login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000988
Number of one-sided polyominoes with n cells.
(Formerly M1749 N0693)
22
1, 1, 1, 2, 7, 18, 60, 196, 704, 2500, 9189, 33896, 126759, 476270, 1802312, 6849777, 26152418, 100203194, 385221143, 1485200848, 5741256764, 22245940545, 86383382827, 336093325058, 1309998125640, 5114451441106, 19998172734786, 78306011677182, 307022182222506, 1205243866707468, 4736694001644862
OFFSET
0,4
COMMENTS
A000105(n) + A030228(n) = a(n) because the number of free polyominoes plus the number of polyominoes lacking bilateral symmetry equals the number of one-sided polyominoes. - Graeme McRae, Jan 05 2006
Names for the first few polyominoes: monomino, domino, tromino, tetromino, pentomino, hexomino, heptomino, octomino, enneomino (aka nonomino), decomino, hendecomino (aka undecomino), dodecomino, ...
REFERENCES
S. W. Golomb, Polyominoes. Scribner's, NY, 1965; second edition (Polyominoes: Puzzles, Packings, Problems and Patterns) Princeton Univ. Press, 1994.
J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 229.
W. F. Lunnon, personal communication.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
John Mason, Table of n, a(n) for n = 0..50 (terms 0..45,47,49 from Toshihiro Shirakawa).
W. F. Lunnon, Counting multidimensional polyominoes, Computer Journal 18(4) (1975), 366-367.
Jaime Rangel-Mondragon, Polyominoes and Related Families, The Mathematica Journal, 9(3) (2005), 609-640. [Broken link]
Jaime Rangel-Mondragon, Polyominoes and Related Families, The Mathematica Journal, 9(3) (2005), 609-640. [From the internet archive]
D. H. Redelmeier, Counting polyominoes: yet another attack, Discrete Math., 36 (1981), 191-203.
Eric Weisstein's World of Mathematics, Polyomino.
Wikipedia, Polyomino.
FORMULA
a(n) = 2*A006749(n) + A006746(n) + A006748(n) + 2*A006747(n) + A056877(n) + A056878(n) + 2*A144553(n) + A142886(n). - Andrew Howroyd, Dec 04 2018
a(n) = 2*A000105(n) - A030227(n) = 2*A030228(n) + A030227(n). - Robert A. Russell, Feb 03 2022
EXAMPLE
a(0) = 1 as there is 1 empty polyomino with #cells = 0. - Fred Lunnon, Jun 24 2020
CROSSREFS
See A006758 for another version. Subtracting 1 gives first column of A195738. Cf. A000105 (unoriented), A030228 (chiral), A030227 (achiral), A001168 (fixed).
Sequence in context: A294004 A214836 A176813 * A185308 A002214 A303742
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, hugh(AT)mimosa.com (D. Hugh Redelmeier)
EXTENSIONS
a(0) = 1 added by N. J. A. Sloane, Jun 24 2020
STATUS
approved

  NODES
COMMUNITY 1
INTERN 2