login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000402
Number of permutations of [n] in which the longest increasing run has length 3.
(Formerly M4239 N1771)
6
0, 0, 1, 6, 41, 293, 2309, 19975, 189524, 1960041, 21993884, 266361634, 3465832370, 48245601976, 715756932697, 11277786883720, 188135296651083, 3313338641692957, 61444453534759589, 1196988740015236617, 24442368179977776766, 522124104504306695929
OFFSET
1,4
REFERENCES
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 261, Table 7.4.1. (Values for n>=16 are incorrect.)
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..452 (first 100 terms from Max Alekseyev)
Max A. Alekseyev, On the number of permutations with bounded runs length, arXiv preprint arXiv:1205.4581 [math.CO], 2012-2013. - From N. J. A. Sloane, Oct 23 2012
EXAMPLE
a(4)=6 because we have (124)3, (134)2, (234)1, 4(123), 3(124) and 2(134), where the parentheses surround increasing runs of length 3.
MATHEMATICA
b[u_, o_, t_, k_] := b[u, o, t, k] = If[t == k, (u + o)!, If[Max[t, u] + o < k, 0, Sum[b[u + j - 1, o - j, t + 1, k], {j, 1, o}] + Sum[b[u - j, o + j - 1, 1, k], {j, 1, u}]]];
T[n_, k_] := b[0, n, 0, k] - b[0, n, 0, k + 1];
a[n_] := T[n, 3];
Array[a, 30] (* Jean-François Alcover, Jul 19 2018, after Alois P. Heinz *)
CROSSREFS
Column 3 of A008304. Other columns: A000303, A000434, A000456, A000467.
Sequence in context: A196954 A122371 A083067 * A186654 A152107 A143023
KEYWORD
nonn
EXTENSIONS
Better description from Emeric Deutsch, May 08 2004
Terms a(16), a(17) are corrected and further terms added by Max Alekseyev, May 20 2012
STATUS
approved

  NODES
orte 1
see 1
Story 1