptionalparameter) = graph (toNat m)

maxGonQuadParameter (m::quadparameter) = 4
maxGonExceptionalParameter (m::exceptionalparameter) = toNat m
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succsPlane5 :: parameter ⇒ graph ⇒ graph list
succsPlane5 param ≡ successorsList param

PlaneGraphs5 :: graph set
PlaneGraphs5 ≡ terminalsTree (Seed ::parameter ⇒ graph) successorsList

PlaneGraphs5Param :: parameter ⇒ graph set
PlaneGraphs5param ≡ terminalsTreeparam Seed successorsList

PlaneGraphs5Tree :: parameter ⇒ graph set
PlaneGraphs5Treeparam ≡ Tree successorsListparam Seedparam

This leads to the following completeness theorem (see Section 6.4).

Theorem plane5-complete:
g ∈ PlaneGraphs4 =⇒ tame g =⇒ ∃ h ∈ PlaneGraphs5. g ∼= h

Graphs Containing Earlier Seed Graphs

Using the order we introduced on the set of seed graphs, we neglect a (non-
final) graph g, generated by a seed s, if we can conclude that an isomorphic
graph is generated by some earlier seed graph s′ (see Figure 5.3). It is suffi-
cient to check if g contains a final vertex of the same type as an earlier seed
graph and of different type as s (matchEarlierSeed). If the faces around v
form one of the tame configurations (see Figure 5.2), then there is a seed s′

such that s′ is a subgraph modulo isomorphism of g and for every graph g′

generated from g an isomorphic graph is generated starting with s′. Other-
wise, every graph g′ generated from g is not tame, hence g can be neglected.
This refinements avoids generating isomorphic copies of tame plane graphs.

The algorithm which was used to build the archive included this optimiza-
tion in the following way: a modified function b’ is used instead of b such
that partial graphs generated by a QuadParameter may be neglected if they
contain a final vertex which is isomorphic to an earlier seed graph with a
different type than the current seed graph.

tCount :: nat ⇒ nat
tCount n ≡ | [x ∈ quadCase n. x=3 ] |

qCount :: nat ⇒ nat
qCount n ≡ | [x ∈ quadCase n. x=4 ] |
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g’ g’

s’

s’ s

g

Figure 5.3: Neglect graphs that contain earlier seed graphs

matchSeed :: nat ⇒ nat ⇒ nat ⇒ bool
matchSeed n t q ≡ (t = tCount n) ∧ (q = qCount n)

matchEarlierSeed :: nat ⇒ nat ⇒ nat ⇒ bool
matchEarlierSeed n t q ≡

¬ matchSeed n t q ∧ (∃m ∈ set [0 ..< n]. matchSeed m t q)

squanderVertexParam :: parameter ⇒ nat ⇒ nat ⇒ nat
b’QuadParameter n t q =

(if matchEarlierSeed (toNat n) t q then squanderTarget else b t q)
b’ExceptionalParameter m t q = b t q

For the verification we introduce an additional refinement step which excludes
all graphs that contain earlier seeds.

containsEarlierSeed :: parameter ⇒ graph ⇒ bool
containsEarlierSeedQuadParameter (n::quadparameter) g =

(∃ v ∈ set (vertices g). finalVertex g v
∧ matchEarlierSeed (toNat n) (tri g v) (quad g v))

containsEarlierSeedExceptionalParameter (m::exceptionalparameter) g = False

succsPlane6 :: parameter ⇒ graph ⇒ graph list
succsPlane6 param g ≡

[g ′ ∈ successorsListparam g . ¬ containsEarlierSeedparam g ′]

PlaneGraphs6 :: graph set
PlaneGraphs6 ≡ terminalsTree (Seed ::parameter ⇒ graph) succsPlane6



5.4. NEGLECTABLE BY BASE POINT SYMMETRY 87

PlaneGraphs6Param :: parameter ⇒ graph set
PlaneGraphs6param ≡ terminalsTreeparam Seed succsPlane6

PlaneGraphs6Tree :: parameter ⇒ graph set
PlaneGraphs6Treeparam ≡ Tree succsPlane6 param Seedparam

The completeness proof of this refinement step is expressed by the following
theorem and can be found in Section 6.4.

Theorem plane6-complete:
g ∈ PlaneGraphs5 =⇒ tame g =⇒ g ∈∼= PlaneGraphs6

5.4 Neglectable by Base Point Symmetry

We may neglect graphs for which an isomorphic graph has been generated
by another path in the tree. For example, if a partial graph g contains more
than one exceptional face of maximal size, one of these faces is the seed face,
and an isomorphic graph is generated from any other face of maximal size.
Hence we may exclude one of these cases.

By construction, when a graph contains exceptional faces, the base vertex
lies in the seed face. We calculate a hash value for every vertex, such that the
vertex with the greatest hash lies on a face of maximal length in the graph.
This may either be the base vertex itself or another vertex on the same face
as the base vertex or on some other face of maximal length. We neglect a
graph if the base vertex is not the vertex with the greatest hash.

We calculate a hash value adjacentLengths g v for a vertex v in a graph g by
the decreasing sorted list of the lengths of the adjacent faces. A hash as is
smaller than a hash bs if as is lexicographically smaller than bs (listLess as
bs).

listLess :: nat list ⇒ nat list ⇒ bool
listLess [] bs = (bs 6= [])
listLess (a#as) bs = (case bs of [] ⇒ False

| (b#bs ′) ⇒ a < b ∨ a = b ∧ listLess as bs ′)

adjacentLengths :: graph ⇒ vertex ⇒ nat list
adjacentLengths g v ≡ rev (qsort (op ≤,([ |vertices f |. f ∈ facesAt g v ])))

neglectableByBasePointSymmetry :: graph ⇒ bool
neglectableByBasePointSymmetry g ≡
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let bv = baseVertex g in
case bv of None ⇒ False

| (Some v) ⇒ (let lv = adjacentLengths g v in
(∃w ∈ set(vertices g). |nonFinalsAt g w | = 0

∧ listLess lv (adjacentLengths g w)))

succsPlane7 :: parameter ⇒ graph ⇒ graph list
succsPlane7 param g ≡

[g ′ ∈ successorsListparam g . ¬ neglectableByBasePointSymmetry g ′

∧ ¬ containsEarlierSeedparam g ′]

PlaneGraphs7 :: graph set
PlaneGraphs7 ≡ terminalsTree (Seed ::parameter ⇒ graph) succsPlane7

PlaneGraphs7Param :: parameter ⇒ graph set
PlaneGraphs7param ≡ terminalsTreeparam Seed succsPlane7

PlaneGraphs7Tree :: parameter ⇒ graph set
PlaneGraphs7Treeparam ≡ Tree succsPlane7 param Seedparam

For the proof of the correctness theorem we have to show: if a graph g is
neglected because the base vertex is not the vertex with the greatest hash,
then for every graph g′ generated from g, an isomorphic graph h is generated
by another seed graph such that in h the base vertex is the vertex with the
greatest hash.

Theorem plane7-complete:
g ∈ PlaneGraphs6 =⇒ tame g =⇒ g ∈∼= PlaneGraphs7

For the proof see Section 6.5.

5.5 Avoiding Vertices Enclosed by 3-Cycles

The function neglectableEdge determines whether the creation of an edge
joining the vertices a and b in a nonfinal face f can be neglected. This is the
case if

• the edge (a,b) is already present in the graph (duplicateEdge), i.e. a and
b have distance at most 2 from each other and b is one of the neighbors
of a.
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This restriction is already introduced for plane graphs (see Section 3.2.5).

a

b
f

• the creation of an edge (a,b) in the graph g leads to a cycle of length 3,
enclosing some vertices (enclosedVertex ), which is not allowed by the
property tame2.

b

a

f

c

Figure 5.4: A 3-cycle with enclosed vertices.

duplicateEdge :: graph ⇒ face ⇒ vertex ⇒ vertex ⇒ bool
duplicateEdge g f a b ≡

let ab = directedLength f a b;
ba = directedLength f b a in
(2 ≤ ba ∧ 2 ≤ ab) ∧ b ∈ set (neighbors g a)

enclosedVertex :: graph ⇒ face ⇒ vertex ⇒ vertex ⇒ bool
enclosedVertex g f a b ≡

let ab = directedLength f a b;
ba = directedLength f b a in
3 ≤ ba ∧ 3 ≤ ab ∧ (neighbors g a ∩ neighbors g b) 6= []

neglectableEdge :: graph ⇒ face ⇒ vertex ⇒ vertex ⇒ bool
neglectableEdge g f a b ≡ duplicateEdge g f a b ∨ enclosedVertex g f a b

Note that this function does not detect if the introduction of an edge (a, b)
creates a cycle of length 3 and the distance of a and b on the face is less
than 3. Hence this function could be further improved by testing if a and b
have distance at least 2 from each other and they have at least 2 common
neighbors.
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f

a

b

c

enclosedVertex2 :: graph ⇒ vertex ⇒ vertex ⇒ face ⇒ bool
enclosedVertex2 g a b f ≡

let ab = directedLength f a b;
ba = directedLength f b a in
3 ≤ ba ∧ 3 ≤ ab ∧ set (neighbors g a) ∩ set (neighbors g b) 6= {}
∨ 2 ≤ ba ∧ 2 ≤ ab ∧ 2 ≤ |neighbors g a ∩ neighbors g b|

Finally, we define a function containsNeglectableEdge which is used to de-
termine for a list of indices is generated by the enumerator function if a
neglectable edge would be introduced by an addFace operation on the corre-
sponding vertex list.

Since the results of the function neglectableEdge are used several times, we
store the results in a table neglectableEdgeTable.

neglectableEdgeTable To avoid duplicate calculations, we store the re-
sults of neglectableEdge in a table neglectableEdgeTable of index pairs. ne-
glectableEdgeTable[[i ,j ]] is True if an edge (f i·v , f j·v) is neglectable, joining
the vertices reachable from v in f by i and j steps.

neglectableEdgeTable :: graph ⇒ face ⇒ vertex ⇒ bool array array
neglectableEdgeTable g f v ≡

[[ neglectableEdge g f (f i·v) (f j·v). i < |vertices f |, j < |vertices f | ]]

containsNeglectableEdge For a given graph g, a nonfinal face f in g, and
a vertex v in f, we calculate once the table of neglectable index pairs T =
neglectableEdgeTable v f g.

Given a modification of a graph g by an addFace operation in the nonfinal
face f where the vertices of the new final face are given by an index list is,
we determine if a neglectable edge would be introduced: we use the function
containsUnacceptableEdge (see Section 3.2.5) and test if for all pairs (i , j )
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of elements of is an addFace operation would introduce an edge joining two
vertices in f , namely f i·v and f j·v and if this new edge is neglectable.

containsNeglectableEdge :: bool array array ⇒ nat list ⇒ bool
containsNeglectableEdge nTable is ≡

containsUnacceptableEdge (λi j . nTable [[i ,j ]]) is

5.6 Lower Bounds for the Total Weight

The definition of tame implies the existence of an admissible weight function
w : G → N with total weight

∑
f

w(f) less than the target, 14.8. We do

not actually solve this linear optimization problem and calculate a weight
assignment, but for a given final graph we calculate a lower bound on the
total weight and neglect a generated graph if this lower bound is greater than
the target. Hence we may also generate graphs that are not tame, but for
the completeness of the enumeration it is sufficient that every tame plane
graph is generated.

It is often possible to conclude from the examination of a partial plane graph
g that for all plane graphs generated from g any admissible weight assign-
ment will have a total weight greater than the target (14.8). In such cases,
g can be neglected. Hence we are looking for lower bounds for the total
weight

∑
f ∈ faces g ′ w f in any graph g′ generated from g, which can be

derived from the following restrictions for an admissible weight assignment
(properties admissible0 - admissible4, see Section 4.4).

1. Admissible weights are natural numbers. The weight w f of a final f is
at least d |vertices f | (admissible1). Moreover, every final face f in a
partial plane graph g will be present in any plane graph generated from
g. Thus the total weight

∑
f ∈ faces g ′ w f in any graph g′ generated

from g will be at least the sum
∑

f ∈ finals g d |vertices f | of the values
of d of all final faces.

2. We can obtain better lower bounds for final vertices using the restric-
tions of admissible2. If a final vertex v is not exceptional (i.e. none of
the incident faces is exceptional), the sum

∑
f ∈ facesAt g v w f of the

weights of all incident faces is at least b (tri g v) (quad g v) (admissi-
ble2).
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3. For a separated set V of final vertices (no two vertices in V are adjacent
or lie on a common quadrilateral and all vertices in V are exceptional),
the sum

∑
f ∈[f ∈faces g . set (vertices f ) ∩ set V 6= {}] w f of the weights of

all faces incident with a vertex of V is at least (admissible4)∑
f ∈[f ∈faces g . set (vertices f ) ∩ set V 6= {}] d |vertices f |

+
∑

v∈V a (tri g v).

Combining these criteria, every preseparated (no two vertices in V are adja-
cent or lie on a common quadrilateral) set V of vertices gives rise to a lower
bound.

We partition V (represented as list) in three subsets:

V1 = [v∈V . except g v = 0 ]
V2 = [v∈V . except g v 6= 0 ∧ degree g v = 5 ]
V3 = [v∈V . except g v 6= 0 ∧ degree g v 6= 5 ]

We partition the set of faces in g in:

F1 = [f ∈faces g . set (vertices f ) ∩ set V = {}]
F2 = [f ∈faces g . set (vertices f ) ∩ set V 6= {}]

We calculate a lower bound by∑
v∈V1 b (tri g v) (quad g v) +

∑
f ∈F1 d f +

∑
v∈V2 a (tri g v).

Example

v2

v3

v4

v1
v5

From the preseparated set V =
{v1, v2, v3, v4, v5}, we calculate a lower
bound for the total weight. The set of
non-exceptional vertices V1 is {v1, v2}. All
faces incident with one of the vertices of
V1 contribute b(2, 2)+b(3, 2) to the lower
bound. The set of exceptional vertices of
degree 5 is the separated set V2 = {v3, v4}.

The contribution of all faces incident with one of the vertices in V2 is 8∗d(3)+
2 ∗d(4)+d(5). All other faces contribute together 7 ∗d(3)+ 3 ∗d(4)+d(5).
Hence, the lower bound is calculated as b(2, 2) + b(3, 2) + 2 ∗ a(4) + 15 ∗
d(3)+ 3 ∗d(4)+ 2 ∗d(5). Of course, by far there exists no admissible weight
assignment for this graph.
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Lower Bounds for Final Graphs

Subsequently we calculate a lower bound for the total weight of an admissible
weight function.

Instead of actually calculating a preseparated set V and partitioning it into
V1, V3 and V3, we first calculate a lower bound by

∑
f ∈ finals g d |vertices f |

(by the function faceSquanderLowerBoundparam g) and then add the excess
ExcessNotAtparam, i.e. the maximal contribution of all faces to the lower
bound that exceeds this sum. First, for every vertex v the excess at v is cal-
culated (by the function ExcessAtparam), i.e. the contribution of the incident
faces to the lower bound. Every preseparated set of vertices gives rise to a
a lower bound for the total weight. The best (maximal) lower bound for all
preseparated sets of vertices is calculated by the function ExcessNotAtparam.

faceSquanderLowerBound As a first lower bound for the total weight,
the sum

∑
f ∈ finals g d |vertices f | is calculated by the function faceSquan-

derLowerBoundparam g.

faceSquanderLowerBound :: parameter ⇒ graph ⇒ nat
faceSquanderLowerBoundparam g ≡

∑
f ∈ finals g d |vertices f |

Excess Since for nonfinal vertices we cannot conclude better lower bounds,
the excess of a nonfinal vertex is 0. The excess for a non-exceptional vertex
of type (t, q) is the difference of the lower bounds given by b’param t q and
t ∗ d 3 − q ∗ d 4. This value is always positive, as can be checked by
inspecting the definition of b and d. For an exceptional vertex of degree 5,
the excess is the value a t.

excessAtType :: parameter ⇒ nat ⇒ nat ⇒ nat ⇒ nat
excessAtTypeparam t q e ≡

if e = 0 then
if 6 < t + q then squanderTarget
else b’param t q − t ∗ d 3 − q ∗ d 4

else if t + q + e 6= 5 then 0
else a t

ExcessAt :: parameter ⇒ graph ⇒ vertex ⇒ nat
ExcessAtparam g v ≡ if ¬ finalVertex g v then 0

else excessAtTypeparam (tri g v) (quad g v) (except g v)
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For a given graph g and a given set of vertices v, the values of ExcessAtparam
g v are stored in a table ExcessTableparam g vs, in order to avoid multiple
calculations.

ExcessTable :: parameter ⇒ graph ⇒ vertex list ⇒ (vertex × nat) list
ExcessTableparam g vs ≡

[(v , ExcessAtparam g v). v ∈ [v ∈ vs. 0 < ExcessAtparam g v ]]

Lemma (v ,e) ∈ set (ExcessTableparam g (vertices g))
= (v ∈ set (vertices g)

∧ finalVertex g v
∧ 0 < ExcessAtparam g v
∧ e = ExcessAtparam g v)

√

Note that the table contains only entries for final vertices, since for nonfinal
vertices the excess ExcessAtparam g v is 0.

ExcessNotAt Every preseparated set gives rise to a lower bound for the
total weight. Hence the best lower bound is obtained by the maximal lower
bound of all separated sets V . The function ExcessNotAt calculates the
greatest excess of all separated sets V .

The function deleteAround is used to construct a preseparated set of vertices.
Given a vertex v and a list ps of pairs of vertices and excesses the function
deleteAround removes all entries for vertices that are adjacent to v or lie
on a common quadrilateral. It is based on the function removeKeyList (see
Appendix A.1).

deleteAround :: graph ⇒ vertex ⇒ (vertex × nat) list ⇒ (vertex × nat) list
deleteAround g v ps ≡

let fs = facesAt g v ;
ws = ∪f ∈fs if |vertices f | = 4 then [f ·v , f 2·v ] else [f ·v ] in
removeKeyList ws ps

The function ExcessNotAtparam g (Some v) calculates the greatest excess
for all separated sets V of vertices of g with the restriction that v ∈ set
V, whereas ExcessNotAtparam g None calculates the greatest excess for all
separated sets V of vertices of g without restrictions.

We calculate a table of excesses of all final vertices by the function Ex-
cessTableparam g (vertices g). To calculate the maximal excess for all sets of
preseparated vertices V that contain a vertex v, we remove all vertices from
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the table which are adjacent to v or opposite to v in a quadrilateral. For all
vertices w 6= v in the table, we calculate the maximal excess for the case that
w /∈ V or w ∈ V .

ExcessNotAtRec :: (nat , nat) table ⇒ graph ⇒ nat
ExcessNotAtRec [] g = 0
ExcessNotAtRec ((v ,e)#ps) g =

max (ExcessNotAtRec ps g)
(e + ExcessNotAtRec (deleteAround g v ps) g)

ExcessNotAt :: parameter ⇒ graph ⇒ vertex option ⇒ nat
ExcessNotAtparam g v-opt ≡

let ps = ExcessTableparam g (vertices g) in
case v-opt of None ⇒ ExcessNotAtRec ps g

| Some v ⇒ ExcessNotAtRec (deleteAround g v ps) g

Lemma g ∈ PlaneGraphs1 =⇒
∃V . ExcessNotAtparam g None =

∑
v ∈ V ExcessAtparam g v

∧ preSeparated g (set V ) ∧ set V ⊆ set (vertices g)
∧ distinct V

√

Finally, a lower bound for a final graph can be calculated by the sum of∑
f ∈ finals g d |vertices f | and the excess.

squanderLowerBound :: parameter ⇒ graph ⇒ nat
squanderLowerBoundparam g ≡

faceSquanderLowerBoundparam g + ExcessNotAtparam g None

Lower Bounds for Nonfinal Graphs

Subsequently, we derive lower bounds for nonfinal graphs. We first calculate
the set of admissible types admissibleTypes. Then we calculate for a nonfinal
vertex the least reachable lower bound using the function squanderForecast.
The function neglectableModification is used to determine whether a modifi-
cation of a graph can be neglected, since the lower bound is exceeded. Finally,
the function neglectableVertexList checks if the modification of a graph by an
addFace operation with a vertex list vs is neglectable at one of the vertices
of vs.

admissibleTypes The function admissibleTypes calculates all types (p, q)
of vertices where b’param p q < squanderTarget.
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squanderVertexLength :: nat
squanderVertexLength ≡ 7

admissibleTypes :: parameter ⇒ (nat × nat) list
admissibleTypesparam ≡ let Q = [0 ..< squanderVertexLength] in

[(p,q) ∈ Q × Q . b’param p q < squanderTarget ]

The correctness theorem for admissibleTypesparam can be stated as follows:

Lemma b’param t q < squanderTarget =⇒
0 ≤ t ∧ t < squanderVertexLength ∧ 0 ≤ q ∧ q < squanderVertexLength

√

Lemma
(t ,q) ∈ set (admissibleTypesparam) = (b’param t q < squanderTarget)

√

squanderForecast Since a nonfinal vertex v in a graph g does not con-
tribute to the calculated excess, we further improve the lower bound by
considering all graphs g′ that may possibly be generated from g. We calcu-
late the minimal reachable lower bound of the weights of all incident faces
(that can be obtained by property admissible2). More precisely, for a non-
exceptional vertex v we calculate a lower bound of the contribution b’param
(tri g ′ v) (quad g ′ v) of the incident faces for all graphs g′ generated from
g, if v is also not an exceptional in g′. Moreover, implicitly the following
property of the constants b, d, and a is used: if v is exceptional in g′, the
contribution to the lower bound would even be higher.

Assume that v is incident with t = tri g v final triangles, q = quad g v final
quadrilaterals and temp nonfinal faces. Since final faces are preserved, in
every final graph g′ generated from g, the number of incident triangles t ′ =
tri g ′ v must be at least t and the number of incident quadrilaterals q ′ =
quad g ′ v must be at least q. Moreover every nonfinal face may be replaced
by at least one triangle or quadrilateral. Hence the lower bound b’param (tri
g ′ v) (quad g ′ v) for all graphs g′ generated from g can be calculated as

min{b(t′, q′). b’param p ′ q ′ < squanderTarget ∧
tri g v ≤ t ′ ∧ quad g v ≤ q ′ ∧
tri g v + quad g v + temp ≤ t ′ + q ′ }.

We calculate the lower bound squanderForecast for b’param (tri g ′ v) (quad
g ′ v) for all graphs g′ generated from g:

squanderForecast :: parameter ⇒ nat ⇒ nat ⇒ nat ⇒ nat
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squanderForecastparam t q temp ≡
minList

squanderTarget
[b’param t ′ q ′. (t ′,q ′) ∈ [(t ′,q ′) ∈ admissibleTypesparam.

t + q + temp ≤ t ′ + q ′

∧ t ≤ t ′ ∧ q ≤ q ′]]

If the vertex is final, then the value is calculated exactly.

Lemma squanderForecastparam t q 0 = b’param t q !

To avoid duplicate calculations, we the store calculated results of the lower
bounds b’param (tri g ′ v) (quad g ′ v) in a table squanderForecastTable.

squanderForecastTable :: parameter ⇒ nat array array array
squanderForecastTableparam ≡

let l = squanderVertexLength in
[[squanderForecastparam t q temp. t < l , q < l , temp < l ]]

neglectableModification The function neglectableModification checks if a
modification of a graph g at a vertex v leads to a graph g′ and the lower bound
for g′ already exceeds the target. If this is the case, then the modification can
be neglected. The arguments are tn, the number of new triangles; qn, the
number of new quadrilaterals; en, the size of a new exceptional face if there
is one, otherwise 0; and tempn, the number of new nonfinal faces (which can
also be negative). We calculate for the new graph g′ the numbers of triangles,
quadrilaterals exceptionals and nonfinal faces at vertex v:

t ′ = tri g ′ v = tri g v + tn,
q ′ = quad g ′ v = quad g v + qn,
e ′ = except g ′ v = except g v + en,
temp ′ = tempn + |nonFinalsAt g v |.

A graph g′ is excluded if the degree of a vertex exceeds the bounds given by
the properties tame4 and tame5. Moreover we calculate the lower bound for
the total weight for g′. All new final faces of length n in g′ will contribute
with d n, hence this value is added to the current lower bound. If v is not
exceptional in g′ (which is the precondition for the calculation of squander-
Forecast), then we calculate a new excess at vertex v. The lower bound is
calculated for all separated sets V that do not contain v, and for those that
contain v. The modification is neglectable if the lower bound of the total
weight exceeds the target.
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neglectableModification ::
parameter ⇒ graph ⇒ nat ⇒ nat ⇒ nat ⇒ int ⇒ vertex ⇒ bool

neglectableModificationparam g tn qn en tempn v ≡
let t ′ = tri g v + tn;
q ′ = quad g v + qn;
temp ′ = nat (int |nonFinalsAt g v | + tempn);
e ′ = except g v + (if 0 < en then 1 else 0 ) in
0 < e ′ ∧ 5 < t ′ + q ′ + temp ′ + e ′

∨ e ′ = 0 ∧ 6 < t ′ + q ′ + temp ′

∨ squanderTarget ≤ faceSquanderLowerBoundparam g
+ (if 0 < en then d en else 0 )
+ tn ∗ d 3
+ qn ∗ d 4
+ ExcessNotAtparam g None

∨ e ′ = 0
∧ squanderTarget ≤ faceSquanderLowerBoundparam g

+ (if 0 < en then d en else 0 )
+ tn ∗ d 3
+ qn ∗ d 4
+ ExcessNotAtparam g (Some v)
+ (squanderForecastTableparam [[t ′, q ′, temp ′]]
− t ′ ∗ d 3
− q ′ ∗ d 4 )

neglectableVertexList The function neglectableVertexList vs f g decides
if a modification of a graph g by addFace can be neglected, if a new final face
with vertex list vs is added in a nonfinal face f .

neglectableVertexList vs f g checks if the modification is neglectable at one of
the vertices of the new face whereas neglectableAtVertexparam i vs f g checks
if the modification is neglectable at the ith vertex in the list vs.

We calculate for the new graph g′ the numbers of new triangles tn, the number
of new quadrilaterals qn, the length en of a new exceptional (if one exists),
and the number of new nonfinal faces tempn at vertex v.

The addFace operation creates at every vertex Some v in vs the new final
face f n of the length of vs, a nonfinal face f f of length nf in forward direction
of face f from v, and a nonfinal face f b of length nb in backward direction of
face f f from v. If one of the nonfinal faces is a triangle, we may assume that
this face is made final (property tame2) and hence the number of new final
triangles can be increased by 1. Moreover for every nonfinal face of length
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at least 3 the number of new nonfinal faces is increased by 1.

ib

if
f f

f

i

f

bn

Finally we check if the modification is neglectable.

succeedingNulls :: nat ⇒ vertex option list ⇒ nat
succeedingNulls n [] = n
succeedingNulls n (v#vs) =

(case v of None ⇒ succeedingNulls (n + 1 ) vs
| Some w ⇒ n)

neglectableAtVertex ::
parameter ⇒ nat ⇒ vertex option list ⇒ face ⇒ graph ⇒ bool

neglectableAtVertexparam i vs f g ≡
case vs[[i ]] of None ⇒ False
| Some v ⇒

(∗ the new final face of length n ∗)
let n = length vs;
tempn = −1 ;
en = (if 4 < n then n else 0 );
qn = (if n = 4 then 1 else 0 );
tn = (if n = 3 then 1 else 0 );

(∗ the nonfinal face in forward direction ∗)
(∗ i f is the index of the first non null vertex in direction of face f ∗)
i f = (i + 1 ) mod n;
i f = (i f + succeedingNulls 0 (drop i f vs @ take i f vs)) mod n;
nf = directedLength f (the vs[[i ]]) (the vs[[i f]])

+ nat ((int i f − int i) mod int n);
tn = tn + (if nf = 3 then 1 else 0 );
tempn = tempn + (if 3 < nf then 1 else 0 );

(∗ the nonfinal face in backward direction ∗)
(∗ ib is the index of the first non null vertex in opposite direction of face f ∗)
ib = (i − 1 ) mod n;
ib = (ib − succeedingNulls 0 (rev (drop i vs @ take i vs))) mod n;
nf = directedLength f (the vs[[ib]]) (the vs[[i ]])
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+ nat ((int i − int ib) mod int n);
tn = tn + (if nf = 3 then 1 else 0 );
tempn = tempn + (if 3 < nf then 1 else 0 ) in
neglectableModificationparam g tn qn en tempn v

neglectableVertexList :: parameter ⇒ vertex option list ⇒ face ⇒ graph ⇒ bool
neglectableVertexListparam vs f g ≡

∃ i ∈ set [0 ..<|vs| ]. neglectableAtVertexparam i vs f g

5.7 Forced Triangles

It is often possible to conclude from the examination of a nonfinal graph
at a particular vertex v, that the only possibility to obtain a tame graph is
to replace a nonfinal face at v by a triangle. We then say that a triangle
is forced at the vertex v. This can be proved by verifying that turning it
into any other polygon or combination of polygons would exceed the target
weight, but changing it to a triangle would not.

v

A

B

We first calculate a lower bound for the weight of a new face of length at
least ngon by the function squanderFaceStartingAt. The calculated lower
bound

∑
f ∈ finals g d |vertices f | (from admissible1) would be increased by

this value if a nonfinal face at vertex v is replaced by some face of length at
least ngon.

squanderFaceStartingAt :: parameter ⇒ nat ⇒ nat
squanderFaceStartingAtparam ngon ≡

case param of QuadParameter n => d ngon
| ExceptionalParameter m =>

minList squanderTarget [d i . i ∈ [ngon..toNat m]]

Now, we determine if a triangle is forced at a vertex v in a graph g by the
function ForcedTriangleAt.

Consider the first case that there are no exceptional final faces incident with
v (except g v = 0 ). A triangle is forced at a vertex v in a graph g if
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• no exceptional face can be created at vertex v (otherwise the lower
bound of the total weight, calculated by

∑
f ∈ finals g d |vertices f |

exceeds the target) and

• the nonfinal face can neither be replaced by one quadrilateral

• nor by two triangles.

The latter cases are excluded using squanderForecastparam (which is the min-
imal reachable value of b t q at a nonfinal vertex) to calculate a lower bound
for the weights of the incident faces (using property admissible2). The func-
tion implicitly uses the following property of the function b: provided we
can add one triangle at v but not one quadrilateral (then b (t + 1 ) q ≤ b
t (q + 1 )), then we can neither add one quadrilateral and some additional
faces (because b t (q + 1 ) ≤ b (t + i) (q + 1 + j ) for all i, j) nor one
triangle and some additional faces (because b (t + 2 ) q ≤ b (t + 2 + i) (q
+ j ) for all i, j). Hence all other cases than adding a single triangle at v are
excluded.

Note that the lower bound used by the function could also be increased by
ExcessNotAtparam g (Some v), which would lead to more forced triangles.

For the second case that there are exceptional faces incident with v (except
g v 6= 0 ), a triangle is forced at a vertex v in a graph g, if

• no quadrilateral or exceptional face can be created at v (by admissible1)
and

• the nonfinal face cannot be replaced by two or more faces (otherwise the
degree bound 5 of an exceptional vertex (tame5) would be exceeded).

ForcedTriangleAt :: parameter ⇒ graph ⇒ vertex ⇒ bool
ForcedTriangleAtparam g v ≡

let t = tri g v ;
q = quad g v ;
tempX = |nonFinalsAt g v |;
e = except g v ;
fsq = faceSquanderLowerBoundparam g ;
fsqred = fsq − q ∗ d 4 − t ∗ d 3 ;
target = squanderTarget ;
excessNot = ExcessNotAtparam g (Some v) in
if (e = 0 )
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then fsq + squanderFaceStartingAtparam 5 > target
∧ squanderForecastparam t (q + 1 ) (tempX − 1 )

+ fsqred + excessNot > target
∧ squanderForecastparam (t + tempX + 1 ) q 0

+ fsqred + excessNot > target

else let nextface = squanderFaceStartingAtparam 4 in
fsq + excessNot + nextface > target
∧ t + tempX + q + e + 1 > 5

If a triangle is forced at a vertex v in a graph g, we can modify the usual
successor function for a graph g and follow only the path in the tree where
a triangle is constructed at vertex v. The graph operation handleForcedTri-
angle adds a forced triangle at a vertex v. The result is None if there is no
forced triangle in g. If there is a forced triangle in g, where A and B are
the neighbors of v in a nonfinal face f of g, but the modification of adding a
triangle at v is neglectable or the edge (a, b) is neglectable, the result is Some
[]. Otherwise we construct a new graph g ′ by adding the nonfinal triangle
and return Some g ′.

handleForcedTriangleVertex ::
parameter ⇒ graph ⇒ vertex list ⇒ graph list option

handleForcedTriangleVertexparam g [] = None
handleForcedTriangleVertexparam g (v#vs) =

(let nF = nonFinalsAt g v in
if nF = [] then handleForcedTriangleVertexparam g vs (∗ continue ∗)
else if ¬ ForcedTriangleAtparam g v
then handleForcedTriangleVertexparam g vs (∗ continue ∗)
else let f = hd nF ; A = f ·v ; B = f−1·v ;
g ′ = addFace g f [Some v , Some A, Some B ] in
if neglectableModificationparam g 1 0 0 −1 A then Some []
else if neglectableModificationparam g 1 0 0 −1 B then Some []
else if neglectableEdge g f A B then Some []
else Some [g ′])

handleForcedTriangle :: parameter ⇒ graph ⇒ graph list option
handleForcedTriangleparam g ≡

handleForcedTriangleVertexparam g (vertices g)

This refinement step is again an optimization step that does not reduce the
set of generated graphs modulo isomorphism. It is an optimization in the
sense that it reduces the search space. To prove correctness it must be shown
that we do not lose tame graphs by introducing this optimization. We prove
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the correctness of this refinement step by executing the algorithm without
this refinement (as in Section 6.5). Executing the enumeration without this
optimization does not even lead to a slow-down of the algorithm, since the
test to determine if there exists a forced triangle in a graph also requires
some complex calculations.

Hence we remove this optimization from the definition and simplify the proof
of the completeness of the enumeration algorithm.

5.8 Nonfinal Triangles and Quadrilaterals

Nonfinal Triangles

In a tame graph every triangle is either a face or the opposite of a face (prop-
erty tame2). Hence every nonfinal triangle can be made final (except for the
initial triangle graph). The function makeTrianglesFinal makes all nonfinal
faces in a graph final. It repeatedly applies the function makeFaceFinal to
all triangles in the graph.

triangle :: face ⇒ bool
triangle f ≡ |vertices f | = 3

makeTrianglesFinal :
makeTrianglesFinal g ≡ foldr makeFaceFinal [f ∈ faces g . triangle f ] g

Nonfinal Quadrilaterals

A nonfinal quadrilateral surrounds one of the tame configurations for quadri-
laterals (property tame3).

Hence a nonfinal quadrilateral can be replaced by all possible configurations.
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The operation splitQuad splits a nonfinal face f at vertex v in two final
triangles, provided this modification of the graph is not neglectable at one of
the vertices of f .

splitQuad :: parameter ⇒ vertex ⇒ face ⇒ graph ⇒ graph list
splitQuadparam v f g ≡

if |vertices f | 6= 4 ∨ final f then []
else let w = f 2·v in
if ∃ i ∈ set [0 ..3 ]. neglectableModificationparam g

(1 + ((i + 1 ) mod 2 )) 0 0 −1 (f i·v)
then []
else let (f 1, f 2, g) = FaceDivisionGraph g w v f [];
g = makeFaceFinal f 1 g ;
g = makeFaceFinal f 2 g in
[g ]

f1

f2

v

f

v

w

w

The operation Do40 creates a vertex of type (4, 0) in the interior of a nonfinal
face f , provided this modification is not neglectable at one of the vertices of
f and the excess of the new vertex does not lead to a lower bound exceeding
the target.

Do40 :: parameter ⇒ face ⇒ graph ⇒ graph list
Do40param f g ≡

if |vertices f | 6= 4 ∨ final f then []
else let faceSqu = faceSquanderLowerBoundparam g ;

exN = ExcessNotAtparam g None;
forecast = squanderForecastparam 4 0 0 in

if squanderTarget ≤ faceSqu + exN + forecast then []
else if ∃ v ∈ set (vertices f ).

neglectableModificationparam g 2 0 0 −1 v then []
else let vs = [countVertices g ];

v = (vertices f )[[0 ]]; w = f ·v ;
(f 1, f 2, g) = FaceDivisionGraph g w v f vs ;
g = makeFaceFinal f 2 g ;
v = f 1·v ; w = f 1·w ;
(f 1, f 2, g) = FaceDivisionGraph g w v f 1 [];
g = makeFaceFinal f 2 g ;
w = f 1· w ;
(f 1, f 2, g) = FaceDivisionGraph g w v f 1 [];
g = makeFaceFinal f 1 g ;
g = makeFaceFinal f 2 g in
[g ]

f1

f2

f1

f2

f1f2

v

f

w

v

w

w

v

v

w

The operation makeQuadFinal makes a nonfinal quadrilateral final, provided
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this modification of the graph is not neglectable at one of the vertices of f .

makeQuadFinal :: parameter ⇒ face ⇒ graph ⇒ graph list
makeQuadFinalparam f g ≡

if |vertices f | 6= 4 ∨ final f then []
else if ∃ v ∈ set (vertices f ).

neglectableModificationparam g 0 1 0 −1 v
then []
else [makeFaceFinal f g ]

f

f

We define a function handleQuad that calculates possible successor graphs
and a function isQuadFriendly to decide if we can apply the function han-
dleQuad to a graph.

We may not apply the function handleQuad if a graph g contains less than
6 vertices, because g could just consist of one of the tame configurations
bounded by a nonfinal quadrilateral. Moreover, for efficiency reasons we
may decide to call the usual successor function if a vertex of type (2, 1) can
be added to the graph without exceeding the weight target. We obtain the
proof obligation that whenever isQuadFriendly is True, no other successors
than the graphs generated by the function handleQuad are possible.

isQuadFriendly(QuadParameter n) g =
(let lb = squanderLowerBound(QuadParameter n) g in
countVertices g ≥ 6
∧ (lb + b’(QuadParameter n) 2 1 ≥ squanderTarget))

isQuadFriendly(ExceptionalParameter n) g =
(let lb = squanderLowerBound(ExceptionalParameter n) g in
countVertices g ≥ 6
∧ (lb + squanderFaceStartingAt(ExceptionalParameter n) 5 ≥ squanderTarget)
∧ (lb + b’(ExceptionalParameter n) 2 1 ≥ squanderTarget))

handleQuadparam f g ≡ if |vertices f | 6= 4 then []
else let vs = vertices f ; v = hd vs; n = f ·v in
(splitQuadparam n f g)
@(splitQuadparam v f g)
@(Do40param f g)
@(makeQuadFinalparam f g)
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Alternatively, we could use a function handleQuad2 which additionally calls
an operation Do21, creating a vertex of type (2, 1) in the interior of a nonfinal
face.

Do21 :: parameter ⇒ vertex ⇒ face ⇒ graph ⇒ graph list
Do21 param v f g ≡

if |vertices f | 6= 4 ∨ final f then []
else let lb = squanderLowerBoundparam g in
if squanderTarget ≤ lb + b’param 2 1 then []
else if (∃ i ∈ set [0 ..2 ].

neglectableModificationparam g 2 0 0 −1 (f i·v)
∨ neglectableModificationparam g 1 0 0 −1 (f 3·v))

then []
else let vs = [countVertices g ];

w = f ·v ;
(f 1, f 2, g) = FaceDivisionGraph g w v f vs ;
g = makeFaceFinal f 2 g ;
v = f 1·v ; w = f 1·w ;
(f 1, f 2, g) = FaceDivisionGraph g w v f 1 [];
g = makeFaceFinal f 1 g ;
g = makeFaceFinal f 2 g in
[g ]

f1

f2

f1f2

v

f

w

v

w

w

v

The alternative function creates all possible tame configurations for quadri-
laterals.

handleQuad2-def : handleQuad2param f g ≡
if |vertices f | 6= 4 then []
else let vs = vertices f ;
v = hd vs; n = f ·v ; n2 = f 2·v ; n3 = f 3·v in
(splitQuadparam n f g)
@(splitQuadparam v f g)
@(Do21param v f g)
@(Do21param n f g)
@(Do21param n2 f g)
@(Do21param n3 f g)
@(Do40param f g)
@(makeQuadFinalparam f g)

We show by execution that both definitions generate the same set of graphs
modulo isomorphism.
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5.9 Neglectable Nonfinal Graphs

A nonfinal graph is neglected in the following cases:

• For a nonfinal graph g, we calculate a lower bound for the total weight∑
f ∈ finals g ′ w |vertices f | of all graphs g′ that may be generated from

g. A graph can be neglected if this lower bound exceeds 14.8 (tame7)
(calculated by neglectableVertexList). For the calculation of the lower
bound see Section 5.6.

• A new generated (nonfinal) graph is neglected if a 3-cycle is created
with enclosed vertices (calculated by neglectableEdge). This would con-
tradict property tame2.

• Using property tame2, the successor function can be simplified such
that it replaces all nonfinal triangles by final ones (makeTrianglesFi-
nal). If a graph contains a nonfinal quad, then it can be replaced by
all configurations that are allowed by property tame3 (handleQuads).

generatePolygonOpt :: parameter ⇒ nat ⇒ vertex ⇒ face ⇒ graph ⇒ graph list
generatePolygonOptparam ngon v f g ≡

let neglectTable = neglectableEdgeTable g f v ;
enumeration = enumerator ngon |vertices f |;
enumeration = [is ∈ enumeration.

¬ containsNeglectableEdge neglectTable is];
vertexLists = [indexToVertexList f v is. is ∈ enumeration];
vertexLists = [vs ∈ vertexLists. ¬ neglectableVertexListparam vs f g ] in
[addFace g f vs. vs ∈ vertexLists]

The function polyLimit calculates the maximal length of a face that can be
added without exceeding the lower bound on the total weight.

polyLimitparam g ≡
let lb = squanderLowerBoundparam g in
maxList 3 [n ∈ [3 .. maxGonparam]. lb + d n ≤ squanderTarget ]

The successor function additionally excludes graphs that contain an earlier
seed graph and that are neglectable by base point symmetry.

successorsListOpt :: parameter ⇒ graph ⇒ graph list
successorsListOptparam g ≡

if final g then []
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else let fopt = minimalTempFace g in
case fopt of None ⇒ []
| Some f ⇒

if |vertices f | = 4 ∧ isQuadFriendlyparam g
then [makeTrianglesFinal g ′. g ′ ∈ (handleQuadparam f g)]
else let v = minimalVertex g f ;
polylimit = polyLimitparam g ;
rs = rev (∪i ∈ [3 ..polylimit ] generatePolygonOptparam i v f g) in
[makeTrianglesFinal g . g ∈ rs]

succsPlane8 :: parameter ⇒ graph ⇒ graph list
succsPlane8 param g ≡

[g ′ ∈ successorsListOptparam g .
¬ neglectableByBasePointSymmetry g ′

∧ ¬ containsEarlierSeedparam g ′]

PlaneGraphs8 :: graph set
PlaneGraphs8 ≡ terminalsTree (Seed ::parameter ⇒ graph) succsPlane8

PlaneGraphs8Param :: parameter ⇒ graph set
PlaneGraphs8param ≡ terminalsTreeparam Seed succsPlane8

PlaneGraphs8Tree :: parameter ⇒ graph set
PlaneGraphs8Treeparam ≡ Tree succsPlane8 param Seedparam

For correctness theorem is expressed as follows (see Section 6.9.

Theorem plane8-complete:
g ∈ PlaneGraphs7 =⇒ tame g =⇒ g ∈∼= PlaneGraphs8

5.10 Neglectable Final Graphs

A final graph can be neglected in the following cases:

• A graph g can be neglected, if the lower bound of the total weight∑
f ∈ faces g w |vertices f | for an admissible weight assignment w ex-

ceeds 14.8 (tame7). For the calculation of the lower bound see Sec-
tion 5.6.

• A graph can be neglected if
∑
f

c(|f |) < 8 (tame6).
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• A graph can be neglected if it contains vertices whose degree is too
high (tame4, tame5).

• A graph can be neglected if it contains one of the forbidden configura-
tions, i.e. two adjacent vertices of type (4, 0) (tame8) or a vertex with
one incident triangle and one incident pentagon (tame3, tame6).

We calculate the total score of a graph.

scoreTarget :: nat
scoreTarget ≡ 8000

scoreUpperBound :: graph ⇒ nat
scoreUpperBound g ≡ nat (

∑
f ∈finals g c |vertices f | )

The function has101Type determines whether a graph contains a vertex with
one incident triangle and one incident pentagon.

vertexHas101Type :: graph ⇒ vertex ⇒ bool
vertexHas101Type g v ≡

(if ¬ finalVertex g v then False
else if degree g v 6= 2 then False
else |vertices (facesAt g v [[0 ]] )| = 3 ∧ |vertices (facesAt g v [[1 ]])| = 5

∨ |vertices (facesAt g v [[0 ]])| = 5 ∧ |vertices (facesAt g v [[1 ]])| = 3 )

has101Type :: graph ⇒ bool
has101Type g ≡ ∃ v ∈ set (vertices g). vertexHas101Type g v

The function neglectableFinal summarizes the conditions for a final graph to
be neglectable: if the degree bounds are too high, the lower bound for the
total weight exceeds the target, or the total score is less than 8.

neglectableFinal :: parameter ⇒ graph ⇒ bool
neglectableFinalparam g ≡

final g
∧ ((∃ v ∈ set (vertices g). except g v = 0 ∧ 6 < degree g v

∨ 0 < except g v ∧ 5 < degree g v)
∨ squanderTarget ≤ squanderLowerBoundparam g
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∨ scoreUpperBound g < scoreTarget
∨ has101Type g
∨ hasAdjacent40 g)

Finally we define the function succsEnumeration, by excluding all neglectable
final graphs from PlaneGraphs8.

succsEnumeration :: parameter ⇒ graph ⇒ graph list
succsEnumerationparam g ≡

[g ′ ∈ successorsListOptparam g . ¬ neglectableFinalparam g ′

∧ ¬ neglectableByBasePointSymmetry g ′ ]

Enumeration :: graph set
Enumeration ≡ terminalsTree Seed succsEnumeration

EnumerationParam :: parameter ⇒ graph set
EnumerationParam param ≡ terminalsTreeparam Seed succsEnumeration

EnumerationTree :: parameter ⇒ graph set
EnumerationTree param ≡ Tree succsEnumerationparam Seedparam

The completeness theorem of this last refinement step is formally proved in
Section 6.10.

Theorem Enumeration-complete:
g ∈ PlaneGraphs8 =⇒ tame g =⇒ g ∈∼= Enumeration



Chapter 6

Completeness of Enumeration

In the previous chapter we described an executable definition of Enumer-
ation, a superset of the set of tame plane graphs. Since the enumeration
is obtained from the definition of plane graphs by a sequence of refinement
steps, which reduce the set of generated graphs. The completeness proof of
this enumeration is obtained by the completeness of each step.

In order to prove these completeness theorems, we need invariants of the
graph representation. Due to the inductive definition, we can reach a graph
by many different constructions, if we add faces in a different order. Since
we do not want to distinguish these graphs, we need specific lemmas how the
faces in a construction can be reordered to obtain an isomorphic graph.

6.1 Reorderings of Faces

Some of the refinement steps described in Chapter 5 exclude graphs if an
isomorphic graph is generated by another path. These refinements are opti-
mizations in the sense that they reduce the number of generated graphs, but
modulo isomorphism the set of generated graphs is not reduced.

An example is the optimization used in our alternative definition of plane
graphs, i.e. selecting a fixed edge in a nonfinal face and adding a new final
face only at this edge (see Section 5.1). Another example is the optimization
of neglecting nonfinal graphs containing a final vertex which is isomorphic to
an earlier seed graph (see Section 5.3).

111
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For the correctness proof of these optimizations it is essential to show that
the order in which faces are created in the construction of a graph may be
changed. However, not any arbitrary order of creation of faces is possible.
For example, the constructed graph must be connected at any time and there
are never two adjacent nonfinal faces in a partial graph.

Succeedingly, we describe two approaches for the proof of the correctness of
such optimizations.

Proof by Execution

In some cases, we may prove an optimization by execution. We define an
unoptimized enumeration function Enumerationunopt by modifying the orig-
inal optimized definition Enumeration such that the optimization is removed
from the algorithm. By construction, Enumeration generates a subset of
Enumerationunopt.

Lemma
Enumeration ⊆ Enumerationunopt

We obtain a reduced archive Archive ([28]) from executing Enumeration and
removing all graphs from the original archive which are not constructed by
Enumeration. By construction

Lemma
Enumeration =∼= Archive

Then we execute the function Enumerationunopt and compare the result with
the reduced archive Archive: If we can verify

Lemma
Enumerationunopt ⊆∼= Archive

by execution, we obtain a proof of the correctness of this optimization:

Enumerationunopt =∼= Enumeration

Then we may remove the optimization from the definition and simplify the
correctness proof.

Of course this generally will lead to a slow-down of performance, but this
is unimportant for the completeness proof. However once we have shown
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that the same set of graphs is generated, we may even use the optimized
algorithm.

On the other hand, if the test does not succeed this does not necessarily mean
that the optimization is incorrect. There is no complete test of tameness of
a graph included in the algorithm. Graphs are only neglected if they are
definitely not tame, but there may be some graphs generated which are not
tame. Hence it may be the case that a graph which is not tame is filtered
out in Enumeration, but not in Enumerationunopt because its faces were
constructed in a different order. In order to leave out such an optimization,
it is necessary to provide a complete test of tameness.

Reordering of Faces

We prove the following lemma about reordering of faces.

Lemma
If a plane graph h is a subgraph (modulo isomorphism) of a plane graph g
then h can be extended to g (up to isomorphism).

The condition of the lemma means that there is a graph g′ isomorphic to
g (obtained from g by a renaming ϕ) and h is a subgraph of g′, i.e. set
(finals h) ⊆ set (finals g ′). The conclusion means that there is a graph g′′,
isomorphic to g′, and g′′ can be generated from h, i.e. h ⇒succs g ′′, where
succs = successorsListparam. Both graphs g and h are partial plane graphs,
hence generated from some seed graphs sg and sh, respectively.

=~ =~

=

s

g’’g g’

h

sg h

We can express this property as follows:

Theorem sg ⇒succs g =⇒ sh ⇒succs h =⇒ set (finals h) ⊆ set (finals g ′) =⇒
g ∼= g ′ =⇒ ∃ g ′′. g ∼= g ′′ ∧ h ⇒succs g ′′ !

For some proofs, e.g. the proof of the correctness of our alternative definition
of plane graphs, it is sufficient to prove a weaker theorem for the case that g
and h are generated from the same initial graph s.
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=~ =~

=

s

h

g’’g g’

Theorem s ⇒succs g =⇒ s ⇒succs h =⇒ set (finals h) ⊆ set (finals g ′) =⇒
g ∼= g ′ =⇒ ∃ g ′′. g ′ ∼= g ′′ ∧ h ⇒succs g ′′ !

The conditions set (finals h) ⊆ set (finals g ′) and g ∼= g ′ could also be
replaced by h ∼= h ′ and set (finals h ′) ⊆ set (finals g). Both statements are
equivalent, which is expressed by the following statement.

= ==~

=~g g’

h’ h =~=

=~

s

g’’g

sg h

h’ h

Lemma (∃ g ′. set (finals h) ⊆ set (finals g ′) ∧ g ∼= g ′)
= (∃ h ′. h ∼= h ′ ∧ set (finals h ′) ⊆ set (finals g)) !

Example
The graph h is a subgraph of g modulo isomorphism.

=~

=

=~

=
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There are two different approaches to prove the above theorem: the first
approach is by induction on the construction, the second is by induction on
the set difference g − h.

The first approach requires that we start with the same seed graph. Hence
as first step we need to prove that we can start with the same seed graph.
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Since the final faces of the seed graph s will be contained in any of the graphs
generated from s, it is sufficient to show that we can start the construction
with any of the final faces. Thus the proof consists of the following two steps.

1. Prove that for a plane graph g (generated by some seed sg) we can
reach g (up to isomorphism) starting the construction with any of its
faces. More precisely, for every face f ∈ faces g we construct a seed
graph s f whose final face is isomorphic to f and then we can generate
from s f a graph g ′, isomorphic to g.

Lemma
f ∈ set (faces g) =⇒ ∃ g ′. g ∼= g ′ ∧ Seed |vertices f | ⇒succs g ′ !

2. Prove the weaker theorem about reordering of faces: if we can generate
a graph h and a graph g, starting from a seed s, where h is a subgraph
(modulo isomorphism) of g, then we can also complete g starting from
h. The proof is by induction on the construction of g. It essentially
shows that whenever at any point in the construction we can add both
a face f 1 and a face f 2, and these faces do not interfere with each other,
we can do this in any order.

Lemma
s ⇒succs g =⇒ s ⇒succs h =⇒ set (finals h) ⊆ set (finals g ′) =⇒ g
∼= g ′ =⇒ ∃ g ′′. g ′ ∼= g ′′ ∧ h ⇒succs g ′′ !

The second part is proved in Isabelle (see Section C.3). The question remains
how to formally prove the first part, which is, though easier, a special case
of the theorem we set out to prove.

Hence we present another (informal) proof by induction on the set difference
of the final faces in g ′ and in h, using the property that the set of final faces
is connected in a plane graph.

start: set (finals g ′) − set(finals h) = {}, hence set (finals g ′) = set (finals
h), hence g ′ = h. Here we need injectivity of final faces.

step: we obtain f ∈ set (finals g ′) − set (finals h). Let sh be the initial
face in the construction of h. Both sh and f are final faces in g. Hence
they are connected by a list fs of faces where hd fs = sh and last fs =
f. The head element of fs is contained in set (finals h) whereas the last
element is not. Hence we can obtain an index i where the face f i ≡
fs [[i ]] ∈ set (finals h) and f i+1 ≡ fs [[i+1 ]] /∈ set (finals h). Both faces
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f i and f i+1 lie on two sides of an edge {a, b}, say (a, b) ∈ set (edges
f i) and (b, a) ∈ set (edges f i+1). Now, since f i ∈ set (faces h), we
define f i

′ as the unique face in set (faces h) where (b, a) ∈ set (edges
f i
′). Intuitively, f i

′ can be seen as an outer nonfinal face, the boundary
of h. The face f i

′ is a nonfinal face in h: if f i
′ ∈ set (finals h) then also

f i
′ ∈ set (finals g) and f i

′ = f i+1 since both contain the edge (b, a)
in g. But f i+1 is not in set (finals h). Contradiction.

i+1
i

ff

h

g’
h

a

b

fs

f

s

Now it remains to show that it is possible to construct a graph h ′ from
h by adding a face isomorphic to f i+1 in the nonfinal face f i

′ ∈ set
(faces h) at the edge (b, a) ∈ set (edges f i

′).

We obtain a graph g ′′′ by renaming g ′ such that set (finals h ′) ⊆ set
(finals g ′′′). Then by induction hypothesis, set (finals h ′) can be ex-
tended to a graph g ′′ ∼= g ′, which completes the proof.

We derive the induction rule used in this proof from the rule for induction
on the cardinality of a finite set: (

∧
x . ∀ y . card (g − y) < card (g − x ) −→

P y =⇒ P x ) =⇒ P a.

Lemma finite-subset-rev-induct : finite g =⇒ P g =⇒
(
∧

h ′. h ′ ⊂ g =⇒ ∃ f . f ∈ g ∧ f /∈ h ′ ∧ (P ({f }∪h ′) −→ P h ′)) =⇒
h ⊆ g =⇒ P h

√

A formal proof in Isabelle/HOL would require a formalization of the property
of a graph to be connected, i.e. for any two faces in a graph there exists a
path of faces, connecting both. Then it can be proved by induction on the
construction that all plane graphs are connected.
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6.2 Fixing a Face and a Edge

In Section 5.1 we introduced an alternative definition of plane graphs which
does not compute the successors for all edges in all nonfinal faces, but only
for one fixed edge in one fixed nonfinal face. For the completeness theorem we
need to show that for every plane graph there is an isomorphic one generated
by the optimized definition. We argue informally that whenever we can add
two different final faces in a nonfinal graph, and both operations lead to the
same final graph, then we can add the faces in any order. Hence the set
of graphs is the complete set of plane graphs modulo isomorphism. This
definition can also be seen as an alternative definition for the set of plane
graphs.

However, in the formal correctness proof of the enumeration algorithm, using
the alternative definition does not relieve us from proving the correctness of
this refinement step, since the complete formal proof is based on the general
definition.

Theoretically, this refinement step could be proved by execution, i.e. by
executing a modified enumeration algorithm, where all possible successors
graphs are calculated and comparing the result with the archive. Of course,
this would immensely increase the number of duplicately calculated isomor-
phic graphs. A formal proof of the completeness theorem, based on the
theorem about reordering of faces, is future work.

Theorem planeN-complete:
g ∈ PlaneGraphs =⇒ g ∈∼= PlaneGraphsN !

6.3 Restriction of Maximum Face Size to 8

In Section 5.2 we introduced a restriction to the set of plane graphs to graphs
with maximum face size 8 (imposed by property tame1). For the complete-
ness theorem, we need to show that we do not exclude any tame graphs by
this restriction. We show that any graph generated by a seed graph with
a final face of size greater than 8 is not tame. Since final faces are never
deleted during the generation process, every graph contains the final face
of the seed graph it was generated from. We call this face the seed face.
Every graph generated by a parameter greater than 8 contains a seed face
of size greater than 8, but property tame1 does not allow face sizes greater
than 8. Subsequently, we present a proof sketch in Isabelle. Consider an



118 CHAPTER 6. COMPLETENESS OF ENUMERATION

arbitrary graph g ∈ PlaneGraphs generated by a parameter param of type
planeparameter ({3, . . .}). We need to construct a new parameter param2 of
type finparameter ({3, . . . , 8}) and show that g is also generated by this new
parameter. This is always possible since the parameter (i.e. the size of the
seed face) must be smaller than 8.

Theorem plane2-complete:
g ∈ PlaneGraphsN =⇒ tame g =⇒ g ∈ PlaneGraphs2

proof −
assume g ∈ PlaneGraphsN
then obtain param where g ∈ PlaneGraphsN param
then have g ∈ Tree successorsListparam ′ Seedparam
have final g

assume tame g then have bound : ∀ f ∈ set (faces g). |vertices f | ≤ 8

obtain n where param = ptoParam n n ∈ planeparameter
then have n = toNatparam
have n ≤ 8
proof
assume 8 < n
then have ∃ f ∈ set (faces g). 8 < |vertices f |
with bound show False by auto

qed

then have n ∈ finparameter
def param2 ≡ FtoParam n

have g ∈ Tree (successorsList param2) (Seed param2)
then have g ∈ PlaneGraphs2 param2
then show ?thesis

qed

6.4 Complex Seed Graphs

In Section 5.3 we introduced a refinement replacing the first two seed graphs,
the triangle and the quadrilateral by a finite set of complex seed graphs. This
refinement was divided in 4 steps:
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Partitioning of Quad Parameters

The first step of this refinement only separates the parameter set in two dis-
tinct sets, hence the set of generated graphs is unchanged. For every graph g
∈ PlaneGraphs2, generated by a parameter param of type finparameter, we
construct a new parameter param3 of type qparameter or exceptionalparam-
eter depending whether param is in {3, 4} or {5, . . . , 8}.
Theorem plane3-complete:

g ∈ PlaneGraphs2 =⇒ g ∈ PlaneGraphs3
proof −
assume g ∈ PlaneGraphs2
then obtain param where g ∈ PlaneGraphs2param
then have g ∈ Tree successorsListparam Seedparam
have final g

obtain n where param = FtoParam n and n ∈ finparameter
then have n = toNatparam

have n ∈ qparameter ∨ n ∈ exceptionalparameter
then show ?thesis
proof
assume n ∈ qparameter
def param3 ≡ Qparameter (qtoParam n)
then have g ∈ Tree (successorsListparam3) (Seedparam3)
have g ∈ PlaneGraphs3 param3
then show ?thesis

next
assume n ∈ exceptionalparameter
def param3 ≡ Eparameter (Eparam n)
then have g ∈ Tree (successorsListparam3) (Seedparam3)
have g ∈ PlaneGraphs3 param3
then show ?thesis

qed
qed

Complex Seed Graphs

For the second step we must show that every plane graph g ∈ PlaneGraphs2
generated by a triangle or quadrilateral seed (given by a parameter g ∈ param
of type qparameter) can be generated by one of the complex seeds (given by
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a parameter of type vertexparameter).

For a seed of length greater than 4 (given by a parameter param of type
exceptionalparameter), there is nothing to prove, we only need to convert
the parameter type.

For a seed of length at most 4, we construct a vertex seed graph. Select an
arbitrary vertex v in the seed face of a final graph g. We chose v=0. The
degree of v is at least 3 (tame1). Consider all faces in g that are incident
with v. We construct a vertex seed parameter from the cyclic ordered list of
the sizes of this faces. From this parameter we construct a vertex seed graph
s whose set of final faces is isomorphic to the set of faces of g incident with
v.

Using the lemma about reordering of the addition of final faces, we can also
reach g from s. Note that for this proof we do not need the assumption that
g is tame.

Theorem plane4-complete:
g ∈ PlaneGraphs3 =⇒ g ∈∼= PlaneGraphs4

proof −
assume g ∈ PlaneGraphs3
then obtain param where g ∈ PlaneGraphs3 param
then have g ∈ Tree successorsListparam Seedparam
have final g

show ?thesis
proof (cases param)
case (Qparameter q)
then obtain n where param = Qparameter (qtoParam n)
and n ∈ qparameter
then have n = toNatparam
then have n ∈ {3 ,4}

def v ≡ 0 ::vertex
def fs ≡ facesAt g v
def ns ≡ [ |vertices f | . f ∈ fs]
def param4 ≡ QParameter (vtoParam (map qtoParam ns))

then obtain g ′ where g ∼= g ′

and g ′ ∈ Tree successorsListparam4 Seedparam4
then have g ′ ∈ PlaneGraphs4param4
then show ?thesis

next
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case (Eparameter e)
then obtain n where param = Eparameter (Eparam n)
and n ∈ exceptionalparameter
then have n: n = toNatparam

def param4 ≡ EParameter (Eparam n)
then have g ∈ Tree successorsListparam4 Seedparam4
have g ∈ PlaneGraphs4param4
then show ?thesis

qed
qed

Restriction to Tame Complex Seed Graphs

As third step we filter out all vertex seed graphs s with final vertex v where
14 .8 ≤ b(tri s v , quad s v).

The correctness of this step is based on the following property: once a vertex
v is final in a graph g, it has the same type in all graphs generated from g.
Every final graph g ′ generated from such a seed graph would also contain the
vertex v of type (tri s v , quad s v). Hence the lower bound of the total weight
of g ′ would exceed the target and g ′ would not be tame. From the definition
of b (see Section 4.2) we obtain a list of possible types. Up to isomorphism
there remain only 17 different vertex seed graphs (see Figure 5.2). We need
to show that every seed graph that generates tame graphs is isomorphic to
one of the graphs in the list.

Theorem plane5-complete:
g ∈ PlaneGraphs4 =⇒ tame g =⇒ g ∈∼= PlaneGraphs5

proof −
assume g ∈ PlaneGraphs4
then obtain param where g ∈ PlaneGraphs4param
then have g ∈ Tree successorsListparam Seedparam
have final g
assume tame g

show g ∈∼= PlaneGraphs5
proof (cases param)
case (QParameter q)
then obtain n where param = QParameter (vtoParam n)
and n ∈ vertexparameter
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then obtain ns where n = (map qtoParam ns)

def t ≡ |[i ∈ ns. i = 3 ]|
def q ≡ |[i ∈ ns. i = 4 ]|
have b t q < 14800
then have (t ,q) ∈ {(2 ,0 ), (1 ,1 ), (0 ,2 ),

(3 ,0 ), (2 ,1 ), (1 ,2 ), (0 ,3 ),
(4 ,0 ), (3 ,1 ), (2 ,2 ), (1 ,3 ), (0 ,4 ),
(5 ,0 ), (4 ,1 ), (3 ,2 ), (2 ,3 ), (1 ,4 ), (0 ,5 ),
(6 ,0 ), (5 ,1 ), (4 ,2 ), (3 ,3 ), (2 ,4 ), (1 ,5 ), (0 ,6 ) }

then obtain param5 ::parameter where Seedparam ∼= Seedparam5
then obtain g ′ where g ∼= g ′

and g ′ ∈ Tree successorsListparam5 Seedparam5
then have g ′ ∈ PlaneGraphs5param5
then show ?thesis

next
case (EParameter e)
then obtain n where param = EParameter (Eparam n)
and n ∈ exceptionalparameter
then have n: n = toNatparam
def param5 ≡ ExceptionalParameter (Eparam n)
then have g ∈ Tree successorsListparam5 Seedparam5
have g ∈ PlaneGraphs5param5
then show ?thesis

qed
qed

Graphs Containing Earlier Seed Graphs

Finally, we neglect graphs that contain an earlier seed graph. Hence we
need to show that there is another path in an earlier tree which leads to an
isomorphic graph (see Figure 5.3).

Assume that a graph g is generated by a seed s and contains an earlier seed
s′. We can obtain a graph g′ by renaming the vertices in g such that the
final faces of s′ are a subset of the final faces in g′. Using the lemma about
reordering of faces, we can conclude that there is a graph g′′ isomorphic to
g′ (and also to g) and generated by s′.

The completeness can also be proved by removing this optimization from the
algorithm (i.e. replacing the constant ”b’param” by ”b” in the calculation
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of a lower bound). Executing the unoptimized algorithm yields two new
graphs modulo isomorphism. For these graphs can be verified that they are
not tame: they contain a 4-cycle which does not surround one of the tame
configurations for 4-cycles.

Moreover, the introduction of complex seed graphs is another optimization
of the enumeration algorithm, in the sense that it removes isomorphic dupli-
cates but does not reduce the set of generated graphs modulo isomorphism.
Although some seed graphs are excluded which are not tame, these graphs
would have also been excluded by the calculation of a lower bound of the total
weight. Hence the completeness of this refinement is provable by executing
a modified algorithm, starting the generation with a single-faced triangle or
quadrilateral graph.

Theorem plane6-complete:
g ∈ PlaneGraphs5 =⇒ tame g =⇒ g ∈∼= PlaneGraphs6 !

6.5 Neglectable by Base Point Symmetry

In Section 5.4 we introduced another refinement step that neglects graphs
for which an isomorphic graph is generated by an earlier path in the tree.

This refinement step is again an optimization in the sense that it removes
isomorphic duplicates. We prove the completeness by execution. We execute
an unoptimized version of the enumeration algorithm Enumerationunopt, ob-
tained by removing this optimization. By construction the optimized version
Enumeration of the algorithm does not produce more tame graphs than Enu-
merationunopt. We verify that Enumerationunopt does not generate more
graphs than Enumeration, hence we do not loose tame graphs due to this
optimization. This proves the completeness of this optimization. For the
completeness proof we might as well remove this optimization from the def-
inition which would cause a slow-down of the enumeration algorithm, but
simplify the verification.

Theorem plane7-complete:
g ∈ PlaneGraphs6 =⇒ g ∈∼= PlaneGraphs7

√

6.6 Avoiding Vertices Enclosed by 3-Cycles

In Section 5.5 we introduced a restriction of the set of generated plane graphs
using property tame2. A modification g ′ of a graph g is neglected when a
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3-cycle [a, b, c] would be created which does not surround a single triangle
face (see Figure 5.4). To prove the completeness, we show that the arising
3-cycle is neither a face in g nor the opposite of a face in g.

f1

f2 b

a

A 3-cycle is created if in a nonfinal face f of a graph g a new edge (a, b) is
created, joining two vertices a and b of f which have distance of at least 2
in f and have a common neighbor c in g. Hence a and b have no common
neighbor in f and c is not a vertex of f.

By this modification two (final or nonfinal) faces f 1 and f 2 are created such
that f 1 contains the edge (b, a) and f 2 contains the edge (a, b). Both faces
f 1 and f 2 contain only vertices of f, hence c is neither a vertex of f 1 nor f 2
and both f 1 and f 2 are not equivalent to [a, b, c].

Using the property of plane graphs, that there is exactly one face in g that
contains an edge (a, b) of g, there exists no face in g which equivalent to [a,
b, c]. Similarly there exists no face in g which equivalent to [c, b, a]. The
formal proof is future work.

6.7 Lower Bounds for the Total Weight

First we show the correctness of the lower bound for the total weight for
the case of a final graph. This an important step in the proof, since the
calculation of the lower bound for nonfinal graphs is based on this lower
bound.

Theorem
For a final graph g, generated by any parameter p, squanderLowerBoundparam
g is a lower bound for the total weight

∑
f ∈ faces g w(f) for all admissible

weight assignments w.

Proof
Let F = finals g = faces g.
By definition, we have
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(S) faceSquanderLowerBoundparam g =
∑

f∈F d |vertices f |.

By definition we obtain a list of vertices V where

(N) ExcessNotAtp g None =
∑

v∈V ExcessAtp g v.

We partition V in V1 and V2 and V2 in V3 and V4:

V 1 = [v∈V . except g v = 0 ]
V 2 = [v∈V . except g v 6= 0 ]
V 3 = [v∈V . except g v 6= 0 ∧ degree g v = 5 ]
V 4 = [v∈V . except g v 6= 0 ∧ degree g v 6= 5 ]

We partition the set of faces F in F1 and F2 and F2 in F3 and F4:

F 1 = [f ∈F . set (vertices f ) ∩ set V 1 6= {}]
F 2 = [f ∈F . set (vertices f ) ∩ set V 1 = {}]
F 3 = [f ∈F 2 . set (vertices f ) ∩ set V 3 6= {}]
F 4 = [f ∈F 2 . set (vertices f ) ∩ set V 3 = {}]

With the definition of ExcessAtp g v we have

(E1)
∑

v∈V1

ExcessAtp g v +
∑

f∈F1

d |vertices f |

=
∑

v∈V1

b’p (tri g v) (quad g v)

(E2) If v ∈ V3 then ExcessAtp g v = a (tri g v).

(E3) If v ∈ V4 then ExcessAtp g v = 0.

From admissibility of w we have

(A1)
∑

v∈V1

b’p (tri g v) (quad g v) ≤
∑

f∈F1

w(f ) (admissible2)

(A2)
∑

v∈V3

a (tri g v) +
∑

f∈F3

d |vertices f | ≤
∑

f∈F3

w(f ) (admissible4)

(A3)
∑

f∈F4

d |vertices f | ≤
∑

f∈F4

w(f ) (admissible4)
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Finally, we calculate

squanderLowerBoundp g

(Def.) = ExcessNotAtp g None + faceSquanderLowerBoundp g

(N,S) =
∑
v∈V

ExcessAtp g v +
∑
f∈F

d |vertices f |

=
∑

v∈V1

ExcessAtp g v +
∑

v∈V2

ExcessAtp g v

+
∑

f∈F1

d |vertices f |+
∑

f∈F2

d |vertices f |

(E1) =
∑

v∈V1

b’p (tri g v) (quad g v)

+
∑

v∈V2

ExcessAtp g v +
∑

f∈F2

d |vertices f |

=
∑

v∈V1

b’p (tri g v) (quad g v) +
∑

v∈V3

ExcessAtp g v

+
∑

v∈V4

ExcessAtp g v +
∑

f∈F2

d |vertices f |

(E2, E3) =
∑

v∈V1

b’p (tri g v) (quad g v) + 0 +
∑

v∈V3

a (tri g v)

+
∑

f∈F3

d |vertices f |+
∑

f∈F4

d |vertices f |

(A1, A2, A3) ≤
∑

f∈F1

w(f ) +
∑

f∈F3

w(f ) +
∑

f∈F4

w(f )

=
∑
f∈F

w(f )

Qed

The formal Isabelle/Isar proof can be found in Appendix C.

Theorem total-weight-lowerbound :
g ∈ PlaneGraphs8 param =⇒

admissible w g =⇒
∑

f ∈ faces g w f < squanderTarget =⇒
squanderLowerBoundparam g ≤

∑
f ∈ faces g w f

√

The lower bound of a nonfinal graph is based on this lower bound. The
formal proof is future work.
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6.8 Nonfinal Triangles and Quadrilaterals

For the correctness of the functions for handling of nonfinal triangles make-
TrianglesFinal and quadrilaterals handleQuad (see Section 5.8) we need to
verify them against the definition of properties tame2 and tame3.

The function makeTrianglesFinal replaces all nonfinal triangles by final ones,
since every 3-cycle in a tame graph is either a triangle or the opposite of a
triangle (see Section 5.8).

The function handleQuad replaces every nonfinal quadrilateral by all possi-
ble tame configurations bounded by a 4-cycle (see Section 5.8). The function
handleQuad is based on the functions FaceDivisionGraph and makeFaceFi-
nal which split a face or make a nonfinal face final, respectively. On the
other hand the definition of plane graphs uses the function addFace, which
calls FaceDivisionGraph and makeFaceFinal on certain arguments. But han-
dleQuad is based also on FaceDivisionGraph and makeFaceFinal. Therefore
it must be shown that every completion of a nonfinal quadrilateral with one
of the tame configurations can also be constructed by a sequence of addFace
operations with appropriate arguments. Moreover it must be verified that
all other successors are not tame. This proof is future work.

6.9 Neglectable Nonfinal Graphs

In section Section 5.9 we introduced some sufficient conditions that a nonfinal
graphs can be neglected. The correctness of this refinement step is based on
the correctness of the lower bounds for the total weight and the correctness
of avoiding vertices enclosed by 3-cycles. The formal proof is future work.

Theorem plane8-complete:
g ∈ PlaneGraphs7 =⇒ tame g =⇒ g ∈∼= PlaneGraphs8 !

6.10 Neglectable Final Graphs

In Section 5.9 we introduced some conditions for neglectable final graphs.
Subsequently, we show the completeness of this last refinement step of the
enumeration.

Theorem Enumeration-complete:
g ∈ PlaneGraphs8 =⇒ tame g =⇒ g ∈∼= Enumeration

√
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A graph is neglected if it contains a vertex of type (1, 0, 1). First we prove
informally that no vertices of type (1, 0, 1) are contained in a tame graph. A
vertex of type (1, 0, 1) is incident with exactly one triangle, and exactly one
face of size 5.

Finally, we formally prove that whenever a final graph is neglected, it can
not be tame.

Figure 6.1: A vertex of type (1, 0, 1)

Lemma
In a tame plane graph, there cannot be a vertex of type (1, 0, 1).

Proof
We can show that every graph that contains a vertex of this type is not tame.
This configuration is bounded by a 4-cycle, hence on the outside there can
only be one of the tame configurations (tame3), but none of them leads to
a graph with at least 8 triangles, and

∑
f ∈ faces g c |vertices f | < 4 which

contradicts property tame6.
Qed

The formal proof remains future work.

Lemma PlaneGraphs8-not-has101Type:
g ∈ PlaneGraphs8 =⇒ tame g =⇒ ¬ has101Type g !

Finally, we show that a graph g can be neglected if

• it contains a vertex of degree greater than 6 (tame4),

• it contains an exceptional vertex of degree greater than 5 (tame5),
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• scoreUpperBound g < 8000, since scoreUpperBound is a lower bound
for

∑
f ∈ faces g c |vertices f | and 8000 ≤

∑
f ∈ faces g c |vertices f |

(tame6),

• squanderTarget ≤ ExcessNotAtparam g None + faceSquanderLower-
Boundparam g, since this is a lower bound for

∑
f ∈ faces g w f for all

admissible weight assignments with
∑

f ∈ faces g w f < squanderTarget
and ∃w . admissible w g ∧

∑
f ∈ faces g w f < squanderTarget (tame7),

• g contains two adjacent vertices of type (4, 0) (tame8), and

• g contains a vertex with one adjacent triangle and one adjacent pen-
tagon.

We formally prove that no tame graphs are neglectable final graphs.

Lemma PlaneGraphs8-not-neglectableFinal :
g ∈ PlaneGraphs8 param =⇒ tame g =⇒ ¬ neglectableFinalparam g

proof −
assume g ∈ PlaneGraphs8 param
then obtain g ∈ PlaneGraphs8
then obtain final g

assume tame g

show ¬ neglectableFinalparam g
proof
assume neglectableFinalparam g
then show False
proof (cases)
fix v assume v ∈ set (vertices g) and except g v = 0 and 6 < degree g v
then show False — ( tame4 )

next
fix v assume v ∈ set (vertices g) and 0 < except g v and 5 < degree g v
then show False — ( tame5 )

next
obtain w where admissible w g
and

∑
f ∈ faces g w f < squanderTarget — ( tame7 )

assume squanderTarget ≤ squanderLowerBoundparam g
also have . . . ≤

∑
f ∈ faces g w f by (rule total-weight-lowerbound)

finally have ¬
∑

f ∈ faces g w f < squanderTarget by auto
then show False by contradiction

next
assume scoreUpperBound g < scoreTarget
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then show False — ( tame6 )
next
assume hasAdjacent40 g
then show False — ( tame8 )

next
assume has101Type g
then show False !

qed
qed

qed

We show that the set of generated graphs is exactly the set of graphs of
generated by PlaneGraphs8 that are not neglectable final graphs. The proof
of this equality can be found in Appendix C.

Lemma PlaneGraphs8Param-eq : EnumerationParam param
= {g . g ∈ PlaneGraphs8 param ∧ ¬ neglectableFinalparam g }

We conclude the completeness theorem of the enumeration.

Theorem Enumeration-complete:
g ∈ PlaneGraphs8 =⇒ tame g =⇒ g ∈∼= Enumeration

proof −
assume tame: tame g
assume g : g ∈ PlaneGraphs8
then obtain param where p: g ∈ PlaneGraphs8 param by auto
have ¬ neglectableFinalparam g by (rule PlaneGraphs8-not-neglectableFinal)
with p have g ∈ EnumerationParam param by (simp add : PlaneGraphs8Param-eq)

then have g ∈ Enumeration by auto
then show ?thesis

qed

6.11 Summary

Now, we summarize all completeness theorems of Chapter 6 and finally prove
the completeness of the enumeration:

By construction, Enumeration ⊆∼= PlaneGraphs8 ⊆∼= PlaneGraphs7 ⊆∼= ..
⊆∼= PlaneGraphs.

The correctness of the alternative definition of plane graphs is informally
proved.
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Theorem planeN-complete:
g ∈ PlaneGraphs =⇒ g ∈∼= PlaneGraphsN

The restriction of face size to 8 is formally proved.

Theorem plane2-complete:
g ∈ PlaneGraphsN =⇒ tame g =⇒ g ∈∼= PlaneGraphs2

√

The introduction of complex seed graphs is informally proved. Future work
is the proof by execution or using the theorem about reordering of faces.

Theorem plane3-complete:
g ∈ PlaneGraphs2 =⇒ g ∈ PlaneGraphs3

√

Theorem plane4-complete:
g ∈ PlaneGraphs3 =⇒ g ∈∼= PlaneGraphs4 !

Theorem plane5-complete:
g ∈ PlaneGraphs4 =⇒ tame g =⇒ g ∈∼= PlaneGraphs5 !

Theorem plane6-complete:
g ∈ PlaneGraphs5 =⇒ tame g =⇒ g ∈∼= PlaneGraphs6 !

The optimization of graphs neglectable by base point symmetry is proved by
execution.

Theorem plane7-complete:
g ∈ PlaneGraphs6 =⇒ g ∈∼= PlaneGraphs7

√

The proof of correctness neglecting nonfinal graphs is future work, based on
the correctness of avoiding of 3-cycles with enclosed vertices and of the lower
bounds for nonfinal graphs.

Theorem plane8-complete:
g ∈ PlaneGraphs7 =⇒ tame g =⇒ g ∈∼= PlaneGraphs8 !

The correctness of the lower bound for final graphs is formally proved. The
correctness of neglecting final graphs is formally proved, except for the cor-
rectness of excluding graphs that contain vertices of type (1, 0, 1) which is
informally proved.

Theorem Enumeration-complete:
g ∈ PlaneGraphs8 =⇒ tame g =⇒ g ∈∼= Enumeration ( !)
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We generate ML code from the definition of Enumeration, executing it and
check that for every generated graph there is an isomorphic graph in the
archive. Thereby we obtain the following result;

Theorem Archive-complete:
g ∈ Enumeration =⇒ g ∈∼= Archive

√

This finally proves the correctness of Hales’ algorithm for the enumeration
of all tame plane graphs:

Theorem g ∈ PlaneGraphs =⇒ tame g =⇒ g ∈∼= Archive



Chapter 7

Conclusion

The proof of the Kepler conjecture presented by Thomas C. Hales is a proof
by exhaustion on a finite set of plane graphs with certain properties, called
tame plane graphs. This set of tame plane graphs, called the Archive, is
generated by a Java program. Hence an essential part of the proof is to show
completeness of this enumeration.

We contributed on the formalization of the completeness of this enumeration
algorithm.

7.1 Summary

Formalization of Plane Graphs We developed a theory of plane graphs
in Isabelle/HOL, based on an inductive definition: a connected plane graph
is constructed by starting with one face and repeatedly adding new faces.
We validated our definition of plane graphs: we informally proved that we
reach all plane graphs by this definition.

We proved correctness theorems of the construction operations of a plane
graph and provided an induction principle, which can be used to prove prop-
erties of plane graphs by induction on the construction. Moreover, we exem-
plarily carried out some induction proofs for properties of plane graphs. We
formalized plane graph isomorphisms and showed informally that for a given
graph the faces can be added in any order, as long as every graph during the
construction is connected.

133
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Formalization of an Enumeration Algorithm We defined an executable
Isabelle/HOL function Enumeration, containing a superset of all tame plane
graphs. We generated ML code using Isabelle/HOL’s code generator and
execute the ML code, comparing the result with the Archive. We succeeded
to enumerate all graphs of the Archive. Hence we obtained a validation of
the formalization of Enumeration.

We simplified the original algorithm. Firstly, we replaced iterative definitions
by more declarative definitions, which are more appropriate for a correctness
proof, but still produce the same set of graphs. Moreover, we identified
unnecessary optimizations, which reduce the number of generated graphs,
but modulo isomorphism generate the same set of graphs. Removing these
optimizations from the algorithm further simplifies the completeness proof.

Completeness Proof We formalized a notion of tameness. We uncovered
a mismatch of the definition of tame graph in Hales’ paper and the Java
program provided by Hales. The original definition of tameness included
graphs which are not in the Archive. This had the consequence that the
definition of tame graphs in the proof of the Kepler conjecture needed to be
changed (see section 4.5). Fortunately, the correctness Hales’ proof of the
Kepler conjecture was not affected by this change.

We formalized the completeness of the enumeration:

Theorem
For every tame plane graph there is an isomorphic graph in the Archive.

We partitioned the proof into subproofs, identified proof obligations and
informally proved all steps. Essential parts were formally proved.

7.2 Approach

We proposed an approach for program verification of imperative programs
(in our case a Java program) in a theorem prover:

• Translate the program to a Isabelle/HOL, considering Isabelle/HOL as
a functional programming language.

• Prove the correctness of the Isabelle functions. Program verification
for functional programs is by far easier than for imperative programs.
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• Generate executable ML code from the Isabelle/HOL definition using
Isabelle/HOL’s code generator.

• Validate the formalization by comparing the results. In the special
case of a finite calculation, as in our formalization of Hales’ proof, we
completely tested our formalization.

7.3 Future Work

Future work is to complete the open points in the formal verification of the
enumerations. The main points are:

• The lower bound for the total weigth of an admissible weight assign-
ment, calculated for nonfinal graphs, need to be formally verified. The
verification is based on the existing formal proof of a lower bound cal-
culated for final graphs.

• The treatment of nonfinal triangles and quadrilaterals and the exclusion
of vertices enclosed by triangles needs to be verified against the Isabelle
definition of tame graphs.

• The proof requires invariants of plane graphs that can be proved by
induction on the construction of a plane graph.

• It has to be formally verified that the definition of tameness excludes
vertices with one incident triangle and one incident pentagon. The
proof requires a special case of Jordan’s Curve theorem.

Informally, we have argued that all these open points are valid. Hence,
though the formal correctness proof has not yet been finished, we already
gained confirmation of the completeness of Hales’ enumeration of tame plane
graphs.



136 CHAPTER 7. CONCLUSION



Appendix A

Algorithms

A.1 List Functions

List Intersection

The function as ∩ bs calculates the list of all elements x where x ∈ set as
and x ∈ set bs.

[] ∩ bs = []
(a#as) ∩ bs = (if a ∈ set bs then a#(as ∩ bs) else as ∩ bs)

Lemma set (as ∩ bs) = set as ∩ set bs
√

Minimal and Maximal Elements of a List

The function minimal m a bs returns the minimal element of the set {a} ∪
set bs with respect to a rating function m.

minimal :: ( ′a ⇒ nat) ⇒ ′a ⇒ ′a list ⇒ ′a
minimal m a [] = a
minimal m a (b#bs) =

(let mbs = minimal m a bs in
if m b ≤ m mbs then b else mbs)

137
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Lemma minimal m a bs ∈ {a} ∪ set bs
√

Lemma
∧

x . x ∈ {a} ∪ set bs =⇒ m (minimal m a bs) ≤ m x
√

The functions minList a bs and maxList a bs calculate the minimal and
maximal element the set {a} ∪ set bs

minList a [] = a
minList a (b#bs) = minList (min a b) bs

Lemma
∧

a. minList a bs ∈ {a} ∪ set bs
√

Lemma
∧

x a. x ∈ {a} ∪ set bs =⇒ minList a bs ≤ x
√

maxList a [] = a
maxList a (b#bs) = maxList (max a b) bs

Lemma
∧

a. maxList a bs ∈ {a} ∪ set bs
√

Lemma
∧

x a. x ∈ {a} ∪ set bs =⇒ x ≤ maxList a bs
√

Replacing Elements in a List

The function replace ls oldF fs replaces an element oldF of a list ls by a list
of new elements fs.

replace oldF newFs [] = []
replace oldF newFs (l#ls) =

(if l = oldF then newFs @ ls else l#(replace oldF newFs ls))

We summarize the characteristic properties of replace oldF newFs ls. Ele-
ments of the replaced list are either elements of the original list ls or the
new elements of the list newFs. If oldF is not an element of ls then the list
is unchanged. If oldF is an element of ls then all elements of newFs are in
the replaced list. Furthermore the replaced list contains all elements of ls
different from oldF and it does not contain oldF provided oldF is not one of
the new elements.

Lemma f ∈ set (replace oldF newFs ls) =⇒ f /∈ set ls =⇒ f ∈ set newFs
√
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Lemma oldF /∈ set ls =⇒ replace oldF newFs ls = ls
√

Lemma oldF ∈ set ls =⇒ f ∈ set newFs =⇒ f ∈ set (replace oldF newFs ls)
√

Lemma f ∈ set ls =⇒ oldF 6= f =⇒ f ∈ set (replace oldF newFs ls)
√

Lemma oldF /∈ set newFs =⇒ distinct ls =⇒
oldF /∈ set (replace oldF newFs ls)

√

Applying a Function to a List at a Set of Indices

We introduce an auxiliary function mapAt on list. mapAt ns f as applies a
function f on all elements of positions given by a list of indices ns.

mapAt [] f as = as
mapAt (n#ns) f as =

(if n < |as| then mapAt ns f (as[n:= f (as[[n]])])
else mapAt ns f as)

Removing Elements in a Table

The function removeKeyList ws ps removes all entries (w , e) from a table ps
if w ∈ set ws.

( ′a, ′b) table = ( ′a × ′b) list

removeKey :: ′a ⇒ ( ′a, ′b) table ⇒ ( ′a, ′b) table
removeKey a ps ≡ [p ∈ ps. a 6= fst p]

removeKeyList :: ′a list ⇒ ( ′a × ′b) list ⇒ ( ′a × ′b) list
removeKeyList [] ps = ps
removeKeyList (w#ws) ps = removeKey w (removeKeyList ws ps)
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Figure A.1: Comparison of addFaceInv (middle) and addFace (right).

A.2 Complex Seed Graphs

The function addFaceInv is defined similarly as addFace, only the actual
representation of generated graphs differs in the order the set of faces is
represented in the face list and the order vertices are represented in the vertex
lists of the faces. We followed the representation in Hales’ Java program,
because this made it easier to generate an ML program from the Isabelle
definition that produced exactly the same set of graphs as the Java program.
For simplicity, the function addFaceInv could be replaced by the function
addFace (compare Section 3.2.4). This would change the set of generated
graphs only modulo graph isomorphism. Hence the test if the generated
set of graphs is contained in the archive (modulo graph isomorphism) still
succeeds. The current definition has the only disadvantage that some proofs
for addFace must be repeated for addFaceInv. Of course, both proofs are
quite similar.

We summarize the differences between the functions addFace and addFaceInv :
for both functions the vertex list argument vs is given in the order in which
they occur in face f 2; after each face split the function addFaceInv makes
the face f 1 final, whereas addFace leaves all faces nonfinal, only as last step
the face f 2 is made final. The recursion is in both cases on the face f 2.

Example
The Figure A.1 shows the results of the operations addFaceInv g f [ram1,
ram2] (middle) and addFace g f [ram1, ram2] (right) applied to a nonfinal
face f (left).

addFaceInvSnd :: graph ⇒ face ⇒ vertex ⇒ nat ⇒ vertex option list ⇒ graph
addFaceInvSnd g f w1 n [] = g
addFaceInvSnd g f w1 n (v#vs) = (∗ n = number of new vertices ∗)

(case v of None ⇒ addFaceInvSnd g f w1 (Suc n) vs
| (Some w2) ⇒
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Figure A.2: Construction of a seed face

if nextVertex f w1 = w2 ∧ n = 0
then addFaceSnd g f w2 0 vs
else let ws = [countVertices g ..< countVertices g + n];
(f 1, f 2, g ′) = FaceDivisionGraph g w1 w2 f (rev ws);
g ′ = makeFaceFinal f 1 g ′ in
addFaceInvSnd g ′ f 2 w2 0 vs)

addFaceInv :: graph ⇒ face ⇒ vertex option list ⇒ graph
addFaceInv g f [] = g
addFaceInv g f (v#vs) =

(∗ search for starting point :
vertex followed by null or a non−adjacent edge ∗)

(case v of None ⇒ addFaceInv g f vs
| (Some w1) ⇒ addFaceInvSnd g f w1 0 vs)

The function SeedGraph ls generates a vertex graph with face lengths of
the final faces arranged clockwise around one final vertex given by ls (see
Figure A.2). We assume that all elements of ls are in the set {3, 4} and the
length of ls is at least 2.

First, a seed graph of the length of hd ls is created. In the next step, the first
nonfinal face F = (nonFinals g)[[0 ]] of the seed graph is modified: If there is
more than one face to add then a face of appropriate size is added inside the
nonfinal face, containing the vertex V = 0 and the next vertex N = F ·V of
V in f. If there is only one face to add, a face of appropriate size is added
inside the nonfinal face, containing the previous vertex P = F−1·V and the
next vertex N = F ·V of V = 0 in f.
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addSeedFaces :: graph ⇒ nat list ⇒ graph
addSeedFaces g [] = g
addSeedFaces g (n#ns) =

(let F = (nonFinals g)[[0 ]];
V = 0 ; N = F ·V ; P = F−1·V in
case ns of [] ⇒

if n = 3
then addFaceInv g F ([Some P , Some N ])
else if n = 4
then addFaceInv g F [Some P , None, Some N ]
else g

| (m#ms) ⇒
if n = 3 then let
g ′ = addFaceInv g F [Some V , None, Some N ] in
addSeedFaces g ′ ns
else if n = 4 then let
g ′ = addFaceInv g F [Some V , None, None, Some N ] in
addSeedFaces g ′ ns
else g)

V

N

P

V

P

N

V

V N

N

SeedGraph (n#ns) = addSeedFaces (graph n) ns

A.3 Conversion of Graph Representations

In the archive provided by Hales the graphs are stored in a certain format,
as a list of integers. In order to be able to compare generated graphs with
graphs in the archive we need conversion functions between the different
representations. We describe the format of the graphs in the archive and
provide conversion functions from the graph data structure to the archive
format.

Graphs in the archive are encoded as a list of integers, representing a list of
faces.

• The head element in the list represents the number of nonfinal faces
followed by a (possibly empty) sequence of indices of the nonfinal faces
in the face list.

• Then follows the number of faces.
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• Then follows the encoding of the faces, stringed together. The encoding
of a face starts with the number of vertices, followed by the sequence
of vertices.

Example
The following list of integers

[0 , 17 , 3 , 0 , 1 , 2 , 3 , 3 , 2 , 9 , 3 , 3 , 0 , 2 , 4 , 5 , 4 , 0 , 3 , 4 , 7 , 6 , 0 , 4 ,
4 , 8 , 1 , 0 , 6 , 3 , 9 , 2 , 10 , 3 , 10 , 2 , 1 , 3 , 10 , 1 , 8 , 3 , 10 , 8 , 11 ,
3 , 9 , 10 , 11 , 3 , 11 , 8 , 7 , 3 , 8 , 6 , 7 , 3 , 7 , 4 , 5 , 3 , 5 , 3 , 9 ,
3 , 11 , 7 , 5 , 3 , 5 , 9 , 11 ]]

is an encoding of a final graph with the following set of 17 faces:

{ [0 , 1 , 2 ], [3 , 2 , 9 ], [3 , 0 , 2 ], [5 , 4 , 0 , 3 ], [7 , 6 , 0 , 4 ],
[8 , 1 , 0 , 6 ], [9 , 2 , 10 ], [10 , 2 , 1 ], [10 , 1 , 8 ], [10 , 8 , 11 ],
[9 , 10 , 11 ], [11 , 8 , 7 ], [8 , 6 , 7 ], [7 , 4 , 5 ], [5 , 3 , 9 ],
[11 , 7 , 5 ], [5 , 9 , 11 ] }.

Output

The function toArchiveString calculates the conversion from the graph datatype
representation to the archive format.

pos :: ′a list ⇒ ′a ⇒ nat
pos [] a = 0
pos (b#bs) a = (if a = b then 0 else 1 + (pos bs a))

nonFinalsPos :: graph ⇒ nat list
nonFinalsPos g ≡ [pos (faces g) f . f ∈ (nonFinals g)]

toArchiveStringFaceList :: face list ⇒ nat list
toArchiveStringFaceList [] = []
toArchiveStringFaceList (f #fs) =

(let vs = vertices f in [ |vs| ]@vs@toArchiveStringFaceList fs)

toArchiveString :: graph ⇒ nat list
toArchiveString g ≡

[ |nonFinals g | ]@(nonFinalsPos g)@
[ |faces g | ]@(toArchiveStringFaceList (faces g))
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Input

The function formatter calculates the conversion from the archive format
to the graph datatype. First the list of faces is constructed, assigning each
face the correct face type, then for every vertex v the list of incident faces
is created by sorting the incident faces such that they follow each other in
counterclockwise order around v. The baseVertex and the heights are set to
the initial value 0.

The function formatterFaces constructs the face list.

setNonFinal :: face ⇒ face
setNonFinal f ≡ Face (vertices f ) Nonfinal

formatterSetTemps :: nat list ⇒ face list ⇒ face list
formatterSetTemps ns fs ≡ mapAt ns setNonFinal fs

formatterVertexLists :: nat list ⇒ nat list list
formatterVertexLists [] = []
formatterVertexLists (n#ns) =

(take n ns)#formatterVertexLists (drop n ns)

formatterFaces :: nat list ⇒ nat list list ⇒ face list
formatterFaces templist fs ≡

formatterSetTemps templist [Face vs Final . vs ∈ fs]

The function formatterFacesAt constructs the incidence lists.

position-mapRec :: (nat ⇒ ′a ⇒ ′b) ⇒ nat ⇒ ′a list ⇒ ′b list
position-mapRec f n [] = []
position-mapRec f n (x # xs) = f n x # position-mapRec f (Suc n) xs

position-map :: (nat ⇒ ′a ⇒ ′b) ⇒ ′a list ⇒ ′b list
position-map f ≡ position-mapRec f 0

For a fixed vertex v, we collect all faces that contain v.

insertFaces :: nat ⇒ face list ⇒ face list list
insertFaces n fs ≡ [ [f ∈ fs. i ∈ set (vertices f )] .i ∈ [0 ..<n]]

Then we sort the face list.

findNextFace :: face list ⇒ vertex ⇒ vertex ⇒ face
findNextFace (f #fs) v w =
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(if w mem (vertices f ) ∧ f ·w = v then f else findNextFace fs v w)

sortNextFace :: vertex ⇒ vertex ⇒ nat ⇒ face list ⇒ face list
sortNextFace v w 0 fs = []
sortNextFace v w (Suc n) fs =

(let f = findNextFace fs v w in f # sortNextFace v (f ·v) n (rem f fs))

sortFaces :: vertex ⇒ face list ⇒ face list
sortFaces v [] = []
sortFaces v (f #fs) = f # (sortNextFace v (f ·v) (length fs) fs)

formatterFacesAt :: nat ⇒ face list ⇒ face list list
formatterFacesAt n fs ≡

(position-map (sortFaces) (insertFaces n fs))

formatter :: nat list ⇒ graph formatter [] = emptyGraph
formatter (t#ts) =

(let templist = take t ts;
n = hd (drop t ts);
ns = tl (drop t ts);
fs = formatterVertexLists ns;
m = maxList 0 [maxList 0 f . f ∈ fs] + 1 ; (∗ number of vertices ∗)
facelist = formatterFaces templist fs in
Graph facelist

m
(formatterFacesAt m facelist)
(replicate m 0 )
(Some 0 ))
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Appendix B

Induction Principles for Trees

We show that both definitions tree and Tree(see Section 3.2) are equivalent:

Lemma tree-eq : ((g , g ′) ∈ tree succs) = (g ′ ∈ Tree succs g)

To this end, we first prove an induction principle and the reversed induction
step rule for tree.

Lemma tree-induct :
(h, h ′) ∈ tree succs =⇒
P h =⇒
(
∧

g g ′. g ′ ∈ set (succs g) =⇒ P g =⇒ P g ′) =⇒
P h ′

proof −
assume s:

∧
g g ′. g ′ ∈ set (succs g) =⇒ P g =⇒ P g ′

assume (h, h ′) ∈ tree succs P h
then show P h ′

proof (induct rule: tree.induct)
fix g assume P g then show P g .

next
fix g g ′ g ′′ assume P g g ′ ∈ set (succs g) (g ′, g ′′) ∈ tree succs
and IH : P g ′ =⇒ P g ′′

have P g ′ by (rule s)
then show P g ′′ by (rule IH )

qed
qed

147



148 APPENDIX B. INDUCTION PRINCIPLES FOR TREES

Lemma tree-rev-succs:
(g , g ′) ∈ tree succs =⇒ g ′′ ∈ set (succs g ′) =⇒ (g , g ′′) ∈ tree succs
proof (induct rule: tree.induct)
fix g assume g ′′ ∈ set (succs g)
moreover have (g ′′, g ′′) ∈ tree succs by (rule tree.root)
ultimately show (g , g ′′) ∈ tree succs by (rule tree.succs)

next
fix g h ′ h ′′ assume h ′ ∈ set (succs g)
moreover assume (h ′, h ′′) ∈ tree succs and g ′′ ∈ set (succs h ′′)
and IH : g ′′ ∈ set (succs h ′′) =⇒ (h ′, g ′′) ∈ tree succs
have (h ′, g ′′) ∈ tree succs by (rule IH )
ultimately show (g , g ′′) ∈ tree succs by (rule tree.succs)

qed

Using these lemmas we can derive equivalence.

Lemma tree-eq : ((g , g ′) ∈ tree succs) = (g ′ ∈ Tree succs g)
proof
assume (g , g ′) ∈ tree succs then show g ⇒succs g ′

proof (induct rule: tree-induct)
show g ⇒succs g by (rule Tree.root)

next
fix g ′ g ′′ assume g ⇒succs g ′ and g ′→succs g ′′

show g ⇒succs g ′′ by (rule Tree.succs)
qed

next
assume g ⇒succs g ′ then show (g , g ′) ∈ tree succs
proof (induct rule: Tree.induct)
show (g , g) ∈ tree succs by (rule tree.root)

next
fix g ′ g ′′

assume g ⇒succs g ′ and (g , g ′) ∈ tree succs and g ′′ ∈ set (succs g ′)
show (g , g ′′) ∈ tree succs by (rule tree-rev-succs)

qed
qed

Since we have proved that both definitions are equivalent, we can provide a
second reversed induction principle for Tree and a reversed induction step
rule.

Lemma Tree-rev-induct : a ⇒succs b =⇒ (
∧

g . P g g) =⇒
(
∧

g g ′ g ′′. g →succs g ′ =⇒ g ′⇒succs g ′′ =⇒ P g ′ g ′′ =⇒ P g g ′′) =⇒
P a b

by (erule tree.induct [simplified tree-eq ]) simp-all
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Lemma Tree-rev-succs:
g ′⇒succs g ′′ =⇒ (

∧
g . g →succs g ′ =⇒ g ⇒succs g ′′)

proof (induct rule: Tree.induct)
fix g have g ⇒succs g by (rule Tree.root)
moreover assume g →succs g ′

ultimately show g ⇒succs g ′ by (rule Tree.succs)
next
fix g g ′′ g ′′′

assume g →succs g ′ and IH :
∧

g . g →succs g ′ =⇒ g ⇒succs g ′′

have g ⇒succs g ′′ by (rule IH )
moreover assume g ′′→succs g ′′′

ultimately show g ⇒succs g ′′′ by (rule Tree.succs)
qed

The next two lemmas are useful proof principles for the composition and
subset of trees.

Lemma Tree-compose: s ⇒succs g =⇒ g ⇒succs g ′=⇒ s ⇒succs g ′

proof (induct rule: Tree.induct)
assume s ⇒succs g ′ then show s ⇒succs g ′ .

next
fix h h ′ assume h →succs h ′ and h ′⇒succs g ′

and IH : h ⇒succs g ′ =⇒ s ⇒succs g ′

have h ⇒succs g ′ by (rule Tree-rev-succs)
then show s ⇒succs g ′ by (rule IH )

qed

Lemma Tree-succs-subset : s ⇒succs1 g =⇒
(
∧

g . s ⇒succs2 g =⇒ set (succs1 g) ⊆ set (succs2 g)) =⇒
s ⇒succs2 g

proof −
assume succ:

∧
g . s ⇒succs2 g =⇒ set (succs1 g) ⊆ set (succs2 g)

fix g assume s ⇒succs1 g
then show s ⇒succs2 g
proof (induct rule: Tree.induct)
case root then show ?case by (rule Tree.root)

next
case (succs g ′ g ′′)
with succs have g ′→succs2 g ′′ by (auto dest : succ)
moreover from succs have s ⇒succs2 g ′ by simp
ultimately show s ⇒succs2 g ′′ by (rule-tac Tree.succs)

qed
qed
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Finally, we derive the following induction theorem for the terminal elements
of a tree by induction on the construction.

Lemma h ∈ terminalsTree seed succs =⇒
(
∧

param. P (seed param)) =⇒
(
∧

g g ′ param. g ′ ∈ set (succs param g) =⇒ P g =⇒ P g ′)
=⇒ P h

proof −
assume r :

∧
param. P (seed param)

assume s:
∧

g g ′ param. g ′ ∈ set (succs param g) =⇒ P g =⇒ P g ′

assume h ∈ terminalsTree seed succs
then obtain param where

param: h ∈ terminalsTreeParam param seed succs
by (induct rule: terminalsTree.induct) auto

then obtain terminal : (seed param, h) ∈ tree (succs param)
and final h by (induct rule: terminalsTreeParam.induct) auto

show P h
proof (rule tree-induct)
show P(seed param) by (rule r)
fix g g ′ assume g ′ ∈ set (succs param g) P g
then show P g ′ by (rule-tac s)

qed
qed
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Proof Texts

C.1 Lower Bound of Total Weight for Final

Graphs

We present the proof sketch of the correctness proof of the lower bound for
the total weight of an admissible weight function, as derived in Section 6.7.
The main steps, indicated by (E1), (E2), (E3), (A1), (A2), (A3) correspond
to the proof in Section 6.7.

Theorem total-weight-lowerbound :
g ∈ PlaneGraphs8param =⇒
admissible w g =⇒

∑
f ∈ faces g w f < squanderTarget =⇒

squanderLowerBoundparam g ≤
∑

f ∈ faces g w f
proof −
assume g : g ∈ PlaneGraphs8param
then obtain p: g ∈ PlaneGraphs
then obtain final : final g
assume admissible: admissible w g
assume w :

∑
f ∈ faces g w f < squanderTarget

have squanderLowerBoundparam g
= ExcessNotAtparam g None + faceSquanderLowerBoundparam g

We expand the definition of faceSquanderLowerBound.

also have faceSquanderLowerBoundparam g
=

∑
f ∈ faces g d |vertices f |

151
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We expand the definition of ExcessNotAt.

also obtain V where eq : ExcessNotAtparam g None
=

∑
v ∈ V ExcessAtparam g v

and pS : preSeparated g (set V )
and V-subset : set V ⊆ set(vertices g)
and V-distinct : distinct V

We partition V in two disjoint subsets V 1, V 2, where V 2 contains all exceptional
vertices, V 1 all not exceptional vertices.

also def V1 ≡ [v ∈ V . except g v = 0 ]
def V2 ≡ [v ∈ V . except g v 6= 0 ]

have (
∑

v ∈ V ExcessAtparam g v)
= (

∑
v ∈ V1 ExcessAtparam g v) + (

∑
v ∈ V2 ExcessAtparam g v)

We partition V2 in two disjoint subsets, V 4 contains all exceptional vertices of
degree 6= 5 V 3 contains all exceptional vertices of degree 5.

also def V4 ≡ [v ∈ V2 . degree g v 6= 5 ]
def V3 ≡ [v ∈ V2 . degree g v = 5 ]

have (
∑

v ∈ V2 ExcessAtparam g v)
= (

∑
v ∈ V3 ExcessAtparam g v) +

∑
v ∈ V4 ExcessAtparam g v

We partition faces g in two disjoint subsets: F1 contains all faces that contain a
vertex of V 1, F2 the remaining faces.

also def F1 ≡ [f ∈faces g . ∃ v ∈ set V1 . f ∈ set (facesAt g v)]
def F2 ≡ [f ∈faces g . ¬(∃ v ∈ set V1 . f ∈ set (facesAt g v))]

have
∑

f ∈ faces g d |vertices f |
= (

∑
f ∈ F1 d |vertices f | ) +

∑
f ∈ F2 d |vertices f |

We split up F2 in two disjoint subsets:

also def F3 ≡ [f ∈ F2 . ∃ v ∈ set V3 . f ∈ set (facesAt g v)]
def F4 ≡ [f ∈ F2 . ¬ (∃ v ∈ set V3 . f ∈ set (facesAt g v))]

have F3 : F3 = [f ∈faces g . ∃ v ∈ set V3 . f ∈ set (facesAt g v)]
have (

∑
f ∈F2 d |vertices f | )

= (
∑

f ∈F3 d |vertices f | ) +
∑

f ∈F4 d |vertices f |
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(E1) From the definition of ExcessAt we have

also have (
∑

v ∈ V1 ExcessAtparam g v) +
∑

f ∈ F1 d |vertices f |
=

∑
v ∈ V1 b’param (tri g v) (quad g v)

proof −
have

∑
f ∈ F1 d |vertices f |

=
∑

v ∈ V1 (tri g v ∗ d 3 + quad g v ∗ d 4 )
also have (

∑
v ∈ V1 ExcessAtparam g v)

+
∑

v ∈ V1 (tri g v ∗ d 3 + quad g v ∗ d 4 )
=

∑
v ∈ V1 (ExcessAtparam g v

+ tri g v ∗ d 3 + quad g v ∗ d 4 )
also have . . . =

∑
v ∈ V1 b’param (tri g v) (quad g v)

finally show ?thesis .
qed

(E2) For all exceptional vertices of degree 5 excess returns a (tri g v).

also from p final V-subset have
(
∑

v ∈ V3 ExcessAtparam g v) =
∑

v ∈ V3 a (tri g v)

(E3) For all exceptional vertices of degree 6= 5 ExcessAt returns 0.

also from p final have (
∑

v ∈ V4 ExcessAtparam g v) =
∑

v ∈ V4 0

also have . . . = 0

(A1) We use property admissible2.

also have∑
v ∈ V1 b’param (tri g v) (quad g v) ≤ (

∑
v ∈ V1

∑
f ∈ facesAt g v w f )

proof (rule-tac ListSum-le)
fix v assume v ∈ set V1
with V1-def V-subset have v ∈ set (vertices g)
with admissible show b’param (tri g v) (quad g v) ≤

∑
f ∈ facesAt g v w f

qed

also from pSV1 V1-distinct have . . . =
∑

f ∈ F1 w f

(A2) We use property admissible4.

also from admissible V3 V3-subset have
(
∑

v∈V3 a (tri g v)) + (
∑

f ∈F3 d |vertices f | ) ≤
∑

f ∈ F3 w f
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(A3) We use property admissible1.

also have
∑

f ∈ F4 d |vertices f | ≤
∑

f ∈ F4 w f
proof (rule ListSum-le)
fix f assume f ∈ set F4
then have f : f ∈ set (faces g)
with admissible1 f show d |vertices f | ≤ w f

qed

We reunite F3 and F4.

also have (
∑

f ∈ F3 w f ) + (
∑

f ∈ F4 w f ) = (
∑

f ∈ F2 w f )

We reunite F1 and F2.

also have (
∑

f ∈ F1 w f ) + (
∑

f ∈ F2 w f ) =
∑

f ∈ faces g w f

finally show squanderLowerBoundparam g ≤
∑

f ∈ faces g w f .
qed

C.2 Enumeration

The following property is used in the completeness proof of the refinement
step of neglecting final graphs: Enumeration contains exactly the graphs that
are not neglectable final graphs.

Lemma PlaneGraphs8Param-eq : EnumerationParam param
= {g . g ∈ PlaneGraphs8param ∧ ¬ neglectableFinalparam g } (is ?L = ?R)

proof(intro equalityI subsetI conjI CollectI )
fix g assume L: g ∈ ?L
then have f : final g
from L have g : g ∈ EnumerationTree param

then have g ∈ PlaneGraphs8Treeparam
proof
fix g
assume g : g ∈ Tree (succsPlane8 param) Seedparam
then have g : g ∈ Tree succsPlane5 param Seedparam
show set (succsEnumerationparam g) ⊆ set (succsPlane8 param g)
proof
fix g ′ assume g ′: g ′ ∈ set (succsEnumerationparam g)
then have g ′ ∈ set (succsPlane5 param g)
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with g have g ′5 : g ′ ∈ Tree succsPlane5 param Seedparam
by (rule-tac Tree.succs)

from g ′ show g ′ ∈ set (succsPlane8 param g)
proof cases
assume final g ′

with g ′5 have g ′ ∈ PlaneGraphs5param
with g ′ show ?thesis

next
assume ¬ final g ′ with g ′ show ?thesis

qed
qed

qed
then show g ∈ PlaneGraphs8param
from g show ¬ neglectableFinalparam g

next
fix g assume R: g ∈ ?R
then have f : final g
from R show g ∈ ?L
proof assume g : g ∈ PlaneGraphs8param ¬ neglectableFinalparam g
then have g ∈ PlaneGraphs8Treeparam
then have g ∈ Tree succsPlane8 param Seedparam
moreover assume n: ¬ neglectableFinalparam g
ultimately have g ∈ Tree succsEnumerationparam Seedparam
proof (induct rule: Tree.induct)
case root then show ?case by (rule-tac Tree.root)

next
case (succs g ′ g ′′)
then have s: ¬ neglectableFinalparam g ′′

g ′′ ∈ set (succsPlane8 param g ′)
then have ¬ neglectableFinalparam g ′

then have g ′ ∈ Tree succsEnumerationparam Seedparam
by (rule-tac succs)

moreover
from s have g ′′ ∈ set (succsEnumerationparam g ′)

ultimately show ?case by (rule-tac Tree.succs)
qed
then have g ∈ EnumerationTree param
with f show ?thesis

qed
qed
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C.3 Reordering of Faces

We sketch a proof of a property about reorderings of faces for the case of a
common initial graph.

=~ =~

=

s

h

g’’g g’

Theorem subset-completion: h ∈ Tree (successorsListparam) s =⇒
g ∈ Tree (successorsListparam) s =⇒
set (finals h) ⊆∼= set (finals g) =⇒
∃ g ′. g ′ ∼= g ∧ g ′∈ Tree (successorsListparam) h

We need the following basic property of the successor function, to prove the
theorem subset-completion in two different successor graphs a different new
face is added (up to isomorphism).

Lemma e: g ∈ set (successorsListparam s) =⇒
h ∈ set (successorsListparam s) =⇒
set (finals h) = {f 1} ∪ set (finals s) =⇒ f 1 /∈∼= set (finals s) =⇒
set (finals g) = {f 2} ∪ set (finals s) =⇒ f 2 /∈∼= set (finals s) =⇒
f 1 ∼= f 2 =⇒ g = h

The second lemma states that we can transpose the addition of two faces
under certain conditions: if we can add a final face f1 and a final face f2 in
a graph s then we can do this in both orders, provided that these faces do
not interfere. For example, their edges are not allowed to intersect. This is
ruled out by the precondition that both faces are faces of a certain partial
plane graph p.

f 1
f 2 f 1

f 2

s

h
g

td

Lemma d : ¬ f 1 ∼= f 2 =⇒ {f 1, f 2} ∪ set (finals s) ⊆∼= set (finals p) =⇒
s →successorsList param h =⇒
set (finals h) = {f 1} ∪ set (finals s) =⇒ f 1 /∈∼= set (finals s) =⇒
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s →successorsList param g =⇒
set (finals g) = {f 2} ∪ set (finals s) =⇒ f 2 /∈∼= set (finals s) =⇒
∃ t . g →successorsList param t ∧ h →successorsList param t
∧ set (finals t) =∼= {f 1} ∪ set (finals g)

The next lemma expresses a similar property: if we can add a face f2 followed
by a face f1 and could also first add f1, then we can add f2 after f1.

f 1
f 2

f 2
f 1

s

h
c

g

t

Lemma c: h ∈ set (successorsListparam s) =⇒
set (finals h) = {f 1} ∪ set (finals s) =⇒ f 1 /∈∼= set (finals s) =⇒
g ∈ set (successorsListparam s) =⇒
set (finals g) = {f 2} ∪ set (finals s) =⇒ f 2 /∈∼= set (finals s) =⇒
t ∈ set (successorsListparam g) =⇒
set (finals t) = {f 1} ∪ set (finals g) =⇒ f 1 /∈∼= set (finals g) =⇒
t ∈ set (successorsListparam h)

Now we combine the properties c, d and e and prove the following lemma
by induction on the construction of a tree.

f 3

f 1
f 2

f 1
f 2

s

h
g

t
IH
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f 1
f 2

f 1
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f 3
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’

g’
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h

s
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=

c g’
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Lemma b: g ′ ∈ Tree (successorsListparam) g =⇒
(
∧

h s. g ∈ set (successorsListparam s) =⇒
h ∈ set (successorsListparam s) =⇒
set (finals h) ⊆∼= set (finals g ′) =⇒
g ′ ∈ Tree (successorsListparam) h)

proof (induct rule: Tree-rev-induct)
case (root g) then show ?case

next
case (succs g g ′ g ′′)
have h: h ∈ set (successorsListparam s) .
then obtain f 1 where fh: set (finals h) = {f 1} ∪ set (finals s)

f 1 /∈∼= set (finals s)
by (auto dest : successorsList-newfinal)

have g : g ∈ set (successorsListparam s) .
then obtain f 2 where fg : set (finals g) = {f 2} ∪ set (finals s)

f 2 /∈∼= set (finals s)
by (auto dest : successorsList-newfinal)

have g ′: g ′ ∈ set (successorsListparam g) .
then obtain f 3 where fg ′: set (finals g ′) = {f 3} ∪ set (finals g)

f 3 /∈∼= set (finals g)
by (auto dest : successorsList-newfinal)

show g ′′ ∈ Tree (successorsListparam) h
proof (cases f 1 ∼= f 2)
case True
then have eq : g = h by (rule-tac e)
have g ′′ ∈ Tree (successorsListparam) g by (rule Tree-rev-succs)
with eq show ?thesis by auto

next
case False
note n = this
then show ?thesis
proof (cases f 3 = f 1)
case True
from h fh g fg g ′ fg ′[simplified True]
have g ′ ∈ set (successorsListparam h)
by (rule c)

then show g ′′ ∈ Tree (successorsListparam) h by (rule-tac Tree-rev-succs)
next
case False
from succs have hyp: set (finals h) ⊆∼= set (finals g ′′) by simp
from succs have set (finals g) ⊆ set (finals g ′)
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by (simp add : successorsList-finals)
also from succs have set (finals g ′) ⊆ set (finals g ′′)
by (simp add : Tree-finals)

finally have set (finals g) ⊆ set (finals g ′′) .

moreover then have f 2: f 2 ∈ set (finals g ′′)
by (simp add : fg successorsList-finals)

from succs fh have f 1: f 1 ∈∼= set (finals g ′′)
by (auto simp add : iso-eqs)

moreover from f 1 f 2 fh hyp have
{f 1, f 2} ∪ set (finals s) ⊆∼= set (finals g ′′)
by (auto simp add :iso-eqs)

with n h g fh fg
obtain t where g →successorsList param t

h →successorsList param t
set (finals t) =∼= {f 1} ∪ set (finals g)
by (auto dest : d)

ultimately have set (finals t) ⊆∼= set (finals g ′′)
by (erule-tac r) auto

then have g ′′ ∈ Tree (successorsListparam) t
by (rule-tac succs)

then show g ′′ ∈ Tree (successorsListparam) h
by (rule-tac Tree-rev-succs)

qed
qed

qed

s g

h
a

g g’

h
b

s

Lemma a: g ∈ Tree (successorsListparam) s =⇒
h ∈ set (successorsListparam s) =⇒
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set (finals h) ⊆∼= set (finals g) =⇒
g ∈ Tree (successorsListparam) h

proof (induct rule: Tree-rev-induct)
case (root s)
have h ∈ set (successorsListparam s) .
then have set (finals s) ⊂∼= set (finals h)
by (simp add : successorsList-subset)

with root show ?case by (auto simp add :iso-eqs)
next
let ?succs = successorsListparam
case (succs s g g ′)

have g ∈ set (successorsListparam s)
g ′ ∈ Tree (successorsListparam) g
h ∈ set (successorsListparam s)
set (finals h) ⊆∼= set (finals g ′) .

then show g ′ ∈ Tree (successorsListparam) h
by (rule-tac b)

qed

We finally prove the theorem subset-completion, which shows that the order,
in which the faces of a graph are constructed, can be changed, as long as the
graph stays connected during the construction.

s

g

h

s

g

h
a

h’
IH

Lemma subset-completion: h ∈ Tree (successorsListparam) s =⇒
g ∈ Tree (successorsListparam) s =⇒
set (finals h) ⊆∼= set (finals g) =⇒
∃ g ′. g ′ ∼= g ∧ g ′∈ Tree (successorsListparam) h

proof (induct rule: Tree-rev-induct)
case (root s) then show ?case by auto

next
let ?succs = successorsListparam
case (succs s h h ′)
then have set (finals h) ⊆ set (finals h ′) by (simp add : Tree-finals)
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also have set (finals h ′) ⊆∼= set (finals g) .
finally have set (finals h) ⊆∼= set (finals g) .

moreover have h ∈ set (successorsListparam s)
g ∈ Tree (successorsListparam) s .
ultimately have g ∈ Tree (successorsListparam) h by (rule-tac a)
then show ∃ g ′. g ′ ∼= g ∧ g ′ ∈ Tree (successorsListparam) h ′

by (rule succs)
qed
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Appendix D

Statistics

We summarize the numbers of graphs generated for each parameter and the
execution times on a 3 GHz Xeon processor.

QuadParameter
parameter partial Graphs final Graphs isomorphic time
0 1078 1 3.5 secs
1 1497 1 8.0 secs
2 2766 15 61.7 secs
3 1193 12 5.0 secs
4 3253 50 20.3 secs
5 23374 314 240.2 secs
6 24395 317 281.0 secs
7 1628 248 38.8 secs
8 3865 97 37.6 secs
9 263 35 8.9 secs
10 111483 3317 4198.7 secs
11 2505 312 75.4 secs
12 4354 568 116.4 secs
13 1141 188 64.6 secs
14 618 5 6.2 secs
15 554 5 23.3 secs
16 30 1 1.3 secs
quad 183997 5486 981 5191.7 secs
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ExceptionalParameter
parameter partial Graphs final Graphs isomorphic time
5 739599 4729 1779 2713.4 secs
6 279497 741 245 375.8 secs
7 46151 67 23 70.8 secs
8 50232 74 22 93.2 secs
total 1299473 11097 3050 8444.9 secs
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face, 15
graph, 11
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edge, 31
final, 15
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final
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graph, 15, 38, 41
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forced triangle, 100

graph, 11
complete, 11
contravening, 9
edge, 11
final, 15, 38, 41
inconsistent, 38
initial, 40, 42
isomorphic, 14, 56
nonfinal, 15
opposite, 14, 57
partial, 15
planar, 11, 15
plane, 12, 13
seed, 40
tame, 67, 72
vertex, 11
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Hilberts problems, 8
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of a triangulation, 16
isomorphic, 14, 56, 57

join, 11
Jordan Curve Theorem, 21

Kepler problem, 8

loop, 11

map
oriented combinatorial, 18

multiple edge, 11

near triangulation, 16
neighboring, 11
nonfinal

graph, 15
nonfinal face, 15

opposite face, 31
opposite graph, 14
oriented combinatorial map, 18, 19

directed edge, 19
edge, 19
face, 20
half-edge, 19
plane, 20
vertex, 19

packing, 8
cubic close, 5
saturated, 8

parameter, 55
partial graph, 15
patch, 40, 46, 47
path, 11
planar

graph, 11, 15
oriented combinatorial map, 18

plane
graph, 12, 13
oriented combinatorial map, 20

plane graph
tame, 10

preseparated, 70

quadrilateral, 14

saturated packing, 8
seed graph, 40

complex, 82
simple, 42

separated, 66, 69
simple seed graph, 42
splitting a face, 43
subgraph, 11

tame, 67, 72
tame plane graph, 10
triangle, 14

forced, 100
triangulation, 15

vertex
adjacent, 11
final, 38
incident with an edge, 11
incident with face, 31
neighboring, 11
of a graph, 11
of a triangulation, 16
of oriented combinatorial map, 19
type, 14

vertex seed graphs, 82
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