login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006265
Number of shapes of height-balanced AVL trees with n nodes.
(Formerly M0170)
6
1, 1, 2, 1, 4, 6, 4, 17, 32, 44, 60, 70, 184, 476, 872, 1553, 2720, 4288, 6312, 9004, 16088, 36900, 82984, 174374, 346048, 653096, 1199384, 2160732, 3812464, 6617304, 11307920, 18978577, 31327104, 51931296, 90400704, 170054336, 341729616, 711634072, 1491256624
OFFSET
1,3
COMMENTS
An AVL tree is a complete ordered binary rooted tree where at any node, the height of both subtrees are within 1 of each other.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
This is the limit of A_k as k->inf, see F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 239, Eq 79.
LINKS
Ricardo A. Baeza-Yates, Height balance distribution of search trees, Preprint. (Annotated scanned copy)
Ricardo A. Baeza-Yates, Height balance distribution of search trees, Information Processing Letters 39.6 (1991): 317-324.
S. Giraudo, Intervals of balanced binary trees in the Tamari lattice, arXiv preprint arXiv:1107.3472 [math.CO], 2011 and Theor Comput. Sci. 420, 1-27 (2012)
R. C. Richards, Shape distribution of height-balanced trees, Info. Proc. Lett., 17 (1983), 17-20.
FORMULA
G.f.: A(x) = B(x,0) where B(x,y) satisfies B(x,y) = x + B(x^2+2xy,x).
MAPLE
a:= proc(n::posint) local B; B:= proc(x, y, d, a, b) if a+b<=d then x+B(x^2+2*x*y, x, d, a+b, a) else x fi end; coeff(B(z, 0, n, 1, 1), z, n) end: seq(a(n), n=1..40); # Alois P. Heinz, Aug 10 2008
MATHEMATICA
a[n_] := Module[{B}, B[x_, y_, d_, a_, b_] := If[a+b <= d, x+B[x^2+2*x*y, x, d, a+b, a], x]; Coefficient[B[z, 0, n, 1, 1], z, n]]; Table[a[n], {n, 1, 39}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
CROSSREFS
Column sums of A143897, A217298. - Alois P. Heinz, Mar 18 2013
Sequence in context: A217300 A036662 A134306 * A131452 A359898 A335920
KEYWORD
nonn
EXTENSIONS
More terms, formula and comment from Christian G. Bower, Dec 15 1999
STATUS
approved

  NODES
orte 1
see 2
Story 1