login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004011
Theta series of D_4 lattice; Fourier coefficients of Eisenstein series E_{gamma,2}.
(Formerly M5140)
23
1, 24, 24, 96, 24, 144, 96, 192, 24, 312, 144, 288, 96, 336, 192, 576, 24, 432, 312, 480, 144, 768, 288, 576, 96, 744, 336, 960, 192, 720, 576, 768, 24, 1152, 432, 1152, 312, 912, 480, 1344, 144, 1008, 768, 1056, 288, 1872, 576, 1152, 96, 1368, 744, 1728, 336
OFFSET
0,2
COMMENTS
D_4 is also the Barnes-Wall lattice in 4 dimensions.
E_{gamma,2} is the unique normalized modular form for Gamma_0(2) of weight 2.
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan's Eisenstein series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).
Convolution square is A008658. - Michael Somos, Aug 21 2014
Expansion of 2*P(x^2) - P(x) in powers of x where P() is a Ramanujan Eisenstein series. - Michael Somos, Feb 16 2015
a(n) is the number of Hurwitz quaternions of norm n. - Michael Somos, Feb 16 2015
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, 1998, see p. 148 Eq. (9.11).
Harvey Cohn, Advanced Number Theory, Dover Publications, Inc., 1980, p. 89. Eq. (1).
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 119.
S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 214.
N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Megumi Asada, Bruce Fang, Eva Fourakis, Sarah Manski, Nathan McNew, Steven J. Miller, Gwyneth Moreland, Ajmain Yamin, and Sindy Xin Zhang, Avoiding 3-Term Geometric Progressions in Hurwitz Quaternions, Williams College (2023).
Barry Brent, Quadratic Minima and Modular Forms, Experimental Mathematics, Vol. 7, No. 3 (1998), 257-274.
Fern Gossow, Lyndon-like cyclic sieving and Gauss congruence, arXiv:2410.05678 [math.CO], 2024. See p. 26.
Nadia Heninger, E. M. Rains, and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. I wrote 2005 on the first page but the internal evidence suggests 1997.]
Gabriele Nebe and N. J. A. Sloane, Home page for D_4 lattice
N. J. A. Sloane, Seven Staggering Sequences.
Eric Weisstein's World of Mathematics, 24-Cell.
Eric Weisstein's World of Mathematics, Barnes-Wall Lattice.
Eric Weisstein's World of Mathematics, Eisenstein Series.
Wikipedia, Hurwitz quaternion.
FORMULA
a(0) = 1; if n>0 then a(n) = 24 (Sum_{d|n, d odd, d>0} d) = 24 * A000593(n).
G.f.: 1 + 24 Sum_{n>0} n x^n /(1 + x^n). a(n) = A000118(2*n) = A096727(2*n).
G.f.: (1/2) * (theta_3(z)^4 + theta_4(z)^4) = theta_3(2z)^4 + theta_2(2z)^4 = Sum_{k>=0} a(k) * x^(2*k).
G.f.: Sum_{a, b, c, d in Z} x^(a^2 + b^2 + c^2 + d^2 + a*d + b*d + c*d). - Michael Somos, Jan 11 2011
Expansion of (1 + k^2) * K(k^2)^2 / (Pi/2)^2 in powers of nome q. - Michael Somos, Jun 10 2006
Expansion of (1 - k^2/2) * K(k^2)^2 / (Pi/2)^2 in powers of nome q^2. - Michael Somos, Mar 14 2012
Expansion of b(x) * b(x^2) + 3 * c(x) * c(x^2) in powers of x where b(), c() are cubic AGM theta functions. - Michael Somos, Jan 11 2011
Expansion of b(x) * b(x^2) + c(x) * c(x^2) / 3 in powers of x^3 where b(), c() are cubic AGM theta functions. - Michael Somos, Mar 14 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (2 t)) = 2 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 11 2007
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 - 2*u*v - 7*v^2 - 8*v*w + 16*w^2. - Michael Somos, May 29 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2 + 4*u2^2 + 9*u3^2 + 36*u6^2 - 2*u1*u2 - 10*u1*u3 + 10*u1*u6 + 10*u2*u3 - 40*u2*u6 - 18*u3*u6. - Michael Somos, Sep 11 2007
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2 = 9.869604... (A002388). - Amiram Eldar, Dec 29 2023
EXAMPLE
G.f. = 1 + 24*x + 24*x^2 + 96*x^3 + 24*x^4 + 144*x^5 + 96*x^6 + 192*x^7 + 24*x^8 + ...
G.f. = 1 + 24*q^2 + 24*q^4 + 96*q^6 + 24*q^8 + 144*q^10 + 96*q^12 + 192*q^14 + 24*q^16 + ...
MAPLE
readlib(ifactors): with(numtheory): for n from 1 to 100 do if n mod 2 = 0 then m := n/ifactors(n)[2][1][1]^ifactors(n)[2][1][2] else m := n fi: printf(`%d, `, 24*sigma(m)) od: # James A. Sellers, Dec 07 2000
MATHEMATICA
a[ n_] := If[ n < 0, 0, With[ {m = Floor @ Sqrt[4 n]}, SeriesCoefficient[ Sum[ q^( x^2 + y^2 + z^2 + t^2 + (x + y + z) t ), {x, -m, m}, {y, -m, m}, {z, -m, m}, {t, -m, m}] + O[q]^(n + 1), n]]]; (* Michael Somos, Jan 11 2011 *)
a[n_] := 24*Total[ Select[ Divisors[n], OddQ]]; a[0]=1; Table[a[n], {n, 0, 52}] (* Jean-François Alcover, Sep 12 2012 *)
a[ n_] := With[{m = InverseEllipticNomeQ @q}, SeriesCoefficient[ (1 + m) (EllipticK[ m] / (Pi/2))^2, {q, 0, n}]]; (* Michael Somos, Jun 04 2013 *)
a[ n_] := With[{m = InverseEllipticNomeQ @q}, SeriesCoefficient[ (1 - m/2) (EllipticK[ m] / (Pi/2))^2, {q, 0, 2 n}]]; (* Michael Somos, Jun 04 2013 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^4 + EllipticTheta[ 2, 0, q]^4, {q, 0, n}]; (* Michael Somos, Jun 04 2013 *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^4 + EllipticTheta[ 4, 0, q]^4) / 2, {q, 0, 2 n}]; (* Michael Somos, Jun 04 2013 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 24 * sumdiv( n, d, d%2 * d))}; /* Michael Somos, Apr 17 2000 */
(PARI) {a(n) = my(G); if( n<0, 0, G = [2, 1, 1, 1; 1, 2, 0, 0; 1, 0, 2, 0; 1, 0, 0, 2]; polcoeff( 1 + 2 * x * Ser(qfrep( G, n, 1)), n))}; /* Michael Somos, Sep 11 2007 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^20 / (eta(x + A) * eta(x^4 + A))^8 + 16 * x * eta(x^4 + A)^8 / eta(x^2 + A)^4, n))}; /* Michael Somos, Oct 21 2017 */
(Sage) ModularForms( Gamma0(2), 2, prec=54).0; # Michael Somos, Jun 04 2013
(Magma) Basis( ModularForms( Gamma0(2), 2), 54) [1]; /* Michael Somos, May 27 2014 */
(Python)
from sympy import divisors
def a(n): return 1 if n==0 else 24*sum(d for d in divisors(n) if d%2)
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 24 2017
(Python)
from math import prod
from sympy import factorint
def A004011(n): return 24*prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items() if p > 2) if n else 1 # Chai Wah Wu, Nov 13 2022
CROSSREFS
Partial sums give A046949.
Cf. A108092 (convolution fourth root).
Sequence in context: A022358 A122505 A103640 * A334570 A056465 A056455
KEYWORD
nonn,easy,core,nice
EXTENSIONS
Additional comments from Barry Brent (barryb(AT)primenet.com)
STATUS
approved

  NODES
Community 1
HOME 1
Intern 2
Note 2
os 25
text 2
web 1